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Abstract 

Cancer is one of the leading causes of morbidity and mortality worldwide. Significant improvements in the modern 
era of anticancer therapeutic strategies have increased the survival rate of cancer patients. Unfortunately, cancer 
survivors have an increased risk of cardiovascular diseases, which is believed to result from anticancer therapies. The 
emergence of cardiovascular diseases among cancer survivors has served as the basis for establishing a novel field 
termed cardio-oncology. Cardio-oncology primarily focuses on investigating the underlying molecular mechanisms 
by which anticancer treatments lead to cardiovascular dysfunction and the development of novel cardioprotective 
strategies to counteract cardiotoxic effects of cancer therapies. Advances in genome biology have revealed that most 
of the genome is transcribed into non-coding RNAs (ncRNAs), which are recognized as being instrumental in cancer, 
cardiovascular health, and disease. Emerging studies have demonstrated that alterations of these ncRNAs have patho‑
physiological roles in multiple diseases in humans. As it relates to cardio-oncology, though, there is limited knowledge 
of the role of ncRNAs. In the present review, we summarize the up-to-date knowledge regarding the roles of long 
non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in cancer therapy-induced cardiotoxicities. Moreover, we also 
discuss prospective therapeutic strategies and the translational relevance of these ncRNAs.
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Introduction
Cancer is the second leading cause of death after cardio-
vascular disease (CVD), accounting for 0.6 million deaths 
in the United States alone in 2020 [1–3]. Despite having a 
seemingly different etiology, cancer and cardiac dysfunc-
tion appear intimately linked, especially when viewed 
in the context of cancer survivors. Cancer patients are 
known to frequently develop cardiovascular complica-
tions during and following treatment. The emergence 
of cardiovascular death as a leading cause of mortality 

among cancer survivors has given rise to the field termed 
‘cardio-oncology.’ Cardio-oncology combines the efforts 
of both health care professionals and researchers with 
expertise in heart diseases and cancer. The overall aim 
of this inter-disciplinary collaboration is to address this 
emerging cardiovascular crisis observed among cancer 
survivors [4]. Nearly all cancer therapeutic strategies, 
including chemotherapies, immune checkpoint inhibitors 
(ICI), monoclonal antibody-mediated targeted therapies, 
and radiotherapies, are associated with mild to severe 
cardiovascular complications (Fig.  1) [5–10] The most 
frequently reported cancer therapy-induced cardiotoxici-
ties are hypertension, thromboembolism, angiogenesis, 
QT interval prolongation, and heart failure [11–13]. The 
pathological drivers of cardiac dysfunction are related to 
the type of cancer, the anti-cancer therapy being used, 
and genetic determinants of disease susceptibility [14]. 
Cardio-oncology is in this sense at the forefront of an 
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evolving field of medical sciences in that it recognizes 
an emergent health concern and is uniquely situated to 
implement principles related to personalized therapies.

Cardiotoxicity resulting from cancer therapies can be 
associated with defects at the molecular, structural, and 
functional levels of the heart. Anticancer agents induce 
cardiotoxic effects through multiple mechanisms, for 
instance, by interfering with DNA replication and repair 
mechanisms, increased production of reactive oxy-
gen species (ROS), induction of non-specific immune 
responses, perturbations of electrophysiological signals, 
as well as mitochondrial dysfunction. These effects are 
present in multiple cell types within the cardiovascular 
system, including endothelial cells, ventricular and atrial 
cardiomyocytes (CMs), as well as fibroblasts [15–18]. 

While some of these effects are believed to be a direct 
result of the mechanism of action of the anti-cancer 
agent themselves, there are many instances whereby car-
diac dysfunctions are driven by additional, unrecognized 
mechanisms. In these instances, there has been much 
interest in the functions of ncRNAs, which have been 
demonstrated to be responsible for cardiac dysfunction. 
Furthermore, experimental evidence has also shown that 
the targeting of these ncRNAs has the potential to atten-
uate the deleterious effects of various cancer agents. This 
has not only brought into focus the importance of ncR-
NAs in cardiovascular function but also demonstrated 
the therapeutic potential of ncRNAs in the context of 
cardio-oncology. Thus, there has been much interest 
in the field of cardio-oncology in the role of ncRNAs 

Fig. 1  Cellular and pathological complications associated with cardiotoxicity induced by different cancer therapeutic strategies
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in mediating the effects of anticancer therapy-induced 
cardiotoxicity.

Cardiotoxicity is associated with anticancer 
therapies
The advent of cancer therapies such as anthracyclines 
and tyrosine kinase inhibitors (TKIs) have heralded 
impressive improvements in long-term survivorship 
among cancer patients. Unfortunately, the cost of these 
benefits, in many cases, comes at the expense of the 
adverse effects upon the cardiovascular system. This has 
become increasingly apparent among cancer survivors 
[19, 20]. The anthracycline class of drugs is widely used 
to treat various types of cancers, including leukemias, 
lymphomas, breast, stomach, uterine, ovarian, bladder, 
and lung cancers. Within the class of anthracyclines is 
Doxorubicin (DOX), a broad-spectrum anti-tumor drug 
derived from Streptomyces peucetius var. caesius, which 
has a remarkable therapeutic effect on acute lymphoblas-
tic leukemia, lung, and breast cancers [21]. Despite being 
one of the most extensively applied and studied chemo-
therapeutic agents, the clinical applications of DOX are 
hampered due to the severe cardiotoxic side effects [14, 
22]. In a landmark study that exposed the cardiotoxic 
effects of DOX, it was recognized that among 2625 can-
cer patients undergoing treatment with anthracycline 
drugs, 157 patients developed heart failure. The resulting 
cardiac dysfunction was severe. Only 11% of the cohort of 
affected individuals would go on to benefit from existing 
heart failure therapies [23]. Studies such as this, as well as 
others have warranted the establishment of a new disci-
pline of medicine known as cardio-oncology. The central 
focus of cardio-oncology is to improve patient outcomes 
among cancer survivors by addressing therapy-induced 
cardiac dysfunction. Within this focus is the need to 
investigate mechanisms by which these drugs exert harm 
to identify the novel druggable target.

Among the best-studied cancer drugs in this context 
is DOX. DOX-induced cardiotoxicity has been recog-
nized as inducing a wide array of cardiovascular disor-
ders. Among the most common is the development of 
cardiomyopathies, such as dilated cardiomyopathies and 
irreversible degenerative cardiomyopathies, which lead 
to heart failure [24, 25]. Additionally, DOX is also known 
to induce adverse electrophysiological remodeling lead-
ing to several different arrhythmias [26–28]. In the past 
two decades, researchers have extensively studied the 
clinical manifestations of DOX-induced cardiotoxic-
ity. However, in-depth knowledge pertaining to DOX-
induced cardiotoxicity has remained elusive. Literature 
has often suggested that underlying mechanisms related 
to DOX-induced cardiotoxicity are a result of on-target 
mechanisms of action of DOX, which involve acting as 

an intercalating agent, thus rendering CMs vulnerable to 
genotoxicity. More recently, though, it has been shown 
that these same intercalation mechanisms can also serve 
to displace histones, leading to a re-arrangement of the 
chromatin architecture, which may directly contribute 
to aberrant gene expression through epigenetic mecha-
nisms [29]. Insights gained during the genomic revolu-
tions have allowed for the mechanism by which a drug 
acts to be extended into uncharted territories of biologi-
cal functions and reveals that the effects of pharmacolog-
ical agents are often much more complex than previously 
believed. While some of the pathological consequences 
may be directly mediated through well-understood 
mechanisms of action, there are numerous other, poorly 
understood pathological consequences whose under-
standing might greatly benefit by exploring these areas. 
In the case of DOX, for instance, there have been numer-
ous harmful effects which include accumulation of iron 
in mitochondria leading to ROS formation [30, 31], endo-
plasmic reticulum-mediated apoptosis [32, 33], lipid per-
oxidation [34], and dysregulation of intracellular calcium 
homeostasis [35, 36]. Other types of anthracycline drugs, 
including epirubicin [37, 38], daunorubicin [39], and 
idarubicin [40], are also known to cause cardiovascular 
complications. Improved understanding of the biological 
mode of actions of these anthracyclines will help to miti-
gate potential cardiovascular complications.

Small molecule TKIs are a newer class of targeted can-
cer drugs that inhibit or block the receptors of one or 
more tyrosine kinase enzymes. Multiple TKIs have been 
developed since the first Food and Drug Administration 
(FDA) approval for imatinib to treat chronic myeloid leu-
kemia [41]. However, pre-clinical studies and post-mar-
keting analysis demonstrated the association of severe 
cardiovascular complications with the use of TKIs [42]. 
Dasatinib, sorafenib, lapatinib, and sunitinib are among 
the most used TKIs. Dasatinib-induced cardiotoxicities 
include edema, fluid retention, pulmonary hyperten-
sion, and QT prolongation [43, 44]. The manifestations 
of sorafenib toxicity include hypertension, QT prolon-
gation, and myocardial infarction [45–47]. Based on the 
existing literature, the possible underlying mechanisms 
for these side effects are related to the inhibition of vari-
ous kinases, including B-RAF (serine/threonine-protein 
kinase B-Raf isoform 1), C-RAF (RAF proto-oncogene 
serine/threonine-protein kinase), C-KIT (KIT proto-
oncogene, receptor tyrosine kinase), VEGFR (vascular 
endothelial growth factor receptor), PDGFRβ (platelet-
derived growth factor receptor beta), and human ether-à-
go-go-related gene (hERG) K+ channels [48, 49]. Clinical 
studies have also revealed the association of decreased 
left ventricular ejection fraction (LVEF) and QT prolon-
gation as a side effect of lapatinib. Lapatinib which binds 
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to the ErbB2 (Erb-B2 receptor tyrosine kinase), can result 
in activation of mitochondrial-induced apoptosis [46, 
50]. Sunitinib-induced mitochondrial dysfunction leads 
to the release of cytochrome C and caspase-9, which ini-
tiate the mitochondrial apoptotic pathway [51]. Sunitinib, 
a multi-tyrosine kinase inhibitor, acts on VEGFR 1–3, 
c-KIT, PDGFR-α/β, RET (RET proto-oncogene), FLT3 
(Fms related receptor tyrosine kinase 3), and CSF1R (col-
ony-stimulating factor 1 receptor) [52]. Notable cardio-
toxic effects associated with the use of sunitinib include 
decreased LVEF, chronic heart failure (CHF), and QT 
prolongation [51, 53].

Trastuzumab is a humanized monoclonal antibody tar-
geted against HER2 (epidermal growth factor receptor 
2), has been specifically recognized in the development 
of CHF and cardiac dysfunction [54, 55]. Trastuzumab 
alters the cell survival pathways of CMs by decreas-
ing the expression of NRG-1 (neuregulin-1), resulting 
in the activation of FAK (focal adhesion kinases), PI3K/
AKT (phosphoinositide 3-kinase/protein kinase B), and 
MAPK (mitogen-activated protein kinase) pathways [56]. 
Increased risk of cardiomyopathy is associated with tras-
tuzumab when combined with anthracycline chemother-
apy [57].

More recently, ICI and targeted immunotherapies have 
become increasingly popular as therapeutic options in 
the treatment of various cancers. This development has 
coincided with a steadily increasing prevalence of car-
diovascular disease and death among cancer survivors. 
The mechanism of action of ICI involves the blockage of 
checkpoint proteins from binding with their correspond-
ing partner proteins. This leads to the inhibition of an ‘off’ 
signal, resulting in the activation of T-cells to kill cancer 
cells. The list of ICIs also includes ipilimumab, which 
blocks the immune checkpoint molecule CTLA-4 (cyto-
toxic t-lymphocyte-associated protein 4); nivolumab and 
pembrolizumab, which target PD-1 (programmed cell 
death protein 1); atezolizumab, avelumab, durvalumab, 
and cemiplimab, which act against PD-L1 (programmed 
death-ligand 1). Although the cardiotoxicity associated 
with ICI therapy is believed to be lower than that which 
is observed with chemotherapy, it has only been recently 
introduced into the clinical setting, so the emergence of 
cardiovascular dysfunction among cancer survivors may 
continue to increase over time [58]. It is therefore impor-
tant to the field of cardio-oncology to maintain surveil-
lance over this population of patients being treated with 
ICI to assess for emerging cardiovascular disorders. Myo-
carditis, takotsubo syndrome, acute coronary syndrome, 
and peripheral diseases have recently been reported with 
increasing frequency among ICI patients [59, 60].

Chimeric antigen receptor (CAR) T-cell immuno-
therapy is an exciting breakthrough cancer treatment. 

The mechanism of action of this therapy involves the 
enhancement of T-cell function by adhering to a specific-
ity defined with CARs [61–63]. Normal T-cells collected 
from cancer patients are infected with the modified 
virus, which can transfer cancer-targeted genetic infor-
mation to the T-cell genome, which dictates the expres-
sion of newly synthesized CAR protein on the altered 
T-cell surface. Following ex vivo proliferation, these CAR 
T-cells are reinfused into cancer patients who have gone 
through cytotoxic lymphodepletion. The modified CAR 
T-cell implants and multiplies in the patient, resulting in 
targeted cancer cell apoptosis [64]. CD19-directed (axi-
cabtagene, brexucabtagene, tisagenlecleucel) CAR T-cell 
therapy has been approved by the FDA as the first treat-
ment for adults with advanced B-cell lymphoma and chil-
dren with acute lymphocytic leukemia [65]. However, 
the side effect of CAR T-cell therapy is accompanied by 
hemodynamic instability and cytokine release syndrome 
(CRS), which is associated with adverse cardiac events, 
including cardiomyopathy, arrhythmias, and heart fail-
ure [66, 67]. Although the pathophysiology of CAR 
T-cell therapy-induced cardiovascular complications 
is not entirely understood yet, the potential underlying 
mechanism appears similar to that of cardiomyopathy 
associated with sepsis [68]. Another mechanism may be 
cross-reactivity with unrelated peptides expressed by 
normal tissue, leading to adverse cardiac events.

Arsenic trioxide (As2O3), a common component in 
traditional Chinese medicine, was initially regarded as a 
promising anticancer component used to treat acute pro-
myelocytic leukemia, lung cancer, cervical cancer, and 
other malignant tumors [69–71]. Recent studies which 
recognize the cardiotoxic effects of As2O3 have halted 
its widespread use in clinical settings [72, 73]. Radiation 
therapy, one of the key strategies in treating several can-
cers, also carries a high risk of developing cardiovascular 
side effects, including myocardial fibrosis, pericarditis, 
congestive heart failure, acute coronary syndrome, myo-
carditis, and cardiomyopathy [74–77]. To date, there is 
no protective agent available for minimizing radiation 
therapy-associated cardiotoxicity except for reducing the 
radiation dose.

Proteasome inhibitors (PIs) are a new class of drugs 
that block the activity of proteasomes, developed for 
the treatment of multiple myeloma and mantle cell lym-
phoma [78]. Multiple PIs such as carfilzomib (Kypro-
lis) and ixazomib (Ninlaro) have been developed since 
the FDA approved Bortezomib (Velcade) in 2003 as the 
first-ever cancer treatment of this class of drugs [79]. 
Although the primary mechanism of action of PIs is asso-
ciated with inhibition of proteasome activity, the precise 
downstream pathways that lead to the death of cancer 
cells remain unclear. Proteosome inhibition may prevent 
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the degradation of p53 protein [80], allowing activation 
of programmed cell death in neoplastic cells. Proteo-
some inhibition in myeloma cells induces unfolded pro-
tein response (UPR) in endoplasmic reticulum leading to 
the activation of apoptotic events [81]. Similarly, inhibi-
tion of proteasomal-dependent protein turnover of sar-
comeres in CMs leads to abnormal ubiquitinated protein 
accumulation, resulting in apoptosis and cell death [82]. 
Recent studies reported the association of congestive 
heart failure, hypertension, and arrhythmias as a result 
of PIs use [83]. Although there is evidence that all three 
FDA-approved PIs, bortezomib, carfilzomib, and ixa-
zomib, are known to cause cardiovascular complications, 
the highest rate of cardiotoxicity allied with carfilzomib 
[83]. Heart failure [84], ischemic heart disease [85], com-
plete heart block [86], and other complications have been 
reported with the use of bortezomib, which binds revers-
ibly to β5 and β5i subunits of the immunoproteasome 
[87]. Arrhythmias, heart failure, ischemic heart disease, 
cardiomyopathy, pulmonary hypertension have been 
reported with the use of carfilzomib, which binds irre-
versibly to β5 and β5i subunits [88]. Like bortezomib, ixa-
zomib also binds reversibly to β5 and β5i subunits along 
with β1 and β2 subunits [82, 87]. A study reported that 
ixazomib might induce cardiotoxicity in a similar way to 
other PIs suggesting a potential adverse class effect [89].

Traditional chemotherapeutic agents are cytotoxic, pri-
marily affecting cell division by interfering with protein 
synthesis, DNA, RNA, or macromolecular synthesis [90]. 
Depending on the mechanism of action, they can be clas-
sified as alkylating agents, which produce unstable alkyl 
groups reacting with nucleophilic targets on proteins and 
nucleic acids. For instance, ifosfamide, busulfan, cispl-
atin, cyclophosphamide, chlormethine, carmustine, and 
mitomycin come under the class of alkylating agents 
which have been reported to induce cardiotoxicity [91]. 
Antimetabolites class of drugs affects multiple cellular 
pathways required for RNA and DNA synthesis. Mitotic 
inhibitors such as vinblastine or vincristine interfere with 
spindle assembly in mitosis. Antimicrotubule agents such 
as paclitaxel [92], etoposide [93], teniposide, vinca alka-
loids have also been reported to induce cardiovascular 
complications [91].

ncRNAs play a vital role in maintaining several bio-
logical processes in both cancer and cardiovascular dis-
eases [94–98]. Cancer therapeutic agents may induce 
abnormal changes in the expression of ncRNAs in car-
diac and vascular cells resulting in the development of 
adverse effects in cardiovascular homeostasis. While 
the mechanisms of actions of these commercially avail-
able drugs are well understood as it relates to cancer, 
how these drugs contribute to the dysregulation of ncR-
NAs which might contribute to cardiac dysfunction, 

remains poorly understood. Thus, understanding the 
role of ncRNAs during cancer therapy-induced car-
diotoxicity has become a focus among scientists in the 
field of cardio-oncology.

ncRNAs
Recent studies have revealed that approximately 90% 
of the human genome is transcribed into ncRNAs [99, 
100]. These ncRNAs include transfer RNAs (tRNAs), 
ribosomal RNAs (rRNAs), miRNAs, small interfer-
ing RNAs (siRNAs), piwi-interacting RNAs (piRNAs), 
small nucleolar RNAs (snoRNAs), small nuclear RNAs 
(snRNAs), extracellular (exRNAs), small conditional 
(scRNAs), lncRNAs, and circular RNAs (circRNAs). 
Previously, ncRNAs were considered to be non-func-
tional byproducts of genetic information transfer from 
DNA to protein or transcriptional noise. However, 
many studies have shown that genetic knockout of spe-
cific ncRNA is lethal, which underscores the impor-
tance of these molecules in development and health 
[101]. While this suggests that the functional transcrip-
tome is much larger than previously believed, it should 
be noted that most of the ncRNA lack conservation 
across mammalian species. Furthermore, while tens 
of thousands of ncRNA have been annotated, many of 
these transcripts appear to be very lowly expressed, 
sometimes only one copy per cell [102]. Further stud-
ies using single-cell RNA sequencing and primary cell 
types might better resolve these caveats which exist 
when evaluating bulk RNA sequencing data. Thousands 
of ncRNAs are identified in humans, mice (Fig.  3A), 
and other species. Due to the lack of evolutionary con-
servation, low expression levels of many of these anno-
tations, and lack of data from primary cell lineages, the 
functional significance of ncRNAs has been disputed. 
To describe the level of conservation across mamma-
lian species, we performed orthologous gene function 
analysis to check the percentages of matched annota-
tions between different lineages using a reference list 
of human noncoding RNAs obtained from the HGNC 
(HUGO Gene Nomenclature Committee) data reposi-
tory (Fig.  3B). Crucial roles for ncRNAs have been 
described during developmental as well as physiological 
and pathological states. ncRNA-mediated regulation 
has been observed in nearly all domains of biological 
function and is particularly well recognized in epige-
netic, posttranscriptional, and translational aspects of 
gene regulation. Herein, we specifically address differ-
entially regulated lncRNAs and miRNAs of interest to 
the field of cardio-oncology and provide an up-to-date 
review on their prospective and consequential influ-
ence in the field.
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lncRNAs
lncRNAs are a subset of ncRNAs, which contain over 200 
nucleotides and resemble messenger RNA (mRNA) in the 
sense that they have both a 5′ cap and a 3′ polyadenyla-
tion and are capable of being spliced. While historically 
regarded as ‘junk DNA’ because they are not translated 
into protein products, new insights which recognize the 
impact of ncRNAs in regulating cardiovascular function 
have contributed to the evolution of biological under-
standing related to these molecules [103]. lncRNAs can 
be intronic, bidirectional, antisense, and sense-overlap-
ping (Fig.  2) [104–107]. lncRNAs are expressed at low 
levels under physiological conditions since they are tran-
scribed from promoters with low CpG dinucleotides. 
However, due to the modulation of chromatin states, 
lncRNAs expression can be aberrantly expressed. The 
expression of lncRNAs can be regulated in a tissue, cell-
type, and disease-specific manner [108, 109]. In several 
pathological conditions, the presence of lncRNAs has 
been detected in body fluids, including blood, cerebro-
spinal fluid, and urine [110–114], suggesting potential 
utility as biomarkers with either diagnostic or prognos-
tic value. Studies also reported that lncRNAs are encap-
sulated in exosomes and apoptotic bodies, usually bound 

to RNA-binding proteins [115, 116]. Moreover, selected 
lncRNAs are resistant to RNase degradation [117, 118].

The functions of lncRNAs associate with, and often 
depend on, subcellular localization (Fig.  2). lncRNAs 
regulate gene expression at the transcriptional level in 
the nucleus and the post-transcriptional level in the 
cytoplasm [119]. Nuclear lncRNAs interact with his-
tone remodeling complexes to facilitate condensation or 
decondensation of the chromatin architecture. Addition-
ally, they also interact with transcription factors to regu-
late gene expression by acting as a scaffold for proteins 
involved in transcription complexes [119]. For instance, 
lncRNAs MALAT 1 (metastasis-associated lung adeno-
carcinoma transcript 1), H19 (H19 imprinted maternally 
expressed transcript), and MEG 3 (maternally expressed 
3) play a key role in cell cycle regulation through their 
interactions with p21 or P53 [120, 121]. However, lncR-
NAs promoter of PANDAR (promoter-CDKN1A anti-
sense DNA damage activated RNA), lincRNA-p21 
(long intergenic non-coding RNA-p21), RP11-467J12.4, 
and PINT (long intergenic non-protein coding RNA 
P53 induced transcript) are induced by p53 [121, 122]. 
Cytoplasmic lncRNAs can control mRNA stability, act 
as an assembly site for the RNP complex, or determine 
modifications of the cytoplasmic proteins [123]. Some 

Fig. 2  Classification, localization, and functions of lncRNAs
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cytoplasmic lncRNAs can also potentially translate into 
micropeptides [124]. These micropeptides have been 
reported to be involved in key biological mechanisms in 

various species [124–126], although this remains contro-
versial and is an ongoing matter of investigation [124].

Table 1  lncRNAs involved in cancer therapy-induced cardiotoxicity

lncRNA Orthologs Type Drug Expression Targets Cell type Biological effect Ref.

CMDL-1 Rattus norvegicus Unknown DOX Down Drp-1 CMs Mitochondrial fis‑
sion and apoptosis

[139]

SOX2-OT Homo sapiens
Mus musculus

Overlapping DOX Up miR-942-5p CMs apoptosis [231]

HOXB-AS3 Homo sapiens Antisense DOX Up miRNA-875-3p CMs Protects CMs [350]

NEAT1 Homo sapiens Mus 
musculus

Intergenic As2O3 Up miR-124/NF-κB CMs Protects CMs [149]

MALAT1/NEAT2 Homo sapiens Mus 
musculus

Intergenic DOX Up miR-92a-3p/ATG4a
miR-144–39

CMs Mitochondrial 
metabolism & 
autophagy

[201, 205]

lincRNA-p21 Homo sapiens Mus 
musculus

Intergenic DOX Up Wnt/β-catenin CMs silencing lincRNA-
p21 effectively 
protects against 
DOX cardiotoxicity 
by regulating the 
Wnt/β-catenin 
signaling pathway 
and decreasing 
oxidant stress

[351]

NEAT1 Homo sapiens Mus 
musculus

Intergenic DOX Up let-7f-2-3p CMs Attenuated cardio‑
toxicity via XPO1-
mediated HAX-1 
nuclear export

[151]

FOXC2-AS1 Homo sapiens Antisense DOX Up WISP1 CMs Promoted DOX 
resistance and 
reduces the DOX-
induced CM injury

[352]

PVT1 Homo sapiens Mus 
musculus

Intergenic DOX Down miR-187-3p CMs Decreased the 
apoptosis of CMs

[353]

NEAT1 Homo sapiens Mus 
musculus

Intergenic DOX Up miR-221-3p CM and 
exosomeMIF

Exosomal 
LncRNA–NEAT1 
derived from MIF-
treated mesen‑
chymal stem cells 
protected

[153]

KCNQ1OT1 Homo sapiens Mus 
musculus

Antisense As2O3 Down Kcnq1 In vivo: mouse
In vitro: CM

QT interval prolon‑
gation

[354]

SNHG1 Homo sapiens Intergenic DOX Overexpression miR-195/Bcl-2 CMs Protected the CMs 
from DOX toxicity

[355]

LINC00339 Homo sapiens Intergenic DOX Knockdown miR-484 CMs Improved cells 
proliferation activ‑
ity and reduced 
CM apoptosis 
through miR-484 
axis

[356]

CHRF Mus musculus Intronic DOX Knockdown TGF-β1 CMs Improved DOX-
induced heart 
failure by regulat‑
ing TGF-β1

[246]

TINCR Homo sapiens Mus 
musculus
Rattus norvegicus

Intergenic DOX Knockdown NLRP3, IGF2BP1 CMs and heart 
tissues

Reversed the 
DOX-induced 
pyroptosis both 
in vitro and in vivo

[267]
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Various reports have described the regulatory interac-
tions between lncRNAs and miRNAs [127–131]. This 
regulation can happen in two aspects. (1) Regulation of 
miRNAs by lncRNAs: lncRNAs can serve as precursors 
of miRNAs and, as such, are directly related to the func-
tion of miRNAs. lncRNAs are also important determi-
nants of the functions of protein complexes that control 
gene expression. This is evident in complexes that regu-
late histone acetylation and transcription factor bind-
ing complexes. Finally, lncRNAs can act as a sponge of 
miRNAs, thereby inhibiting the degradation of mRNAs 
targeted by miRNAs. (2) Regulation of lncRNAs by miR-
NAs: miRNAs are known to regulate the expression of 
lncRNA genes through epigenetic mechanisms, involv-
ing DNA methylation and structural modifications to the 
chromatin [132]. For instance, miRNA-29 upregulates 
the expression of lncRNA MEG3 through the inhibition 
of DNA methyltransferase activity, resulting in a reduc-
tion of methylation of MEG3 promoter in hepatocellular 

cancer [121]. Additionally, miRNAs can degrade lncR-
NAs in an argonaute-dependent manner. miRNA binding 
to target lncRNAs within the 3′UTR are recognized by 
the RNA-induced silencing complex (RISC), which will 
lead to blockage of the ribosomal machinery or induce 
mRNA degradation, resulting in the silencing of gene 
expression [121].

Recent studies have demonstrated that lncRNAs have 
an essential role in the progression of cancer and car-
diovascular disorders. Overall, the mechanistic basis 
involved in these events are diverse, involving altera-
tions in the expression of genes and proteins involved in 
numerous signaling pathways and affecting multiple cell 
types of the cardiovascular system. In many instances, 
though, the involvement of mitochondrial dysfunction 
has been reported. In CMs, mitochondrial dysfunction, 
mainly increased production of ROS, has been reported 
to impair cellular processes such as cell proliferation, 
migration invasion, cell cycle, apoptosis and is even 

Fig. 3  A Number of different classes of ncRNAs in human (https://​www.​genen​ames.​org/​downl​oad/​stati​stics-​and-​files/) and mouse (http://​www.​
infor​matics.​jax.​org/​marker/). B Percent of ncRNAs conserved across lineages. Conservation analysis was performed using g:Profiler

https://www.genenames.org/download/statistics-and-files/
http://www.informatics.jax.org/marker/
http://www.informatics.jax.org/marker/
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believed to contribute to drug resistance [103, 109, 133, 
134]. The dysregulation of lncRNAs can lead to the pro-
gression of several cardiac diseases, including cardiomy-
opathies, congenital heart disease, cardiac hypertrophy, 
heart failure, coronary artery disease, and myocardial 
reperfusion injury [135–138]. lncRNAs are found ubiqui-
tously within the pathology of cancer and cardiovascular 
disease, yet relatively little is known about them. Thus, 
this area of biology is amenable for the development of 
novel therapeutic strategies. In the emerging field of 
cardio-oncology, the roles of lncRNAs in cancer ther-
apy-induced cardiotoxicity are increasingly being noted 
(Table 1).

Protective lncRNAs in cancer therapy‑induced cardiotoxicity
CMDL‑1 (cardiomyocyte mitochondrial dynamic‑related 
lncRNA)  A recent study demonstrated that lncRNA 
CMDL-1 was significantly downregulated in DOX-treated 
CMs of rats [139]. Overexpressing of CMDL-1 attenuated 
DOX-induced mitochondrial fission and apoptosis in 
CMs by enhancing phosphorylation of dynamin-related 
protein 1 (Drp 1) at the S637 residue and inhibiting the 
Drp1 translocation to mitochondria. The full length of 
CMDL-1 is not highly conserved among species. How-
ever, this study provides evidence for the role of lncRNAs 
in posttranslational mechanisms [139]. In our knowledge, 
this is the first-ever study demonstrating the involvement 
of CMDL-1 in cancer therapy-induced cardiotoxicity, 
and therefore, more experiments need to be performed 
to characterize the lncRNA CMDL-1 and its therapeutic 
potential in reducing cardiotoxicity.

NEAT1 (nuclear enriched abundant transcript 1/nuclear 
paraspeckle assembly transcript 1)  The lncRNA NEAT1 
has been observed to have increased expression levels in 
multiple cancers, including colorectal, lung, esophageal, 
and liver cancers, and has also been recognized as a regu-
lator of cardiovascular function. In DOX-resistant human 
gastric cancer cells, knockdown of NEAT1 promotes apop-
tosis of DOX-resistant cells [140]. As it relates to cardiovas-
cular function, NEAT1 has been reported to be involved in 
mediating cardiac cell damage and has been observed to be 
dysregulated in patients suffering from myocardial infarc-
tion [141–147]. Interestingly, NEAT1 has also been shown 
to have a protective role against hypoxia/reoxygenation-
induced CM injury through the regulation of miRNA-520a 
[148]. The functions of NEAT1 are primarily a consequence 
of its scaffolding capabilities, which allow for it to interact 
with chromatin regulators and transcription complexes, as 
well as the underlying sequence of NEAT1, which provide it 
with the ability to act as a decoy for various miRNAs.

Approaches which have been able to sustain the 
expression of NEAT1 after exposure to the anti-cancer 
drug have been successful in attenuating some adverse 
cardiovascular effects. For instance, overexpression of 
NEAT1 rescued the inhibitory effect of As2O3 on the pro-
liferation of H9C2 cells [149]. Additionally, NEAT1 has 
been reported to normalize the expression of inflamma-
tory genes upregulated by As2O3 in CMs, including IL-1β 
(interleukin-1β), IL-6 (interleukin 6), and TNF-α (tumor 
necrosis factor α). When exposed to As2O3 or hypoxic 
stress, H9C2 cells upregulate the expression of miR-124 
[150]. NEAT1 is known to act as a decoy to miR-124, 
leading to its downregulation. Experimentally this mech-
anism has been shown to confer cardioprotection. When 
overexpressed in CMs, NEAT1 has been shown to reduce 
the expression of inflammatory markers resulting from 
As2O3 treatment by quenching miR-124 and subsequent 
downstream NFκB mediated events [149].

NEAT1 has also been recognized as mediating car-
dioprotection against DOX-induced cardiotoxicity by 
sponging the miRNA known as let-7f-2-3p [151]. Treat-
ment of H9C2 CMs with DOX leads to reduced expres-
sion of NEAT1 and subsequent increases in let-7f-2-3p 
expression. The resulting increased expression of let 
7f-2-3p allows this miRNA to negatively regulate the 
expression of XPO1 (exportin-1). When XPO1 expres-
sion is reduced nuclear export, functions are impaired. 
This results in the nuclear accumulation of HAX-1, an 
important regulator of numerous myocardial enzymes. 
This leads to impaired calcium handling and increased 
apoptosis. Overexpression of XPO1 can reverse these 
effects by restoring the nuclear export of HAX-1. Simi-
larly, overexpression of NEAT1 diminished the DOX-
induced increase in let-7f-2-3p expression leading to 
reduced cardiotoxicity [151]. The inhibition of let-7f-2-3p 
has also been shown to improve DOX-induced heart 
injury without affecting the antitumor efficacy in vivo. In 
endothelial cells, overexpression of XPO1 has also been 
reported to protect against angiotensin II-induced injury 
[152]. In response to DOX-induced cardiovascular injury, 
the NEAT1/let-7f-2-3p/XPO signaling axis, therefore, 
represents a valuable pathway to investigate in the con-
text of cardio-oncology, which might offer therapeutic 
insights. Additional mechanisms of cardio-protection 
against DOX-induced toxicity involve NEAT1 inhibition 
of miR-221-3p and the activation of SIRT2 (sirtuin 2) in a 
cardioprotective context [153].

The lncRNAs present in the exosomes regulate the 
expression of genes in host cells via cell-to-cell interac-
tions [154]. It has been reported that lncRNA NEAT1 
was highly expressed in exosomes derived from mes-
enchymal stem cells (MSCs) treated with macrophage 
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migration inhibitory factor (MIF). The functions of 
NEAT1 in this context serve an anti-apoptotic role via 
competitive endogenous RNA (ceRNA) activity towards 
miR-142-3p. The NEAT1/miR-142-3p axis mediated the 
effect of exosomes isolated from MIF-pretreated MSCs 
(exosomeMIF) in protecting CMs from apoptosis. Like-
wise, the protection of CMs in vitro by exosomeMIF was 
eliminated by knockdown of NEAT1 expression in MSCs 
or by miR-142-3p overexpression in CMs, indicating the 
important role of NEAT1 in cardiovascular protection 
[155]. Furthermore, Zhuang et al. demonstrated that the 
exosomes delivering NEAT1 have a therapeutic effect 
in vivo against DOX-induced cardiotoxicity and apopto-
sis [151].

Several studies have reported that transcription factors 
such as heat shock transcription factor 1 (HSF1) [156], 
hypoxia-inducible factor (HIF)-2 [157, 158], RUNX1 
[159], and signal transducer and activator of tran-
scription 3 (STAT3)/nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) [160] bind to the 
promoter of NEAT1 and induce its expression. On the 
other hand, the downregulation of NEAT1 was regulated 
by breast cancer type 1 susceptibility protein (BRCA1) 
[161] and DNA methylation [162]. Studies have shown 
that HSF1 stimulates transcription of protein-coding 
genes specifically through binding with heat shock ele-
ments (HSEs) and repeated inverts of nGAA​n, where “n” 
is any nucleotide, in the upstream regulatory regions of 
its target genes [163]. Similarly, HSF1 binds within three 
HSE regions located in the promoter region of lncRNA 
NEAT1 that is highly conserved among vertebrates 
[156]. Acetylation and deacetylation were reported to be 
involved in HIF2A mediated protein-coding gene expres-
sion [164]. In the case of lncRNA NEAT1, the binding of 
HIF2A was observed upstream of the promoter, suggest-
ing a direct transcriptional control [157]. Runt-related 
transcription factor 1 (RUNX) regulates protein-cod-
ing genes through binding to Core Binding Factor Beta 
(CBF-β) to the Runt Homology Domain (RHD), nuclear 
matrix-targeting signal (NTMS), a conserved c-terminal 
domain, and VWRPY motif [165]. RUNX1 was reported 
to regulate the lncRNA NEAT1 by binding to the pro-
moter region, indicating a direct transcriptional activity 
[159]. Studies reported that BRCA1 enhances transcrip-
tion by recruiting the transcriptional machinery to 
targeted protein-coding genes. The role of BRCA1 in reg-
ulating gene transcription depends on its c-terminal por-
tion, interacting with RNA polymerase II holoenzyme, 
and modulating the function of transcriptional activa-
tors [166]. Moreover, DNA methylation was observed 
to be an important determinant of NEAT1 expression 
[162]. DNA methylation regulates target gene expression 

by recruiting protein responsible for gene repression or 
preventing the binding of transcription factors to DNA 
[167].

KCNQ1OT1 (potassium voltage‑gated channel subfamily 
Q member 1 overlapping transcript1)  KCNQ1OT1 is a 
highly conserved lncRNA, with nearly 80% of its genomic 
sequence identity being identical between humans and 
mice, which is particularly high for a non-coding gene 
[168]. KCNQ1OT1 belongs to a class of lncRNAs known 
as overlapping transcripts, which are most often involved 
in regulating their adjacent protein-coding gene. In the 
case of KCNQ1OT1, this corresponds to the well-studied 
potassium channel known as KCNQ1, which is known to 
be involved in the regulation of cardiovascular electro-
physiological functions. The dysregulation of KCNQ1OT1 
has been recognized in the pathology of electrophysi-
ological disorders, including long QT syndrome, vari-
ous arrhythmias, and the development of atherosclerotic 
plaques [169–172]. KCNQ1OT1 is frequently recognized 
as being overexpressed in patients suffering from different 
cancers, including breast, bladder, and tongue [169–172]. 
Additionally, anti-cancer treatments such as As2O3 can 
result in decreased expression of KCNQ1OT1 in cardiac 
tissue [170]. Mice treated with As2O3 have been recog-
nized as having significant reductions in the expression 
of KCNQ1OT, which occurred in conjunction with the 
downregulation of the corresponding sense gene, describ-
ing a cis-regulatory mechanism of this lncRNA contribut-
ing to cardiac dysfunction. Experimentally, siRNA-medi-
ated knockdown of KCNQ1OT1 has been shown to lead 
to an increased action potential duration (APD) in vitro, 
while similar approaches used in vivo resulted in Long QT 
Syndrome (LQTS) [170]. The downregulation of KCN-
Q1OT results in increased expression of miR-192-5p, 
which can increase cellular injury and apoptosis in H9C2 
cells, an effect that can be reversed when KCNQ1OT is 
overexpressed.

β-Catenin was found to be regulating the transcription 
of lncRNA KCNQ1OT1 by direct binding to the proxi-
mal region of the imprinting control region within the 
KCNQ1OT1 promoter [173]. However, in the protein-
coding genes, β-catenin was reported to bind with T-cell 
factor/lymphoid enhancer factor (TCF-LEF) transcrip-
tion factor and induce target gene transcription, includ-
ing CYCLIN D1, cMYC, PDK, MCT-1, AXIN2, and 
fibronectin [174]. A study reported that ubiquitously 
expressed mammalian transcription factor yin yang 1 
(YY1) [175] was positively regulating the transcription of 
lncRNA KCNQ1OT1 by direct binding to the promoter. 
YY1 controls both transcription activation and repres-
sion in a contextualized manner [176].
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MHRT (myosin heavy chain associated RNA tran‑
scripts)  The lncRNA MHRT originates from an inter-
genic region of the MYH7 (myosin heavy chain 7) gene 
loci. MHRT is recognized as being restricted to the nuclear 
fraction of CMs, where it regulates nucleosome remod-
eling by acting as a decoy to BRG1, a chromatin repressor 
complex. The resulting chromatin remodeling mediated 
by MHRT is linked to the dysregulation of genes involved 
in hypertrophic remodeling. Diminished expression lev-
els of MHRT are frequently observed in cardiomyopathy. 
Thus, it is believed that maintaining the expression of 
MHRT might have a protective role against cancer ther-
apy-induced hypertrophic remodeling. In DOX-treated 
hearts where cardiomyopathies develop, MHRT expres-
sion is observed to be downregulated [177, 178]. When 
expression of MHRT is maintained throughout DOX-
treatment, pathological remodeling becomes attenuated. 
Obestatin, a peptide hormone protein encoded in the 
ghrelin gene, can lead to an upregulation of MHRT, which 
can confer cardioprotection against DOX-induced car-
diomyopathy [177].

Mechanistically, MHRT mediated cardioprotection is 
believed to be mediated largely through epigenetics. In 
one instance, MHRT mediated upregulation of NRF2 
(nuclear factor erythroid 2-related factor 2) gene, and 
protein expression has been observed to occur through 
acetylation of H3 [177]. The upregulation of NRF2 has 
previously been reported to have protective effects 
against the development of heart failure and adverse car-
diac remodeling [179]. MHRT has also been reported to 
regulate HDAC5, which leads to altered levels of acety-
lation at the myocardin promoter [180]. MHRT expres-
sion has been shown to be negatively correlated with the 
expression of myocardin, a regulator of muscle growth. 
Overexpression of MHRT is associated with reduced 
acetylation at the promoter of myocardin in CMs, 
whereas knockdown of MHRT resulted in increased 
levels of acetylation at the myocardin promoter, effects 
which are proposed to result from interaction with 
HDAC5 [180]. Interestingly, myocardin has been shown 
to increase transcriptional activity of MHRT by forming 
a positive feedback loop via binding with the CarG box 
of MHRT promoter [180]. The myocardin family mem-
bers of coactivators have been shown to activate genes 
responsible for cell migration, proliferation, and myo-
genesis through interacting with serum response factors 
(SRF) [181]. Association of myocardin with the histone 
acetyltransferase p300 increases the expression of SRF 
target genes, whereas its interaction with class II histone 
deacetylases represses the expression of SRF target genes 
[181, 182].

MHRT could serve as a potential therapeutic target to 
reduce cardiovascular diseases as well as cardiotoxicity 

induced by cancer therapeutic agents. However, trans-
genic mice models need to be generated to perform addi-
tional experiments to confirm that overexpression of 
MHRT might serve as a potential therapeutic target.

FOXC2‑AS1 (forkhead box protein C2‑Antisense RNA 
1)  The lncRNA FOXC2-AS1 has been reported to 
promote DOX resistance in osteosarcoma in  vivo and 
in  vitro [183]. FOXC2-AS1 was found to be downregu-
lated in heart tissues of mice in DOX-induced cardio-
toxicity. Overexpression studies revealed that FOXC2-
AS1 reduced CMs injury by increasing the expression of 
WISP1 (wnt1-inducible signaling pathway protein-1) to 
promote or sustain the activation of various cell survival 
pathways [184, 185]. However, these studies lack mecha-
nistic insights regarding any possible intermediates that 
might involve the FOXC2-AS1 and WISP1-mediated 
cardioprotection against DOX-induced cardiotoxicity. 
Moreover, additional in vivo experiments are required to 
confirm the therapeutic potential of this lncRNA.

SNHG1 (small nucleolar RNA host gene 1)  The lncRNA 
SNHG1, located in human chromosome 11, is known to 
be differentially expressed in multiple types of cancers 
and CVDs [98, 186–191]. Zhang et al. reported that over-
expression of SNHG1 mitigates the toxicity of oxidative 
stress in human CMs [187]. Recently, it has been shown 
that DOX downregulates the expression of SNHG1 in 
AC16 cells, leading to the increased expression of pro-
apoptotic proteins BAX (BCL2  associated X, apoptosis 
regulator) and cleaved caspase-3 while decreasing the 
expression of anti-apoptotic protein BCL-2 (B-cell CLL/
lymphoma 2). When overexpressed, though, SNGH1 was 
shown to reverse these effects, mainly by increasing cell 
viability, restoring the BCL2/BAX ratio, and decreasing 
the cleavage of caspase 3.

One of the mechanisms of action of SNHG1 involves 
acting as a ceRNA for miR-195. When the expression of 
miR-195 is increased, there is a reduction in the expres-
sion of BCL-2; likewise, when the miR-195 expression is 
reduced, there is a corresponding increase in the expres-
sion of BCL-2 [192]. SNHG1 has also been reported to 
reinforce anti-tumor properties of baicalein in the cervi-
cal cancer cell, affecting cell viability, migration, apopto-
sis, and tumor growth by regulating miR-3127-5p [193]. 
These studies on the cardioprotective property of SNHG1 
and its role in cancer are based on in vitro data. Further 
in vivo experiments are needed to confirm the therapeu-
tic potential of this lncRNA.

Specificity protein 1 (Sp1) [194], E2F Transcription 
Factor 1 (E2F1) [195], MYCN proto-oncogene, BHLH 
transcription factor (MYCN) [196] have shown to be 
positively regulated the expression of lncRNA SNHG1 
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through binding with upstream promoter region. The 
transcription factor Sp1 typically activates the tran-
scription of cellular genes that has GC boxes in their 
promoter region. Moreover, the regulation of transcrip-
tional activity of Sp1 has shown to be associated with 
post-translational modifications including phosphoryla-
tion, glycosylation, and acetylation [197]. The oncogenic 
transcription factor MYCN is known to act as an activa-
tor or repressor through heterodimerizing with Max to 
bind specific E-box DNA motifs (CANNTC), or recruit-
ing corepressors, respectively [198]. Methyltransferase 3, 
n6-adenosine-methyltransferase complex catalytic subu-
nit (METTL3)-mediated m6A modification has shown to 
be promoting the upregulation of SNHG1 by improving 
the stability of its RNA transcripts [199].

MALAT1 or  NEAT2 (noncoding nuclear‑enriched abun‑
dant transcript 2)  lncRNAs have emerged as a thera-
peutic target in reducing DOX-induced cardiac senes-
cence [200]. The expression of MALAT1/NEAT2 was 
upregulated in DOX-treated CMs and in CMs treated 
with exosomeHypoxia [201]. Silencing of MALAT1 in MSCs 
before treatment with hypoxia abolished the protective 
effect of exosomeHypoxia in CMs, indicating that exosomes 
derived from MSCsHypoxia exerted a therapeutic effect par-
tially mediated through direct transfer of MALAT1. miR-
92a-3p has a binding site in the sequence of MALAT1. 
DOX-treated CMs showed increased levels of miR-
92a-3p. However, the expression level of miR-92a-3p 
in DOX-treated CMs is substantially reduced when 
exosomeHypoxia were added, while MALAT1 was highly 
expressed, indicating that MALAT1 directly inhibits mi-
92a-3p against DOX-induced senescence. ATG4a was 
identified as a downstream target of miR-92a-3p. Thus, 
the exosomal transfer of lncRNA-MALAT1/miR-92a-3p 
and activation of ATG4a represents a pathway by which 
protection against DOX-induced cellular senescence can 
be achieved.

DOX-treatment or MALAT1 knockdown/miR-92a-3p 
overexpression mediated silencing of ATG4a result-
ing in increased the expression of FABP 3 and 4 (fatty 
acid–binding proteins 3 and 4) and MTFP1 (mitochon-
drial fission process 1) while decreasing the expres-
sion of Cox4i2 (cytochrome C oxidase subunit 4I2), 
HSPA1A (heat shock protein family A member 1A) and 
ATP1B2 (ATPase Na+/K+ transporting subunit beta 2) 
in CMs [201]. Previous studies also reported the effect 
of miR-92a-3p in impairing the metabolism of CM and 
autophagy by targeting ATG4a [202]. Overexpression of 
ATG4a benefits the heart during the ischemia/reperfu-
sion process [203].

The lncRNA-MALAT1 has been linked to several 
kinds of human tumors and recognized as a prognostic 

biomarker for lung cancer metastasis. LncRNA-
MALAT1 promotes CM apoptosis following myocardial 
infarction by targeting miR-144-39 [204, 205]. Reduced 
levels of MALAT1 have also been shown to augment 
atherosclerotic lesion formation in mice [206, 207]. In 
regard to potential therapeutic roles, MALAT1 has 
been recognized as helping address cardiac damage, by 
regulating hypoxia-inducible factors [208, 209]. Genetic 
variation (rs619586AG/GG genotype) of MALAT1 
is  associated with reduced risk for coronary atheroscle-
rotic disease [210]. All these observations suggest that 
targeting MALAT1 might be a promising therapeutic 
strategy in reducing the cardiovascular toxic effects of 
anticancer drugs.

The transcription factors such as SP1 [211], SP3 [212], 
and c-MYC l [213] have been reported to positively cor-
relate with MALAT1 through binding with promoter. In 
protein-coding genes, the binding of SP1 to DNA ele-
ments is mediated through the zinc finger domain which 
can recruit basal transcription machinery, while other 
domains facilitate interactions with chromatin remode-
ling complex to promote transcription [213]. HIF1/2A are 
also known to activate the expression of MALAT1 under 
hypoxic conditions [214, 215] by binding the hypoxia 
response element (HRE). β-Catenin and TCF/LEF have 
also been identified as downstream regulators proto-
cadherin-10 (PCDH10)-Wnt signaling which regulates 
MALAT1 expression [216]. NRF1 and MALAT1 par-
ticipate in a positive regulatory loop whereby MALAT1 
mediates epigenetic silencing of kelch like ECH associ-
ated protein 1 (KEAP1), a negative regulator of NRF1, 
which stabilizes the expression of NRF1 and allows for 
increased NRF1 binding within the promoter of MALAT 
and subsequent increases in MALAT1 expression [217, 
218]. Yes-associated protein 1 (YAP1) also positively 
regulates of MALAT1 in a β-catenin dependent fashion 
[219]. The histone remodeling complex, JMJD1A has also 
been recognized as integrating various upstream inputs, 
such as hypoxia [220] and cancer [221] which contribute 
to the regulation of MALAT1 expression. Negative regu-
lation of MALAT1 is mediated through P53 which binds 
to the MALAT1 promoter, preventing Pol II binding 
[222]. Similarly, SRY-Box transcription factor 17 (SOX17) 
suppresses MALAT1 expression by binding to the pro-
moter [223].

Other protective lncRNAs in reducing cardiac injury: 
The lncRNA UCA1 (urothelial cancer associated 1) 
decreased hypoxia and glucose deprivation-induced 
H9C2 injury in CMs by downregulating the expression 
of miR-122 [224]. Similarly, lncRNA TUG1 (taurine up-
regulated 1) protected CMs from ischemia–reperfusion 
injury by downregulating HMGB1 (high mobility group 
box 1) [225]. The lncRNA ANRIL (antisense non-coding 
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RNA in the INK4 locus), also known as CDKN2B-AS 
(CDKN2B Antisense RNA 1), protects against hypoxia-
induced cardiac injury through the miR-7-5p/SIRT1 
axis [226]. The lncRNA HIF1A-AS1 (HIF1A Antisense 
RNA 1) mediates the expression of SOCS2 (suppressor 
of cytokine signaling 2) by miR-204 to encourage ven-
tricular remodeling followed by myocardial ischemia/
reperfusion injury [227]. The lncRNA CARL (cardiac 
apoptosis-related lncRNA) has been shown to have a 
protective role in mitochondrial fission and CM apop-
tosis during ischemia–reperfusion [228]. Consequently, 
more investigations are needed to check whether the 
overexpression of CARL could prevent DOX-induced 
cardiotoxicity by inhibiting apoptosis and mitochondrial 
fission, which leads to the improvement of cardiac func-
tion. The lncRNA CAREL (cardiac regeneration-related 
lncRNA) is known to be capable of regulating the pro-
liferation of human iPSC-derived CMs, specifically in 
the context of cardiac regeneration after injury [229]. 
Overexpression of lncRNA HOTAIR (HOX transcript 
antisense intergenic RNA) protects CMs from hydrogen 
peroxide-induced apoptosis [230].

lncRNAs associated with increased risk of cancer 
therapy‑indued cardiotoxicity
SOX2‑OT (SOX2 overlapping transcript)  The lncRNA 
SOX2-OT, located on human chromosome 3q26.3 and 
overlaps with SOX2, one of the major regulators of pluri-
potency, was found to be significantly upregulated upon 
DOX treatment leading to the apoptosis of primary CMs 
in rat models [231]. SOX2-OT exerted its biological func-
tion by sponging miR-942-5p. DP5 (death protein 5) was 
shown to be a direct target of miR-942-5p. The expres-
sion levels of DP5 become reduced when miR-942-5p is 
overexpressed, resulting in reduced apoptosis. Overex-
pression of SOX2-OT and DOX treatment resulted in 
increased expression of DP5 and lead to increased levels 
of apoptosis, due to the downregulation of miR-942-5p. 
Silencing of either SOX2-OT or DP5 and overexpres-
sion of miR-942-5p have all been shown to decrease the 
amount of cleaved caspase-3 in  vitro. Similar to these 
observations, knockdown of SOX2-OT or overexpression 
of miR-942-5p conferred cardioprotection against DOX-
induced dysfunction in  vivo, when measured by LVEF 
and LVFS (left ventricular fractional shortening) [231]. 
The lncRNA SOX2-OT is highly expressed in embryonic 
stem cells and has a crucial role in maintaining the pluri-
potency of self-renewing and undifferentiated embryonic 
stem cells [232, 233], demonstrating an important role in 
development. Its dysregulation in disease states has been 
reported in the following: diabetic complications, mental 
illness, gastric cancer, breast cancer, esophageal cancer, 
pancreatic ductal adenocarcinoma, hepatocellular carci-

noma, ovarian cancer, lung cancer, laryngeal squamous 
cell carcinoma, nasopharyngeal carcinoma, cholangio-
carcinoma, osteosarcoma, and glioblastoma. It has also 
been reported to have prognostic value in some of these 
states [234, 235]. A study reported that variant 7 of SOX2-
OT (SOX2OT-V7) increases DOX-induced autophagy 
through miR-142/miR-22 [236].

The transcription factor interferon-regulatory factor 
4 (IRF4) [237] was found to be responsible for increas-
ing the transcriptional activity of lncRNA SOX2-OT. 
Depending on its abundance, IRF4 forms a homodimer 
or a heterodimer within promoter regions where it forms 
complexes with other transcription factors to regulate 
the target gene expression [238].

LincRNA‑p21 (long intergenic non‑coding (linc) 
RNA‑p21)  DOX-induced cellular senescence leads to the 
development of cardiovascular dysfunction [239]. Senes-
cence can be triggered by increased production of ROS and 
oxidative stress. The lincRNA-p21 was upregulated in HL-1 
murine CMs treated with DOX. This upregulation of lin-
cRNA-p21 leads to a decrease in cellular proliferation and 
viability, as well as increased expression of p53 and p16, and 
decreased telomere length and telomerase activity [200]. 
Inhibition of Wnt/β-catenin pathway has been reported to 
be associated with DOX-induced cardiomyopathy [240]. 
Previous studies demonstrated the role of lincRNA-p21 
in reducing β-catenin in cardiac stem cells [241]. Consist-
ent with these observations, DOX-treatment upregulates 
the expression of lincRNA-p21 and decreases the expres-
sion of β-catenin in HL-1 murine CMs. siRNA mediated 
knockdown of lincRNA-p21 reversed DOX-induced cellu-
lar senescence. These effects were demonstrated through 
increased cellular proliferation and viability, decreased 
expression of p53 and p16, and increased telomere length 
and telomerase activity, suggesting the pro-senescent 
effect of lincRNA-p21. Silencing of lincRNA-p21 increased 
β-catenin protein levels. DOX significantly decreased mito-
chondrial transmembrane potential and SOD (superoxide 
dismutase) activity, while increasing the production of ROS 
and activation of lipid peroxidation. This DOX-induced 
oxidative stress-mediated cellular senescence was reversed 
by the knockdown of lincRNA-p21. Reduction of oxida-
tive stress by silencing of lincRNA-p21 was subsequently 
abolished by overexpression of lincRNA-p21, indicating 
that lincRNA-21 regulated oxidative stress plays a key role 
in DOX-induced cardiac senescence [200]. An additional 
role of lincRNA-p21 might also be recognized in endothe-
lial cells since it was found to play a vital role in regulating 
atherosclerosis [242]. The transcription factors ING1b and 
p53 regulate the expression of lincRNA-p21 [243]. Wnt/β-
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catenin singling, a protein-coding downstream target of 
lincRNA-p21, was reported to be involved in the inactiva-
tion of P53 [244]. However, another study reported that 
β-catenin positively regulates the transcriptional activity of 
P53 [245].

CHRF (cardiac hypertrophy‑related factor)  The 
lncRNA CHRF derived from the intron of the DCC 
(DCC netrin 1 receptor) gene has been shown to be 
upregulated in DOX-induced heart failure, both in vitro, 
and in vivo [246]. The inhibition of CHRF reduced the 
myocardial apoptosis caused by DOX-treatment via the 
TGF-β/Smads and TGF-β/p38 pathways [246]. Addi-
tionally, the adenovirus-mediated overexpression of 
CHRF reversed the protective effects of valsartan, an 
angiotensin II receptor blocker, in a murine model of 
DOX-induced cardiotoxicity [246]. These findings sug-
gest the CHRF might have important roles in multiple 
tissues of the cardiovascular system. It is also reported 
that CHRF acts as an endogenous sponge of miR-489 
and regulator of MYD88 expression [247]. The CHRF 
binding site with miR-489 is highly conserved between 
species, even though the full-length sequence of CHRF 
is not conserved [247].

HOX‑AS3 (HOXB cluster antisense RNA 3)  The expres-
sion of HOX-AS3 was found to be upregulated in pros-
tate cancer and H9C2 cells upon DOX treatment, where 
it causes reduced cell viability. The silencing of HOX-AS3 
restored the proliferative abilities of CMs in the presence 
of DOX. A negative correlation was identified between the 
expression of miRNA-875-3p and HOXB-AS3, suggest-
ing a potential regulatory mechanism. DOX treatment 
which increases the expression of HOX-AS3, also results 
in decreased levels of miR-875-3p in CMs. Similarly, the 
downregulation of miR-875-3p has been observed in 
other contexts of cardiovascular dysfunction, including 
children with primary dilated heart disease [248]. Previ-
ous studies have also reported the function of HOXB-
AS3 as being involved with tumor progression, and the 
encoded polypeptide can act as a promising anti-tumor 
drug candidate [249–251].

H19  The highly conserved lncRNA H19 is upregulated 
in myocardial tissue with dilated cardiomyopathy (DCM) 
induced by DOX [178, 252]. The exact function of H19 in 
the heart is not well known. However, inhibition of H19 
reduced DOX-induced injury in CMs and led to improve-
ments in cardiac functions [253]. The miR-675 is located 
within the gene of H19. Like the expression of H19, miR675 
is also upregulated in DOX-induced cardiotoxicity. Inter-
estingly though, overexpression of miR-675 reverses the 
protective effect of H19, resulting in CM injury mediated 

by EBP1 (ErbB3-binding protein 1) [252–254]. In contrast 
to its role in promoting apoptosis during DOX-induced 
cardiotoxicity, H19 has been observed to mediate anti-
apoptotic effect in a streptozotocin-induced diabetic rat 
model, indicating that apoptotic characteristics of H19 
are specific to stress conditions [255]. The transcription 
factor E2F1 positively regulates the expression of H19 via 
binding with promoter [256].

PVT1 (plasmacytoma variant translocation 1)  The 
lncRNA PVT1 is related to a family of oncogenes that 
have a key role in cardiovascular diseases. PVT1 has been 
found to be upregulated in CMs treated with DOX [257–
259]. Another recent study demonstrated that PVT1 pro-
moted vascular ECs proliferation in CHF by suppressing 
the activity of miR-190a-5p [260]. PVT1 has also been 
reported to enhance atrial fibrosis via the miR128-23p-
Sp1-THF-β1-Smad axis [261]. The knockdown of PVT1 
reduced the DOX-induced cardiotoxicity mediated by 
miRNA-875-3p and miRNA-187-3p/AOX1 pathways 
[248, 259]. The transcription factor NFκB1 mediates 
many of the downstream events related to DOX-induced 
cardiotoxicity, which ultimately leads to the activation 
of inflammatory pathways and apoptosis. Inhibition of 
NFκB1 protects against DOX-induced cardiotoxicity. 
NFKB1 has binding sites in the promoter region of PVT1, 
and overexpression of NFKB1 upregulates PVT1 in CMs 
[262]. A recent study demonstrated that salvianolic acid A 
reversed DOX-triggered apoptosis in CMs by inhibiting 
NFKB1 expression, leading to downregulation of PVT1. 
All these observations were identified in  vitro. There-
fore, further experiments need to be performed in  vivo 
to reveal the therapeutic potential of this lncRNA since it 
might regulate several signaling pathways in myocardial 
toxicity [262]. A study reported that YAP1 positively regu-
lates the expression of PVT1 through direct interaction 
[263].

TINCR (terminal differentiation‑induced non‑coding 
RNA)  Pyroptosis is one of the proinflammatory con-
ditions controlled by pyroptotic caspases, and it is now 
extensively recognized as a key player in the progression 
of cardiovascular diseases [264]. The characteristics of 
pyroptosis are characterized by increased inflammation 
and activation of NLRP3 (NLR family pyrin domain con-
taining 3) along with caspase-1,3,4 and 11, leading to the 
cleave of GSDMD (gasdermin D) or GSDME and release 
of IL-1β and IL-18 due to the rupture of the plasma mem-
brane [34]. DOX has been shown to activate pyroptosis 
in CMs [265]. DOX-treated dying cells showed altered 
morphological features, including swelling and rupture 
of cell membrane with increased expression of NLRP3, 
cleaved caspase-1, IL-1β, IL-18, and GSDMD-N. Treat-
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ment of CMs with NLRP3 (NLR family pyrin domain 
containing 3) inhibitor, MCC950 abrogated the effects of 
DOX-induced cell death through pyroptosis [266]. Meng 
et  al. established a rat model of myocardial injury fol-
lowed by treatment with DOX, which showed a decline 
in LVEF and FS, increases in serum myocardial enzymes 
including AST, LDH, and CK-MB, as well as increases in 
pyroptosis markers including NLRP3, cleaved caspase-1, 
IL-1β, IL-18, and GSDMD-N [267]. The expression of 
TINCR is significantly increased in CMs and heart tissues 
of rats followed by DOX treatment. In line with DOX-
induced pyroptosis, overexpression of TINCR resulted 
in declined LVEF and FS, CM damage, and pyroptosis-
related proteins, indicating a potential role of TINCR in 
DOX-mediated proptosis. Knockdown of TINCR offset 
some of these DOX-induced CM pyroptosis effects result-
ing in decreased expression of NLRP3, cleaved caspase-1, 
IL-β, IL-18, and GSDMD-N in myocardial tissues. Stud-
ies revealed that DOX increases H3K27ac at the promoter 
region of TINCR, leading to enhanced expression. Mech-
anistically TINCR mediates CM pyroptosis through bind-
ing with IGF2BP1 (insulin-like growth factor 2 mRNA 
binding protein 1), which regulates mRNA stability [268]. 
Consistent with previous findings, TINCR modulates 
DOX-induced CM pyroptosis by stabilization of NLRP3 
mRNA through IGF2BP1 [267]. The role of TINCR was 
found to be specific in DOX-induced pyroptosis or apop-
tosis in cardiac cells but not in DOX-induced pyroptosis 
or apoptosis of cancer cells [267].

STAT3 has binding sites in the promoter region of 
lncRNA TINCR. A study reported that STAT3 promotes 
the transcriptional expression of TINCR through a posi-
tive feedback loop mechanism via STAT3-TINCR-EGFR 
axis [269]. Other study reported that IGF2BP1 is involved 
in regulating STAT3 expression [270], suggesting the pos-
sible positive feedback regulation between the upstream 
transcription factor of TINCR and its downstream tar-
geted protein-coding gene. However, new mechanistic 
studies are necessary to check this hypothesis. Likewise, 
a recent study also reported the role of STAT3 in regulat-
ing the effects of NLRP3, which is one of the downstream 
protein-coding genes of lncRNA TINCR [271].

LINC00339  The lncRNA LINC00339 was highly upreg-
ulated in DOX-induced cardiotoxicity leading to the 
enhanced apoptosis of CMs. Silencing of LINC00339 
showed an anti-apoptotic effect, which rescued the 
DOX-induced reduction of CM viability. The 3′ UTR of 
LINC00339 has binding sites for miR-484. Mimics or 
inhibitor of miR-484 effectively increased or decreased 
the expression of LINC00339, respectively. These find-
ings indicate that LINC00339 directly targeted miR-484. 
Similarly, knockdown of LINC00339 resulted in increased 

expression of miR-484, leading to a reduction in cellular 
apoptosis and enhanced cellular proliferation, indicating 
that LINC00339 and miR-484 establish an axis in regu-
lating apoptosis in the DOX-induced cardiotoxicity and 
that LINC00339 might be involved in cardiac remodeling 
[272]. The miR-482 has been reported to have a key role 
in apoptosis and mitochondrial fission mechanisms [272]. 
Previous reports showed that LINC00339 acts as a pre-
cursor of miR-539-5p, and so many descriptions of miR-
539-5p functions might also be assigned to LINC00339.

Other lncRNAs that may induce cardiac damage: 
MEG3 mediated inhibition of miR-7-5p is involved in 
mediating effects that arise from myocardial ischemia 
or reperfusion injury [273]. Knockdown of pro-fibrotic 
lncRNA (PFL) can attenuate cardiac interstitial fibrosis 
and improve cardiac function. A proposed mechanism of 
PFL involves a ceRNA mediated regulation of TGF-β1 by 
sponging let-7d [274].

miRNAs
miRNAs are about 20 nucleotides of non-coding RNAs 
with a variety of functions, including cell differentiation, 
proliferation, gene expression, apoptosis, and cancer 
pathology [275, 276]. Some miRNAs can also be used as 
a biomarker for cardiac irregularities [277]. They bind 
to various regions of the mRNA, including the 5′ and 3′ 
untranslated regions, coding regions, and promoters, 
targeting both coding and non-coding mRNA post-tran-
scriptionally for degradation and translational inhibition 
[278]. The miRNAs, like lncRNAs, are encoded in the 
organism’s genome; however, they do not have as many 
nucleotides. In humans, there are 1912 miRNA genes 
(Fig. 3A), and roughly 25% of mRNA genes are believed 
to be regulated by miRNAs [279]. In cancers, miRNAs 
commonly act as oncogenes or tumor suppressors. Onco-
genic miRNAs overexpressed in cancers are known to 
target and downregulate tumor suppressors, resulting in 
cell proliferation and enhanced the strength of the tumor 
[280]. Simultaneously, some miRNAs interfere with dif-
ferent proteins present in the cell to suppress oncogenic 
activity [280]. As shown in Fig. 4, miRNAs are affected by 
different cancer treatments. The differential expression, 
individualized to each miRNA, may affect the occurrence 
of cardiotoxicity. In the emerging field of cardio-oncol-
ogy, the roles of miRNAs in cancer therapy-induced car-
diotoxicity are increasingly being noted (Table 2).

Protective miRNAs in cancer therapy‑induced cardiotoxicity
miR‑152  miR-152, a highly conserved miRNA in both 
rats and humans, was found to be downregulated in DOX-
induced cardiotoxicity both in  vivo and in  vitro [281]. 
Increased expression of miR-152 reduced DOX-induced 
cardiotoxicity by attenuating apoptosis of CMs, oxidative 
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damage, and myocardial inflammation, leading to the pre-
vention of cardiac dysfunction. Similar to lncRNA MHRT, 
the cardioprotective nature of miR-152 was dependent on 
the activation of the NRF2 signaling pathway [281]. Fur-
ther experiments need to be performed to check whether 
overexpression of miR-152 reduces the therapeutic 
potential of DOX in suppressing cancerous tumors. The 
upregulation of miR-152 was found to be involved in the 
development of heart failure [282], whereas increased 
expression of miR-152 in the neonatal heart helped to 
maintain energy demands by upholding glycolysis [283].

miR‑133  The miR-133 family comprises miR-133a-1, 
miR-133a-2, and miR-133b. This family plays a key role 
in the pathophysiological processes of heart diseases 
[284, 285]. miR-133b has antitumor potential as well and 
is associated with TKI induced cardiotoxicity, cardiac 
fibrosis, and myocardial infarction [286–290]. Further-
more, miR-133b has also been shown to be capable of 
serving as a serum biomarker for cardiac fibrosis [291]. 
miR-133b has been described as having a cardioprotec-
tive role in morphine-preconditioned rat CMs [292]. 
The levels of miR-133b are significantly downregulated 
in DOX-treated rat ventricular CMs and cardiac tissues 
[292]. Consistent with these findings, Li et  al. reported 
the decreased expression of miR-133b followed by DOX-

treatment in both in vitro and in vivo mice cardiotoxicity 
models. In a mouse model of DOX-induced heart fail-
ure, the levels of BCL2 were downregulated, and the lev-
els of BAX and cleaved caspase-3 became elevated. Over-
expression of miR-133 inhibited DOX-induced apoptosis 
and cardiac fibrosis while increasing the expression of 
BCL-2 and decreasing the expression of BAX and cleaved 
caspase-3, collagen I, III, and IV, and fibronectin both 
in  vivo and in  vitro. PTB1 and TGLN2 serve as down-
stream targets of miR-133b. Overexpression of PTBP1 or 
TAGLN2 reversed the protective effects of miR-133 [293], 
indicating that miR-133 protects against DOX-induced 
apoptosis and cardiac fibrosis by inhibiting the expression 
of PTB1 and TAGLN2. Therefore, miR-133 may serve as 
a potential biomarker in the diagnosis and treatment of 
DOX-induced cardiotoxicity, leading to the development 
of DCM.

miR‑98  Let-7/miR-98 family members include let‐7: a, 
b, c, d, e, f, g, i and miR‐98. This family can be considered 
as the first identified mammalian miRNAs. DOX upreg-
ulates miR-98 in CMs. Surprisingly, overexpression of 
miR-98 was found to be protective against DOX-induced 
cardiotoxicity by upregulation of caspase-8 and down-
regulation of Fas and RIP3 [294]. Previous studies showed 
that miR-98 inhibits apoptosis by targeting caspase-3 

Fig. 4  Differentially regulated miRNAs in cardiotoxicity induced by different cancer therapeutic strategies
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[295]. miR-98 has been observed to be downregulated in 
heart tissues of mice after acute myocardial infarction, as 
well as H2O2-treated neonatal rat ventricular myocyte. 
The overexpression of miR-98 was found to be protective 
against CMs apoptosis by regulating the Fas/Caspase-3 
singling pathway [296]. In contrast to these observations, 
miR-98 upregulation in cardiac progenitor cells following 
hydrogen peroxide treatment has been reported to lead to 
increased apoptosis. Inhibition of miR-98 was found to be 
protective against cardiac progenitor cell injury through 
regulation of STAT3 [297]. The confounding patterns of 

miR-98 expression regarding having either protective or 
detrimental roles in the context of cardiovascular function 
might be owed to its participation in a conserved stress 
response. Thioredoxin 1, for instance, has been shown to 
attenuate angiotensin II-induced cardiac hypertrophy by 
increasing the expression of miR-98 [294]. Interestingly 
though, the upregulation of miR-98 has been recognized 
in angiotensin II-induced cardiac hypertrophy. An alter-
native explanation is that miR-98 might have different 
biological functions and different downstream mecha-
nisms in certain conditions or cell types. Previous studies 

Table 2  miRNAs involved in cancer therapy-induced cardiotoxicity

miRNA Orthologs Drug or type of 
chemotherapy

Expression Targets Cell type Biological effect Ref.

miR-152 Homo sapiens
Mus musculus
Rattus norvegicus
Danio rerio

DOX down NRF2 CMs Apoptosis, oxidative 
damage, myocardial 
inflammation

[281]

miR-133b Homo sapiens
Mus musculus
Rattus norvegicus

DOX down PTB1, TGLN2 CMs
In vivo

Apoptosis, cardiac 
fibrosis

[293]

miR-98 Homo sapiens
Mus musculus
Rattus norvegicus

DOX Up Fas, RIP3 CMs Apoptosis [357]

miR-499-5p Homo sapiens
Mus musculus
Rattus norvegicus
Danio rerio

DOX Overexpression P21 CMs and Heart Improved CM hyper‑
trophy and cardiac 
function

[358]

miR-29b Homo sapiens
Mus musculus
Rattus norvegicus

DOX Down Bax, BCL2 CMs and myocardium Apoptosis, mito‑
chondrial membrane 
depolarization

[305]

miR-29a-3p Homo sapiens
Mus musculus

Radiation Down Unknown Secreted exosomes Cardiac fibrosis [306]

miR-215-5p Homo sapiens
Mus musculus

DOX Up ZEB2 CMs Apoptosis [309, 310]

miR-200c Homo sapiens
Mus musculus
Rattus norvegicus
Danio rerio

DOX Up ZEB1 Cardiac mesenchymal 
progenitor cells

Cardiac progenitor cell 
depletion

[314]

miR-22 Homo sapiens
Mus musculus
Rattus norvegicus

DOX Up SIRT1 CMs Apoptosis, oxidative 
stress

[359]

miR-34a-5p Homo sapiens
Mus musculus

Epirubicin Up SIRT1 Myocardium and 
plasma

Apoptosis, heart failure [317]

miR-1 Homo sapiens
Rattus norvegicus

As2O3 Up KCNJ2, ERG CMs impaired CM electro‑
physiology

[321]

miR-320a Homo sapiens
Mus musculus
Rattus norvegicus

DOX Up VEGF-A ECs Apoptosis [322]

miR-526b-3p Homo sapiens DOX Up CD31, CD34, STAT3 ECs Abnormal capillaries 
microvasculature, vas‑
cular homeostasis

[323]

miR-23a Homo sapiens
Mus musculus

DOX Up PGC-1α CMs Mitochondrial injury, 
apoptosis

[324]

miR-221/222 Homo sapiens
Mus musculus
Rattus norvegicus

Radiation Up c-KIT ECs Angiogenesis [330, 331]
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reported that miR-98 could act as a potential biomarker 
for the diagnosis of atherosclerosis and cardiac hypertro-
phy [298]. Upregulation of miR-98 inhibits collagen depo-
sition in human cardiac fibroblasts via downregulation of 
TGFBR1 [299]. Overexpression of miR-98 downregulated 
DAPK1 (death-associated protein kinase 1), leading to the 
attenuation of cardiac ischemia–reperfusion injury [300].

miR‑499‑5p  miR-499-5p becomes downregulated fol-
lowing DOX treatment [301]. miR-499-5p normally tar-
gets the cyclin-dependent kinase inhibitor 1a, also known 
as p21. Targeting of p21 by miR-499-5p prevents the 
induction of p21 induced mitochondrial fission and myo-
cardial apoptosis [301]. Wan et al. showed this by dem-
onstrating that overexpression miR-499-5p can reduce 
p21 activity, leading to the aforementioned consequences 
[301].

miR‑29b  Ionizing radiation also downregulates specific 
miRNAs. The family of miR-29, normally anti-angiogenic, 
interferes with mRNA coding for collagen and matrix 
proteins involved in cardiovascular fibrosis [302, 303]. 
The downregulation of miR-29b has been observed to 
facilitate angiogenesis. The effects of miR-29 in this con-
text were mediated through MAPK/ERK and PI3K/Akt 
signaling pathways [304]. The study done by Chen et al. 
emphasized that the maintenance of miR-29b is crucial 
in a variety of additional cellular pathways as well [304]. 
Another study done by Jing et al. showed that the in vitro 
overexpression of miR-29b lessened the severity of the 
effects of DOX. This was the result of mir-29b targeting the 
3′ untranslated region of Bax to increase Bcl-2 expression 
[305]. The undisturbed Bax and Bcl-2 proteins normally 
function to cause mitochondrial membrane depolariza-
tion and cytochrome c release, but due to the downregu-
lation of Bax, this process was inhibited [305]. miR-29b 
had a protective effect against DOX-induced myocardial 
apoptosis via a mitochondria-dependent pathway involv-
ing Bax [305].

miR‑29a‑3p  Radiation therapy also downregulates miR-
29a-3p, a finding which correlates with an increased risk 
of cardiac fibrosis [306]. There are three types of miR-29 
(a, b, and c) in the family, and their sequences vary by only 
a couple of base pairs [307]. miR-29a-3p was successfully 
used as a biomarker to detect the amount of radiation 
that a patient received [306]. miR-29a-3p has also been 
observed to render cancer cells more susceptible to cer-
tain toxicities, improving the efficacy of chemotherapeu-
tic agents to target and treat abnormal cells [308].

miRNAs associated with increased risk of cancer 
therapy‑induced cardiotoxicity
miR‑215‑5p  Studies have reported that DOX upregu-
lates miR-215-5P in vitro and in vivo [309, 310]. Mecha-
nistic studies performed in vitro showed that the deple-
tion of miR-215-5p expression alleviated DOX-induced 
CM apoptosis by upregulating ZEB2 (zinc finger e-box 
binding homeobox 2). Previous studies demonstrated the 
role of miR-215-5p in multiple cancers [311]. However, 
there is a lack of knowledge if miR-215-5p may act as a 
promising therapeutic target in reducing cardiotoxicity as 
current evidence is limited to in vitro studies. More in vivo 
experiments are needed to make conclusive remarks.

miR‑200  miR-200c comes from the miR-200 family, 
which plays a role in the epithelial to mesenchymal tran-
sition in tumor cells, an important feature of metastasis 
[312]. DOX upregulates miR-200c, which downregulates 
ZEB1 (zinc finger e-box binding homeobox 1), endothe-
lial nitric oxide synthase, Sirtuin1 (SIRT1), and Fork-
head boxO1, leading to epithelial dysfunction and DOX-
related cardiotoxicities such as cardiomyopathy, cardiac 
apoptosis, and CHF [312, 313]. Stromal cell-derived 
factor-1 (SCDF-1) can prevent the upregulation of miR-
200c. Injections of SCDF-1 into mouse hearts have been 
observed to be protective against the development of car-
diomyopathies resulting from DOX treatment by prevent-
ing miR-200c upregulation [314].

miR‑22  miR-22 is commonly found in cardiac and skel-
etal muscle and is upregulated in DOX-treated cells [315]. 
The main target of miR-22 was the 3′ untranslated region 
of the SIRT1 gene, which leads to the downregulation of 
SIRT1 [315]. SIRT1 is a deacetylase that targets regula-
tory proteins and transcription factors that are capable 
of altering various cellular processes and pathways [316]. 
The enhanced function of these proteins due to the down-
regulation of SIRT1 potentially addresses many functions 
affected by DOX-induced cardiotoxicity. Recent stud-
ies demonstrated that the inhibition of miR-22 reduced 
apoptosis and oxidative stress in CMs [315]. Therefore, 
specifically targeting miR-22 may be effective in decreas-
ing DOX-induced cardiotoxicity.

miR‑34‑5p  Various cancer treatments result in the 
upregulation of miR-34-5p [317]. Epirubicin specifically 
caused an upregulation of miR-34-5p, which targeted 
SIRT1 for post-transcriptionally mediated downregula-
tion [317]. SIRT1 has also been recognized as inhibiting 
hyaluronan synthase 2 (HAS2) expression by targeting 
HAS2-AS1 (HAS2-Antisense RNA 1) [318]. Downregu-
lated HAS2 reduces the production of hyaluronan (HA). 
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HA is one of the key components of endothelial glycoca-
lyx, and diminished production of HA might lead to the 
degradation of endothelial glycocalyx, resulting in the 
development of cardiovascular vascular complications 
[319]. Further understanding of underlying mechanisms 
of lncRNA HAS2-AS1 or miR-34-5p in degradation of 
endothelial glycocalyx may provide an avenue for devel-
oping novel therapeutic strategies for reducing cardiovas-
cular complications. The miR-34-5p mediated downregu-
lation of SIRT1 also activated the p66-shc pathway [317]. 
Activation of this pathway caused BAX, and caspase-2 to 
be upregulated and activated, causing CM apoptosis and 
heart failure [317, 320].

miR‑1  The upregulation of miR-1 due to As2O3 facili-
tates the downregulation of KCNJ2 post-transcriptionally. 
KCNJ2 functions as a K+ channel, and its dysregulation 
contributes to impaired CM electrophysiology [321]. 
Upregulation of miR-1 also repressed the expression 
of ERG [321]. The combination of these events caused 
arrhythmia, prolonged QT intervals, and hypertrophy. 
The therapeutic potential in targeting miR-1 was dem-
onstrated, whereby knockdown of miR-1 with antisense 
was shown to inhibit the development of QT prolongation 
[321].

miR‑320a and  miR‑526b‑3p  The use of DOX medi-
ates the upregulation of miR-320a [322]. Upregulation of 
miR-320a has been shown to induce apoptosis, leading 
to abnormalities in the heart vessels [322]. The miR-320a 
targeted VEGF-A, a growth factor involved in maintain-
ing homeostasis through vessel formation [322]. Without 
VEGF-A, the cardiac vessels formed improperly, leading 
to apoptosis in  vitro and vessel abnormalities. To res-
cue DOX-induced cardiotoxicity, miR-320a knockdown 
and reintroduction of VEGF-A in cultured ECs restored 
proliferation activities and prevented apoptosis [322]. 
DOX had a similar impact on miR-526b-3p as it did on 
miR-320a [323]. The miRNA was upregulated, causing a 
decrease in CD31 and CD34, which showed a decrease 
in the density of the venules, arterioles, and capillaries 
microvasculature [265]. STAT3, a transcription factor 
for VEGF-A, was downregulated as a result of upregu-
lated miR-526b-3p [323]. The decrease in STAT3 caused a 
decrease in the production of VEGF-A [323]. Recent stud-
ies showed that in human umbilical vein endothelial cells 
(HUVECs), the knockdown of miR-526b-3p enhanced 
tube formation [323].

miR‑23a  miR-23a is a miRNA normally involved in 
regulating angiogenesis. In response to treatment with 
DOX, miR-23a becomes upregulated, causing mitochon-
drial injury and apoptosis in the CMs [324, 325]. Thera-

peutic potential for this miRNA was demonstrated with 
knockdown experiments of miR-23a in DOX-treated 
CMs, which reduced apoptosis and oxidative stress in 
CMs [324]. A recent study revealed that the peroxisome 
proliferator-activated receptor-gamma coactivator-1α 
(PGC-1α)/Dynamin-related protein (DRP1) pathway 
was capable of preventing CM apoptosis in this context 
to promote survival [324]. miR-23a inhibits PGC-1α, a 
regulator of mitochondrial biogenesis and an inhibitor of 
DOX-induced cardiomyopathy [324, 326].

miR‑221/222  Following radiotherapy, the anti-angio-
genic miR-221/222 was upregulated, contributing to the 
radiation-induced cardiovascular dysfunction and cardiac 
hypertrophy [327, 328]. miR-221/222 targeted c-KIT post-
transcriptionally, leading to impairments in angiogenesis 
[329]. Additionally, the role of miRNA-221/222 in ECs 
has been recognized as having control over senescence. 
When upregulated, this then leads to apoptosis and cell 
death; however, in smooth muscle cells, the upregulation 
promotes proliferation [330, 331]. Recent studies showed 
that the knockdown of miR-221/222 contributes to fibro-
sis and left ventricular stiffness [332].

Future perspective and conclusions
Despite many years of investigations, the precise mecha-
nism of cancer therapy-induced cardiotoxicities remains 
poorly characterized. There is an urgent need for new 
investigations to protect the heart following antican-
cer therapies. Today, there are a few cardioprotective 
strategies available to address these concerns. Existing 
therapies include the use of Dexrazoxane, ACE-inhibi-
tors, angiotensin II receptor blockers (ARB), and beta-
blockers. However, these therapies are not in routine 
prophylactic use and have varying degrees of efficacy. 
Clinical use of Dexrazoxane to treat anthracycline-
induced cardiotoxicity caused significant side effects, 
such as suppression of activities in the bone marrow 
[333, 334]. Therefore, novel therapeutic strategies are 
required to fight against the cardiotoxicity derived from 
TKIs, anthracycline, and other chemotherapies. The cur-
rent ongoing research in the field of oncology should be 
focused on investigating the mode of action of antican-
cer therapeutic drugs in both cancerous and cardiac cell 
types to avoid the potential cardiotoxic side effects in 
patients while retaining the effectiveness of cancer thera-
pies. Moreover, there is an unmet need for interdiscipli-
nary studies in the field of cardio-oncology.

Since ncRNAs emerged as a key regulator of sev-
eral pathophysiological signaling pathways, they can 
be promising therapeutic options in the framework of 
cardio-oncology. ncRNAs in circulation also present an 
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opportunity for novel diagnostic and prognostic markers 
of disease. Most of the previous studies have been per-
formed by using a limited number of subjects. Hence, 
clinical studies should be performed with a large-scale 
randomized and controlled subject in determining the 
potential biomarkers for cardiotoxicity. Differentially reg-
ulated ncRNAs can be targeted using multiple methods, 
including adeno-associated viruses (AAV), nanoparticles, 
antagomir, GapmeR, and locked nucleic acid, use of small 
molecular inhibitors targeting the inhibition of lncRNA-
RNA-binding protein interactions, genome-editing using 
CRISPR/Cas9, knockdown of respective natural antisense 
transcripts or degradation of lncRNAs located in the 
cytoplasm by using a siRNA-based approach involving 
the multiprotein complex RISC, RNAse dicer, endonu-
clease Argonaut2-dependent degradation pathway, and 
chemically modified antisense oligonucleotides (ASOs) 
resulting in RNAseH-dependent degradation [335–338]. 
The therapeutic use of ASOs for nuclear-localized lncR-
NAs has its limitations since ASO-mediated cleavage of 
nascent RNAs can induce premature termination of tran-
scription. A major issue in the therapeutic targeting of 
ncRNA is how cardioprotection might be achieved with-
out interfering with the effects of anticancer drugs or dis-
ease progression. Effective and novel methods need to be 
developed for therapeutic manipulations of dysregulated 
lncRNAs and miRNAs to reverse or prevent anticancer 
drug-induced cardiotoxicity.

Since ncRNA research has consistently progressed over 
the past decade, more complex tools need to be devel-
oped to modulate the expression of lncRNAs or miRNAs 
to establish novel strategies to counteract the cardiotox-
icity of anticancer drugs. Among all kinds of ncRNAs, 
miRNAs are the most extensively studied in understand-
ing cancer therapy-induced cardiotoxicity. Recent find-
ings suggest that lncRNAs can be used as a biomarker 
for detecting cardiovascular complications. lncRNAs can 
also act as promising therapeutic targets as they are sta-
bly expressed and tissue-specific. However, further inves-
tigations are needed to determine if lncRNAs can act as 
a diagnostic tool for the early prediction of anticancer 
therapy-induced cardiotoxicity. Novel, cutting-edge tech-
nologies will deliver a new avenue for in-depth analysis of 
cardiac function during cancer treatments which might 
recognize opportunities for treatments that impact the 
delicate balance of ncRNAs present by recognizing path-
ways with dysregulated RNAs.

Although lncRNAs are promising therapeutic targets, 
some of the translational studies in animal models are 
difficult due to their poorly conserved sequences between 
species. Consequently, only the highly conserved lncR-
NAs may act as therapeutic targets for novel therapies. It 

is estimated that over 80% of human lncRNAs are non-
conserved. Hence, the physiological function of lncRNAs 
cannot be effectively studied in animal models. It is worth 
noting that despite low sequence conservation, lncRNAs 
have higher tissue specificity (78%) than miRNAs (19%), 
which may provide important clues about their specific 
therapeutic functions within a specific tissue or cell type 
[104]. Forthcoming novel studies need to be focused on 
developing a valid in vivo humanized animal model that 
can be used to study the non-conserved human lncR-
NAs specific to the heart. As per our knowledge, a liver-
specific humanized mouse model is currently being used 
for validating the physiological function of liver-specific 
lncRNAs [339].

More investigations are needed to identify un-anno-
tated lncRNAs because there is no single lncRNA thera-
peutic approach performed in large animal models to 
date. A study focused on analyzing lncRNAs from three 
farm animals, chicken, cattle, and pigs, revealed that half 
of the identified lncRNAs were not annotated in NCBI or 
related databases [340]. Moreover, lncRNAs from these 
species were less conserved. The experiments and obser-
vations generated by using in vitro systems and small ani-
mal models such as rodents are drawbacks in developing 
innovative therapeutic strategies. Most have failed to rep-
licate the same results in larger animal models. Rodents 
have a lot of fundamental differences from larger animals 
and humans, especially in cardiovascular physiology. 
Before starting the clinical application, proof of concept 
and safety evaluation studies must be conducted in larger 
animal models.

Even though the data generated from large animal 
models are more promising for human diseases, there are 
certain limitations in working with larger animal models, 
including expensive maintenance, large breeding space, 
time-consuming experimental procedures, longer gesta-
tion time, and difficulties associated with the generation 
of gene knockin/knockout models. Utilizing the most 
advanced human engineered heart tissues (EHTs) and 
living myocardial slice models derived from human cells 
or tissue might solve these limitations, and it may act as 
an alternative to larger animal models.

The focus on ncRNA-based therapeutic approaches is 
gradually increasing in recent years from the beginning 
of approval of a small interfering RNA drug called pati-
siran in 2018 by the FDA. This drug degrades mRNA 
coding for transthyretin in polyneuropathy [341]. Since 
the expression of lncRNA and miRNA vary from one area 
to another area within the same tissue over time with 
concomitant conditions, ncRNA-based therapy remains 
in its early stages. However, further strategies need to 
be developed for tissue- and cell type-specific delivery, 
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which targets only deregulated ncRNAs with reduced 
off-target effects in innate immune responses.

Though lncRNAs can act as a sponge of miRNAs, 
the underlying mechanisms, or downstream targets 
of sponged miRNAs in the context of cancer therapy-
induced cardiotoxicity remains not well understood. 
Additional studies are needed to delve deeper into this 
interplay as downstream targets of sponged miRNAs 
can also serve as therapeutic targets. As it is beyond the 
scope of this current review to provide a list of predicted 
miRNAs that can be sponged, investigators can take 
advantage of available databases such as LncCeRBase 
[342], lncRNASNP2 [343], DIANA-LncBase v3 [344], 
LncMirNet [345], lnCeDB [346], SomamiR 2.0, [347], 
miRSponge [348], and starBase V2.0 [349].

In the future, we will continue to observe the aberrantly 
expressed ncRNAs to determine their exact function and 
impact on cardiovascular health, as well as the adverse 
effects that anticancer drugs have on patients. Previous 
literature has demonstrated that TKI inhibitor sunitinib 
causes severe cardiovascular complications, but the role 
of ncRNAs in mediating sunitinib-induced vascular tox-
icity which may lead to the development of cardiovas-
cular complications remains unknown. Forthcoming 
studies need to be focused on this area to develop a novel 
ncRNA-based therapeutic approach. The research in 
the field of ICI-induced cardiotoxicity is still in the early 
stages; more investigations may need to be performed 
to identify dysregulated ncRNAs. Similarly, the cur-
rent research focus on the cardiotoxicity of CAR T-cell 
immunotherapy is very limited, and preventive strategies 
to minimize cardiovascular complications remain vague. 
Therefore, forthcoming investigations must be focused 
to understand the role of ncRNAs in CAR T-cell immu-
notherapy-induced cardiotoxicity. In conclusion, novel 
studies on ncRNAs to reveal early detection of chemo-
therapy-induced cardiotoxicity will be crucial in the use 
of different chemotherapeutic agents in clinical settings 
and might be of use in the development of therapeutic 
strategies to address the needs of cardio-oncology.
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