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An iterative enhanced super-resolution system
with edge-dominated interpolation and adaptive
enhancements
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Abstract

For super-resolution (4K × 2K) displays, super-resolution technologies, which can upsample videos to higher resolution
and achieve better visual quality, become more and more important currently. In this paper, an iterative enhanced
super-resolution (IESR) system which is based on two-pass edge-dominated interpolation, adaptive enhancement,
and adaptive dithering techniques is proposed. The two-pass edge-dominated interpolation with a simple and regular
kernel can sharpen visual quality while the adaptive enhancement can provide high-frequency perfection and the
adaptive dithering conveys naturalization enhancement such that the proposed IESR system achieves better peak
signal-to-noise ratio (PSNR) and exhibits better visual quality. Experimental results indicate that the proposed IESR
system, which improves PSNR up to 28.748 dB and promotes structural similarity index measurement (SSIM) up to
0.917611 in averages, is better than the other existing methods. Simulations also exhibit that the proposed IESR
system acquires lower computational complexity than the methods which achieve similar visual quality.

Keywords: Low-resolution; Super-resolution; Two-pass dominated-edge interpolation; Adaptive enhancement;
Adaptive dithering
1 Introduction
Currently, the super-resolution displays with 4K × 2K
pixels are vigorously available in the commercial market;
however, the existing TV programs are mostly with
either standard definition (SD) with 640 × 480 or high
definition (HD) with 2K × 1K resolution. In other words,
there are almost no super-resolution programs to match up
with 4K × 2K TV displays. Thus, the super-resolution tech-
nologies, which can upsample SD or HD videos to higher
resolution, become more and more important for current
applications. Super-resolution (SR) is a technique to recover
a higher resolution image from a given low-resolution (LR)
image. Simply, the SR algorithm could be treated as an
interpolation method to enhance the resolution of images
or videos. The interpolated image usually could still lose
some detailed information. For 4K × 2K TV displays, it is
noted that the SR algorithms should consider real-time im-
plementation issues.
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In the literatures, the SR algorithms can be classified into
interpolation-based, reconstruction-based, and learning-
based approaches to solve the problem of recovering de-
tailed information extracted from the low-resolution image.
The interpolation-based approach involves in the predic-
tion of the unknown pixels by filtering processes. Based on
the concept of ideal low-pass filtering, the interpolation
methods [1] always need to consider the balance of compu-
tational complexity and reconstruction quality. The linear,
bi-cubic, and cubic spline interpolations [2] are the possible
means for reducing the complexity. To prevent filtering
pixels across edges, numerous edge-directed interpolation
methods are proposed [3-11].
The reconstructed-based approach generates high-

resolution images by exploiting the information from a
set of successive low-resolution images in the same
scene but with sub-pixel displacements. In the wavelet
domain [12], the LR image is considered as the lower
sub-band of the wavelet-transformed high-resolution
(HR) image. However, they are difficult in estimating the
unknown coefficients of the other three higher wavelet
sub-bands due to their independencies. Instead of the
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frequency domain methods, the most contemporary
methods turn their attentions to solve the problem in
the spatial domain [13]. The back projection algorithm
iteratively projects the error between the simulated and
input LR images to estimate HR error by iteratively min-
imizing the reconstruction error [14]. However, many
jaggy artifacts along the edges may affect the quality of
images. To reduce these artifacts, Dong et al [15]
employed the nonlocal image redundancy to improve
the quality of SR images. In the same time, it brings
heavy computation complexity for updating the recon-
struction error in each step. The projection onto convex
sets (POCS) algorithms [16,17] applied to the input LR
images could increase the solution of the element on the
convex set. The maximum a posteriori (MAP) methods
[18,19] adopt the associated probability of target high-
resolution images to form a prior probability to refer the
solution based on Bayesian inference.
The learning-based approaches [20,21] attempt to

capture the correlation between LR and HR patches
to exploit the redundant high-frequency information
which is remained in HR training samples. Although
these algorithms need a large number of databases to
store millions of LR and HR patch pairs, the quality of
reconstructed images can be improved even that the
magnificent factor is large.
The dictionary learning-based denoising approach [22]

used taxonomy based on image representations for a
better understanding of state-of-the-art image denoising
techniques. The multiresolution structure and sparsity of
wavelets are used for nonlocal dictionary learning in
each decomposition level of the wavelets [23]. The
classification-based least squares trained filters on pic-
ture quality improvement algorithms are suggested [24].
In this paper, we propose an iterative enhanced super-

resolution (IESR) system, which is based on two-pass edge-
Figure 1 Block diagram of the proposed IESR system.
dominated interpolation by adding adaptive enhancement
and dithering mechanisms. The proposed (IESR) system is
based on iterative back projection concept [14]; however,
the proposed two-pass edge-dominated interpolation con-
sists of two adaptive fixed-structure filters. Besides, we fur-
ther include the adaptive enhancement and adaptive
dithering units to improve the quality of the HR image in
iterative cycles. The overview of the proposed super-
resolution system is addressed in Section 2. The edge-
dominated interpolation methods will be described in
Section 3 while the adaptive enhancement and adaptive
dithering algorithms will be present in Section 4. In
Section 5, the experimental results for verifying the pro-
posed algorithms in comparison to the well-known super-
resolution algorithms are demonstrated. Finally, the conclu-
sions about this paper are addressed in Section 4.

2 Overview of the proposed super-resolution system
The block diagram of the proposed super-resolution sys-
tem is shown in Figure 1. The flow diagram of the pro-
posed super-resolution system is exhibit in Figure 2. The
detailed descriptions of the proposed system are shown
as the follows.
For later performance comparisons, as shown in Figure 1,

the LR image, IL as the test image is obtained by down
sampling a HR image, IH. For down sampling, we adopt
Lanczos2 low-pass filtering to eliminate high-frequency
components to prevent from the aliasing effect. The recon-
struction kernel of Lanczos one-dimensional (1-D) low-
pass filter is given as:

L xð Þ ¼ nsin πxð Þ sin πx=nð Þ=π2x2;
0;

if 0 < xj j < a
otherwise;

�

ð1Þ



Figure 2 Flowchart of the proposed IESR system.
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where n is typically two or three. As shown in Figure 3,
Lanczos2 filter is an approximation of the ideal low-pass
filter, which is specified by sinc function.
For half-pixel interpolation, the 1-D Lanczos2 filtering

process can be expressed by:

l0 ¼ − 0:032 s−2 þ 0:284s−1 þ 0:496s0
þ 0:284s1 − 0:032s2 ;

ð2Þ

where s-2, s-1, s0, s1, and s2 denote the five consecutive
inputs while l0 represents the co-located low-pass filter-
ing result at s0. In (2), the coefficients are calculated by
Lanczos kernel to predict half pixels through sinc
Figure 3 The reconstruction kernel of Lanczos2 sinc low-pass
filter.
functions. It is noted that the symmetrical extension of
image pixels is conducted for the image borders while
applying low-pass filtering. With the about filtering
process of the SR image, we then perform the two-to-
one down sampling for horizontal and vertical to get the
LR image, which will be treated as the input for testing
SR algorithms while the original HR image will be used
for performance evaluation of the proposed and other
super-resolution algorithms. It is noted that the LR im-
ages might not have their related HR image and the LR
image obtained from the HR image could be different
from the data generation exhibited in Figure 2 normally.
In the proposed super-resolution system, the input

low-resolution image, IL is first upsampled by the pro-
posed two-pass edge-dominate interpolation (TEI) to
become the initially restored HR image, ~IH0ð Þ at k = 0. For

the kth (k > 0) iteration, the adaptive enhancement and
dither noise, DH

kð Þ is added to the previous (k − 1)th iter-

ation result to obtain the kth restored HR image as:

~IHkð Þ ¼ ~I Hk−1ð Þ þ DH
kð Þ ð3Þ

The detailed descriptions about the adaptive enhance-
ment and adaptive dithering to obtain DH

kð Þ will be ad-

dressed in Section 4.
Similar to data generation, the kth LR image, ILkð Þ is

computed by down sampling of the kth restored HR
image, ~IHkð Þ after Lanczos2 sinc filtering. The restored LR
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error image with respect to the low-resolution image, IL

is computed by:

eLkð Þ ¼ ILkð Þ −IL: ð4Þ

If the restored error, eT ¼ keLkð Þk is less than a prede-

termined threshold ε or the number of iterations, k is
equal to the maximum limited number M, the whole
iterative super-resolution process will be terminated.
Thus, the final restored HR image, ~I Hkð Þ will be the output
HR image.
If the iterative process is not terminated, the LR error

image eLkð Þ is then upsampled by the proposed two-pass

edge-dominated interpolation to become the HR error
image, eHkð Þ . From eHkð Þ , we can estimate the enhancement

HR image, EH
kð Þ, and its dithering image, DH

kð Þ for the next

iteration. The proposed TEI will be discussed in the next
section.

3 Two-pass edge-dominated interpolation
The TEI is shown in Figure 4. To gain more accurate
interpolation value, the YUV color space is adopted in
the proposed method. The Y component, also called
luma component, represents the details of the texture.
Therefore, the edge-dominated weights of the Y compo-
nent are used to perform the interpolations of U and V
components. In other words, the dominated weights
used for Y component will be directly adopted for U and
V components to save the computation and raise the
interpolation performance with respect to the TEI per-
formed in the RGB space.
Figure 5a shows the two-pass edge-dominated

interpolation, which first performs diagonal interpolation
and then vertical-horizontal interpolation. Figure 5b
exhibits relationships among the known (black) pixels,
Figure 4 The proposed two-pass edge-dominated interpolation. Whic
depicted in Figure 1.
the first-pass interpolated (yellow) pixels, and the
second-pass interpolated (white) pixels.
The first pass is to perform diagonal pixel (yellow)

interpolation by using the edge-dominated concept. For
each target (yellow) pixel x0, there are four adjacent
known (black) pixels, x1, x2, x3, and x4 from the LR
image used to estimate it as:

x0 ¼
X4

m¼1
amxm=

X4

m¼1
am; ð5Þ

where ak for k = 1, 2, 3, and 4 are called as the edge-
dominated weights for the target pixel. The edge-
dominated weights can be computed by:

am ¼ e−sm=c; for m ¼ 1; 2; 3; and 4; ð6Þ
where c is a control parameter and is set to 32 in this
paper. To retrieve the edge information, we should com-
pute the edge sensitivities sm first. As shown in Figure 6,
the edge sensitivities sm are suggested as:

s1 ¼ x1 − x3j j þ γ x5 − x4j j þ γ x6 − x2j j; ð7Þ
s2 ¼ x2 − x4j j þ γ x7 − x1j j þ γ x8 − x3j j; ð8Þ
s3 ¼ x1 − x3j j þ γ x2 − x9j j þ γ x4 − x10j j; ð9Þ
s4 ¼ x2 − x4j j þ γ x1 − x12j j þ γ x3 − x11j j; ð10Þ

where γ is a parameter to control the weights of refer-
ence paired pixels. If any subtracting paired pixels across
an edge, the difference of two pixels stated in (7), (8),
(9), or (10) becomes large. Physically, the larger the edge
sensitivity sm is, the less similarity to xm will be.
After the first-pass interpolation, the rest (white)

pixels are calculated in the second step. Of course, we
will not only use the pixels (black) of the original LR
image but also the pixels (yellow) obtained from the
first step. As shown in Figure 7, to find the target pixel
(the center white pixel), y0 in either horizontal or
h is the simplified notation of the proposed TEI-based up sampling



(a) (b)
Figure 5 Two-pass edge-dominated interpolation. (a) Flow diagram and (b) the known and interpolated pixels handled in the first and
second passes.
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vertical interpolation, we also perform the edge-dominated
interpolation as:

y0 ¼
b1y1 þ b3y3ð Þ= b1 þ b3ð Þ; if sh > sv
b2y2 þ b4y4ð Þ= b2 þ b4ð Þ; if sh < svX4

n¼1
bnyn=

X4

n¼1
bn; otherwise

;

8><
>:

ð11Þ
where

bn ¼ e−Dn=c; n ¼ 1; 2; 3; 4; ð12Þ
and

D1 ¼ y1 − y3j j þ y5 − y4j j þ y6 − y2j j; ð13Þ
D2 ¼ y4 − y2j j þ y1 − y7j j þ y3 − y8j j; ð14Þ
Figure 6 Diagonal interpolation and its associated weights and edge sen
D3 ¼ y1 − y3j j þ y4 − y10j j þ y2 − y9j j; ð15Þ

D4 ¼ y4 − y2j j þ y12 − y1j j þ y11 − y3j j; ð16Þ

The horizontal or vertical interpolation is determined
by computation of sh and sv as shown in Figure 7. The
horizontal and vertical sensitivities of y0 can be respect-
ively formulized as:

sh ¼ y4 − y2j j þ y12 − y1j j þ y1 − y7j j
þ y11 − y3j j þ y3 − y8j j;

ð17Þ

and
sitivities: target pixel (red color) and known (black color) pixels.



Figure 7 Vertical/horizontal interpolation and its associated weights and the edge sensitivities. Vertical/horizontal interpolation and its
associated weights and the edge sensitivities of the target pixel y0 (white) and known (black and yellow) pixels.
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sv ¼ y1 − y3j j þ y5 − y4j j þ y4 − y10j j
þ y6 − y2j j þ y2 − y9j j:

ð18Þ

It is noted that the computation of edge sensitivities
and horizontal/vertical sensitivities, which involves the
sum of selected absolute differences, can be dramatic-
ally reduced if we could properly reuse the absolute
differences.

4 Image enhancement and dithering algorithms
The most edge-directed interpolation algorithms [3-11]
including the proposed TEI method can successfully en-
large the low-resolution images to super-resolution ones
with less artifacts along the texture edges. However, the
Figure 8 Test images (read from left to right in rows). (a) N1.bmp, (b)
(h) QFHD_P01.bmp, (i) QFHD_P03.bmp, (j) QFHD_P04.bmp, and (k) world_
loss of high-frequency components cannot be properly
restored by general interpolation algorithms. To recover
high-frequency parts of the original image, in this sec-
tion, we further propose to utilize the adaptive enhance-
ment (AE) and adaptive dithering (AD) algorithms for
the Y component to further improve the quality of HR
images iteratively.
From the LR reconstruction error, eLkð Þ which is stated

in (4), we can use the same two-pass edge-dominated
interpolation to upsample eLkð Þ to the HR reconstruction

error, eHkð Þ as shown in Figure 2. To eliminate the HR re-

construction error, of course, we should try to remove eHkð Þ
from the restored HR image. It is noted that eHkð Þ , which is

recovered from the low-resolution error, only contains the
low-frequency part of the HR reconstruction error.
N2.bmp, (c) N4.bmp, (d) N5.bmp, (e) N6.bmp, (f) N7.bmp, (g) N8.bmp,
statelite.bmp.



Table 1 Quality evaluation of the proposed methods in PSNR (dB)

Image Resolution TEI
only

TEI + AE with α(k) TEI + AE + AD with β(k)

Linear Exponent Linear Exponent

N1 2,048 × 2,560 28.692 29.222 29.221 29.248 29.250

N2 2,048 × 2,560 23.287 23.745 23.756 23.784 23.786

N5 2,048 × 2,560 27.689 28.226 28.226 28.259 28.260

N4 2,560 × 2,048 25.866 26.421 26.448 26.509 26.509

N6 2,560 × 2,048 35.759 36.356 36.374 36.381 36.380

N7 2,560 × 2,048 24.804 25.277 25.279 25.308 25.309

N8 2,560 × 2,048 21.040 21.393 21.412 21.438 21.441

QFHD_P01 3,840 × 2,160 35.778 36.599 36.606 36.639 36.643

QFHD_P03 3,840 × 2,160 25.792 26.434 26.446 26.478 26.482

QFHD_P04 3,840 × 2,160 35.359 36.010 36.060 36.066 36.074

world_satellite 6,000 × 4,190 25.685 25.948 26.017 26.080 26.090

Average 28.159 28.694 28.711 28.739 28.748
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In order to restore the high-frequency part, we suggest
an adaptive high-pass image enhancement filter as:

H xð Þ ¼ 1 − L xð Þ

¼ 1−n sin πxð Þ sin πx=nð Þ=π2x2;
1;

if 0 < xj j < a
otherwise;

�

ð19Þ

which is the inverse of the reconstruction kernel of Lanczos
sinc function. To obtain high-pass filtering, the associated
Lanczos2 high-pass 1-D filtering result is given by:

h0 ¼ 0:032 s−2 − 0:284s−1 þ 0:504s0
− 0:284s1 þ 0:032s2;

ð20Þ
Table 2 Quality evaluation of the proposed methods with SSI

Image Resolution TEI only TEI +

Line

N1 2,048 × 2,560 0.924244 0.933

N2 2,048 × 2,560 0.869639 0.884

N5 2,048 × 2,560 0.899536 0.908

N4 2,560 × 2,048 0.909207 0.917

N6 2,560 × 2,048 0.955273 0.958

N7 2,560 × 2,048 0.817085 0.833

N8 2,560 × 2,048 0.824425 0.842

QFHD_P01 3,840 × 2,160 0.980694 0.983

QFHD_P03 3,840 × 2,160 0.909168 0.923

QFHD_P04 3,840 × 2,160 0.975670 0.978

world_satellite 6,000 × 4,190 0.913758 0.923

Average 0.907154 0.916
where h0 represents the co-located high-pass filtering re-
sult at s0. With symmetrical extension of image borders
of ~IHkð Þ , the high-pass part of the kth restored HR image,
hHkð Þ can be retrieved.
Thus, the proposed adaptive enhancement algorithm

is expressed by:

EH
kð Þ ¼ α kð ÞhHkð Þ − 1 − α kð Þð ÞeHkð Þ; ð21Þ

where α(k) is a decay function with k such that the high-
frequency enhancement will be gradually reduced and
the error compensation can be increased after iterations.
The above HR enhancement algorithm can only recover
the high-frequency components, whose magnitudes are
partially distorted.
M

AE with α(k) TEI + AE + AD with β(k)

ar Exponent Linear Exponent

028 0.933031 0.933280 0.933574

614 0.885038 0.885420 0.885351

142 0.908139 0.908400 0.908514

733 0.918449 0.918500 0.918058

016 0.958051 0.958057 0.958062

128 0.832990 0.833602 0.834204

889 0.843691 0.844313 0.844618

344 0.983406 0.983439 0.983475

118 0.922826 0.923674 0.923897

389 0.978555 0.978505 0.978391

650 0.925000 0.925313 0.925573

914 0.917198 0.917500 0.917611



Table 3 Performance comparison of the proposed and the well-known SR algorithms in term of PSNR (dB)

Image Resolution NNI Bilinear Bi-cubic Learn IBP NBP Proposed method

N1 2,048 × 2,560 25.270 25.840 26.146 25.894 28.917 29.180 29.250

N2 2,048 × 2,560 20.194 20.764 21.049 20.930 23.504 23.513 23.786

N5 2,048 × 2,560 24.784 25.293 25.643 25.759 27.805 27.980 28.260

N4 2,560 × 2,048 22.649 23.250 23.661 23.831 26.008 26.233 26.509

N6 2,560 × 2,048 31.849 32.634 33.021 33.128 35.923 35.930 36.380

N7 2,560 × 2,048 22.113 22.560 22.850 22.843 24.966 24.914 25.309

N8 2,560 × 2,048 19.048 19.321 19.646 19.723 21.321 21.239 21.441

QFHD_P01 3,840 × 2,160 30.700 31.605 32.128 32.108 36.036 35.656 36.643

QFHD_P03 3,840 × 2,160 22.607 23.071 23.624 23.881 26.040 25.962 26.482

QFHD_P04 3,840 × 2,160 29.424 30.531 31.118 31.187 35.811 35.238 36.074

world_satellite 6,000 × 4,190 22.488 23.215 23.508 23.495 25.980 25.830 26.090

Average 24.648 25.280 25.672 25.707 28.392 28.286 28.748
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To further enhance the quality of the super-resolution
image, we further add adaptive random Gaussian noise
into EH

kð Þ to become:

DH
kð Þ ¼ EH

kð Þ þ β kð Þσqn
H
kð Þ; ð22Þ

where β(k) is a decay dithering function in the kth iter-
ation such that the dithering will be gradually reduced
after iterations. In (22), σq is the root mean square of
EH

kð Þ in a q × q window centered at the dithering pixel,
and the size of window is set to three in this paper. By
borrowing the MAP concept [18,19], the prior probabil-
ity of the high-resolution images is based on Gaussian
noise model, nHkð Þ ¼ N 0; 1ð Þ .If the termination is at the
Mth iterations, the high-resolution image ~I HMð Þ will be
the output of the proposed IESR system.
Table 4 Performance comparison of the proposed and the we

Images Resolution NNI Bilinear Bi-cu

N1 2,048 × 2,560 0.87807 0.87695 0.8910

N2 2,048 × 2,560 0.79524 0.79704 0.8169

N5 2,048 × 2,560 0.86975 0.86842 0.8779

N4 2,560 × 2,048 0.87034 0.87128 0.8832

N6 2,560 × 2,048 0.94077 0.94292 0.9463

N7 2,560 × 2,048 0.76907 0.76136 0.7793

N8 2,560 × 2,048 0.76006 0.74829 0.7743

QFHD_P01 3,840 × 2,160 0.95470 0.96237 0.9676

QFHD_P03 3,840 × 2,160 0.84092 0.84207 0.8649

QFHD_P04 3,840 × 2,160 0.94705 0.95413 0.9602

world_satellite 6,000 × 4,190 0.84918 0.84998 0.8677

Average 0.86138 0.86135 0.8754
5 Simulation results
Figure 8 shows all the test images, whose resolutions are
from 2,048 × 2,560 to 6,000 × 4,190. More details of the
resolution for each image can be found in Table 1. In the
experiments, the original HR images are downscaled by
factor 2 to generate the LR images with Lanczos filtering.
For comparisons, two objective measures, peak signal-to-
noise ratio (PSNR) and structural similarity index measure-
ment (SSIM) are used to evaluate the performances of the
super-resolution algorithms. The PSNR is the ratio of the
maximum power and the noise power, which is defined as:

PSNR ¼ 10 log10
2552

MSE
; ð23Þ

where
ll-known SR algorithms in term in term of SSIM

bic Learn IBP NBP Proposed method

3 0.89878 0.92988 0.92936 0.93357

7 0.83103 0.87577 0.87184 0.88535

3 0.88466 0.90397 0.90015 0.90851

5 0.89372 0.91185 0.90992 0.918056

1 0.94561 0.95827 0.95437 0.95806

5 0.79448 0.82491 0.81377 0.83420

4 0.79841 0.83508 0.82489 0.84462

6 0.96913 0.98298 0.97873 0.98348

5 0.88436 0.91576 0.90496 0.92390

0 0.96187 0.97881 0.97246 0.97839

4 0.88021 0.91977 0.90765 0.92557

3 0.88566 0.91246 0.90619 0.91761



Table 5 Computational time (seconds) required by the
proposed algorithm and the nonlocal back project methods

Image Resolution IBP NBP Proposed
method

N1 2,048 × 2,560 365.221388 56,902.158 38.811761

N2 2,048 × 2,560 366.667311 49,838.346 37.482078

N5 2,048 × 2,560 361.005792 57,614.404 38.188074

N4 2,560 × 2,048 367.104573 59,545.188 39.593662

N6 2,560 × 2,048 360.240996 64,205.242 39.867318

N7 2,560 × 2,048 354.380109 58,801.846 38.624665

N8 2,560 × 2,048 355.603370 56,018.748 39.447973

QFHD_P01 3,840 × 2,160 562.299157 169,538.659 63.022658

QFHD_P03 3,840 × 2,160 559.187032 83,501.423 64.054184

QFHD_P04 3,840 × 2,160 569.389138 59,545.188 67.990431

world_satellite 6,000 × 4,190 1,933.869665 36,711.171 206.892703

Lin et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:9 Page 9 of 11
MSE ¼
X

M;N
~I HMð Þ x; yð Þ − IH x; yð Þ
h i2

P � N
; ð24Þ

which denotes the minimum square error between com-
puted super-resolution image, ~IHMð Þ and the original
super-resolution image, IH(x, y), where M and N are the
sizes of row and column, respectively, and (x, y) means
the position of the pixel. The SSIM is another
(a) (b) 

(c) (d)

(e) (f)

(g) (h)

Figure 9 Cropped SR (N1) images. (a) Ground truth and the
reconstructed images by (b) NNI, (c) bilinear, (d) bi-cubic, (e) spare
representation, (f) IBP, (g) NLIBP, and (h) the proposed methods.
measurement system to compare the similarity of two
images, which is defined as:

SSIM x; yð Þ ¼ 2μcμo þ c1ð Þ 2σoc þ c2ð Þ
μ2c þ μ2o þ c1
� �

σ2
c þ σ2

o þ c2
� �;

ð25Þ
where μc and μo denote the average values and σ2

c and
σ2o are the variances of ~IHMð Þ and IH(x, y), respectively,
while σoc exhibits their covariance. The variables c1 and
c2, which are used to avoid instability with weak denom-
inator, are given by:

c1 ¼ k1Lð Þ2 c2 ¼ k2Lð Þ2; ð26Þ
where L is dynamic range of the pixel values, like 255
for 8 bits. In (26), k1 and k2 are set to 0.01 and 0.03,
respectively.
To exhibit the effectiveness of the proposal TEI, the AE,

and AD algorithms are tested by various combinations, which
are the TEI only, the ‘TEI +AE,’ and the ‘TEI + AE + AD’.
(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10 Cropped (QFHD_P01) SR images. (a) Ground truth
and the reconstructed images by (b) NNI, (c) bilinear, (d) bi-cubic, (e)
spare representation, (f) IBP, (g) NLIBP, and (h) the proposed methods.
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For AE and AD algorithms, we suggest two decay
functions. For the kth iteration, the linear decaying
function is given as α1(k) = 0.5 − 0.1235(k − 1) while the
power-of-two exponential decay function is defined as
α2(k) = 2− k.
For evaluation of ‘TEI only,’ ‘TEI + AE,’ and ‘TEI + AE +

AD’ combinations, Tables 1 and 2 show PSNR (dB) and
SSIM performances for these three combinations, re-
spectively. All the proposed two-pass edge-dominated
interpolation, adaptive enhancement, and adaptive dith-
ering could help to achieve better performances in the
proposed IESR system. The experimental results show
that the power-of-two exponential decay function
achieves better performance and less computation since
it only involve bit-shift operations.
Tables 3 and 4 show the PSNR and SSIM perfor-

mances achieved by the proposed and the well-known
SR algorithms, respectively. We observed that the pro-
posed (TEI + AE + AD) method achieves the PSNR up to
36.643 dB and SSIM up to 0.983475, while the averaged
PSNR is 28.748 dB and the averaged SSIM reaches to
0.917611. The proposed IESR system outperforms the
other well-known super-resolution algorithms. Although
the iterative back projection (IBP) [14] and the nonlocal
back projection (NBP) algorithms [15] achieve similar
results, the proposed method takes less execution time
as shown in Table 5. For subjective comparisons,
Figures 9 and 10 show the cropped super-resolution
(SR) images for N1 and QFHD_P01 test images. The
cropped images also show exhibit that the proposed
methods outperform the exiting algorithms in visual
quality.
6 Conclusions
In this paper, a super-resolution algorithm based on edge-
dominated interpolation adaptive enhancement and
adaptive dithering is proposed. The edge-dominated
interpolation can overcome the artifacts of interpolation
such that we could have smoother results along the
edges. The adaptive image enhancement algorithm can
improve the distorted high-frequency parts while the
adaptive dithering method can recover the loss of
high-frequency components. In this paper, we only use
Y component for edge detection, adaptive enhance-
ment, and adaptive dithering such that we can reduce
computation time and achieve better quality. The ex-
perimental results show that the proposed algorithm
achieves PSNR up to 28.748 dB and SSIM up to about
0.918 in average while the computational time is also
reasonably low for practical applications. Due to local
data usage and regular structures in computation, the
proposed super-resolution system is suitable for VLSI
implementation.
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