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and asphaltenes (Han et al. 2018). Benzene, toluene, eth-
ylbenzene, and xylene (BTEX) are volatile simple aro-
matic hydrocarbons, commonly present in gasoline and 
other consumer products. One of the characteristics of 
BTEX is their relatively water-insolubility, they can dif-
fuse rapidly once introduced into aquifers, accounting up 
to 90% of the dissolved pollutants in groundwater con-
tamination plumes (Suarez and Rifai 2002). Combining 
with their high mobility in the environment and toxicity 
to human and animals, BTEX are included in the prior-
ity pollutants list by the U.S. Environmental Protection 
Agency (Keith and Telliard 1979). Therefore, BTEX con-
tamination is of particular concern and efficient remedia-
tion strategies are of great demand.

Introduction
Petroleum pollution usually resulted from spills and leak-
ages during oil exploration, storage and transportation. 
This attracts worldwide concern due to the large num-
ber of hazardous and toxic constituents in the petroleum 
(Bierkens and Geerts, 2014). Petroleum hydrocarbons 
can be classified in four groups based on their solubility: 
saturated hydrocarbons, aromatic hydrocarbons, resins, 
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Abstract
Petroleum hydrocarbon contamination is of environmental and public health concerns due to its toxic 
components. Bioremediation utilizes microbial organisms to metabolism and remove these contaminants. The aim 
of this study was to enrich a microbial community and examine its potential to degrade petroleum hydrocarbon. 
Through successive enrichment, we obtained a bacterial consortium using crude oil as sole carbon source. The 
16 S rRNA gene analysis illustrated the structural characteristics of this community. Metagenomic analysis revealed 
the specific microbial organisms involved in the degradation of cyclohexane and all the six BTEX components, 
with a demonstration of the versatile metabolic pathways involved in these reactions. Results showed that our 
consortium contained the full range of CDSs that could potentially degrade cyclohexane, benzene, toluene, and 
(o-, m-, p-) xylene completely. Interestingly, a single taxon that possessed all the genes involved in either the 
activation or the central intermediates degrading pathway was not detected, except for the Novosphingobium 
which contained all the genes involved in the upper degradation pathway of benzene, indicating the synergistic 
interactions between different bacterial genera during the hydrocarbon degradation.
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Bioremediation is an cost-effective and eco-friendly 
approach to remove pollutants from the environment. 
Many microorganisms are capable to degrade BTEX 
under aerobic conditions, including Acidocella (Eze 
2021), Pseudomonas, Burkholderia, Cupriavidus (Bacosa 
et al. 2021), Streptomyces (Hocinat et al. 2020), Acineto-
bacter (Zhou et al. 2016), Comamonas (Jiang et al. 2015), 
Bacillus (Wongbunmak et al. 2020), Microbacterium 
(Wongbunmak et al. 2017), Massilia (Son et al. 2021), 
Paraburkholderia (Lee et al. 2019), Variovorax (Benedek 
et al. 2021), Rhodococcus (Orro et al. 2015). The stability 
of the aromatic hydrocarbon is the biggest common chal-
lenge for organisms to acquire and utilize. Under aerobic 
condition, the oxygenases initiate the oxidation of aro-
matic ring and transform them into several key central 
intermediates via upper pathways (Harayama et al. 1992; 
Lipscomb 2008). These central intermediates, mainly 
catechol, protocatechuate, gentisate (2,5-dihydroxyben-
zoate) or homogentisate (2,5-dihydroxyphenylacetate), 
are “activated” for ring cleavage and then converted into 
intermediary metabolites such as acetyl-CoA, succinyl-
CoA and pyruvate via central pathways (Fuchs et al., 
2011).

The majority of studies performed in the field of BTEX 
biodegradation are focused on the isolation, cultivation, 
and characterization of microorganisms. While, pure 
cultures of single isolates are powerless when multiple 
contaminants appear in the environment. It has been 
reported that microbial consortium is more efficient on 
BTEX degradation than single microorganisms (Mukher-
jee and Bordoloi 2012), and the development of microbial 
consortia for BTEX remediation has attracted increasing 
attention. The indigenous microorganisms present in the 
polluted environments are more competitive than exog-
enous microorganisms because they have adapted to the 
polluted environmental conditions (Deng et al. 2017). 
Hence, it is an effective strategy to cultivate hydrocar-
bon-degrading bacterial consortia from the oil-polluted 
site for the remediation of organic pollutants.

Karamay oilfield is the first large oilfield discovered 
in China in 1955. It is still one of the largest oilfields in 
China with a yearly output over ten million tons of oil. 
In this study, an indigenous bacterial consortium, derived 
from the crude oil polluted soil in Karamay oilfield, was 
isolated and investigated using metagenomics. Our main 
purpose is to cultivate an hydrocarbon-degrading con-
sortium and identify microorganisms playing a role in 
BTEX degradation. Our research assigned specific path-
ways to specific microorganisms in cyclohexane and 
BTEX pathways, which will enhance our understand-
ing of hydrocarbon-degrading microorganisms and 
expand their application in petroleum contamination 
bioremediation.

Materials and methods
Soil sampling
The crude oil-polluted samples were collected from the 
Karamay oilfield located in the Xinjiang Uygur Autono-
mous Region, China. Topsoil samples were acquired 
aseptically, placed in sterilized sealable polythene bags 
and transported to the laboratory on ice. The samples 
were later filtered through a 2  mm pore size sieve and 
stored at -80℃ for microbial analysis.

Enrichment cultures and growth conditions
Approximately 1  g of the crude oil-polluted soil was 
added to Erlenmeyer flasks (250 mL) containing 50 mL 
of culture medium composed of KH2PO4 (5.7  g/L), 
K2HPO4•3H2O (3.0  g/L), NaCl (0.5  g/L), NH4Cl 
(5.67 g/L), and MgSO4•7H2O (2.24 g/L). 10 g/L of sterile-
filtered crude oil was added to the flask as the sole carbon 
and energy source. The cultures were grown at 30℃ with 
shaking at 150 rpm and maintained within a 15-day sub-
culture. After six subculture, 30 mL aliquots were centri-
fuged for 10 min at 4000×g.

DNA extraction
Total genomic DNA were extracted using the E.Z.N.A.® 
Soil DNA Kit (Omega Bio-tek, Norcross, GA, U.S.). The 
concentration and purity of DNA extracts were deter-
mined with TBS-380 and NanoDrop2000, respectively. 
The quality of DNA extracts was checked on 1% agarose 
gel. DNA from the soil samples and enrichment culture 
were applied to metagenomic analysis.

Sequencing of bacterial 16 S rRNA genes
Bacterial 16  S rRNA gene (V3-V4 region) were ampli-
fied using the forward primer 338  F (5’-ACTCCTAC-
GGGAGGCAGCAG-3’) and the reverse primer 
806R(5’-GGACTACHVGGGTWTCTAAT-3’) by an ABI 
GeneAmp® 9700 PCR thermocycler (ABI, CA, USA). 
The PCR reaction (20 µL final volume) contained 4 µL 
of 5 × TransStart FastPfu buffer, 2 µL of 2.5 mM dNTPs, 
0.8 µL of each primer (5 µM), 0.4 µL of TransStart Fast-
Pfu DNA Polymerase, and 10 ng of the extracted DNA 
as the template. The PCR amplification was performed 
as follows: initial denaturation at 95 ℃ for 3  min, 27 
cycles of denaturing at 95 ℃ for 30  s, annealing at 55 
℃ for 30 s, followed by extension at 72 ℃ for 45 s. The 
final extension was carried out at 72 ℃ for 10 min. The 
PCR products were purified from 2% agarose gel using 
the AxyPrep DNA Gel Extraction Kit (Axygen Biosci-
ences, Union City, CA, USA), and quantified using Quan-
tus™ Fluorometer (Promega, USA). Purified amplicons 
were pooled in equimolar and paired-end sequenced on 
an Illumina MiSeq PE300 platform platform (Illumina, 
San Diego,USA) according to the standard protocols by 
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Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, 
China).

Metagenome sequencing, assembly and analysis
DNA extract was fragmented to an average size of about 
400  bp using Covaris M220 (Gene Company Limited, 
China) for paired-end library construction. Paired-
end library was constructed using NEXTFLEX Rapid 
DNA-Seq (Bioo Scientific, Austin, TX, USA). Adapters 
containing the full complement of sequencing primer 
hybridization sites were ligated to the blunt-end of frag-
ments. Paired-end sequencing was performed on Illu-
mina NovaSeq (Illumina Inc., San Diego, CA, USA) 
at Majorbio Bio-Pharm Technology Co., Ltd. (Shang-
hai, China). After truncating the barcode and primer 
sequences, fastp version 0.20.0 (Chen et al. 2018) was 
used to remove low-quality reads (length < 50 bp or with 
a quality value < 20 or having N bases). Metagenom-
ics data were assembled using MEGAHIT version 1.1.2 
(Li et al. 2015). Contigs with the length being or over 
300 bp were selected as the final assembling results. Cod-
ing DNA sequences (CDSs) were identified with prodi-
gal (Hyatt et al. 2010). The operational taxonomic units 
(OTUs) was clustered using CD-HIT version 4.6.1 (Li 
and Godzik 2006) with the default value of 97%. Non-
redundant gene catalog were aligned to NCBI NR data-
base using Diamond version 0.8.35 (Buchfink et al. 2015) 
for taxonomic annotations. Functional annotation was 
performed with diamond version 0.8.35 and the KEGG 
database (Kanehisa and Goto 2000).

Sequence deposition
Raw reads of the microbiomes 16 S rRNA gene amplicons 
and the whole-metagenome shotgun sequence of the 
enrichment consortium have been deposited in the NCBI 
Sequence Read Archive (SRA) and are available under 

the BioProject accession number PRJNA892061 and SRA 
SRP404615, PRJNA895942 and SRA SRP405463.

Results
Bacterial diversity of the sampling site and the enrichment 
culture
A total of 1914 OTUs were identified from 340,472 
sequences for all samples. The relative abundances at the 
bacterial phyla level showed the dominance of Proteo-
bacteria (41.5%) and Actinobacteria (16.8%) in the pol-
luted soil samples (Fig. 1a). The enrichment culture was 
also dominated by Proteobacteria and Actinobacteria, 
while the relative abundances were different (35.0% and 
55.5%, respectively). At class level, Actinobacteria and 
Alphaproteobacteria dominated the enrichment culture, 
accounting for 53.5% and 27.0%, respectively (Fig. 1b). At 
genus level, the top ten dominant genera of the enrich-
ment culture were Rhodococcus, Azospirillum, Microbac-
terium, Arthrobacter, Methylobacterium-Methylorubrum, 
Mycobacterium, Gordonia, norank_f__JG30-KF-CM45, 
Sphingobium and Nocardioides (Fig. 1c).

Identification of aliphatic and aromatic 
hydrocarbon‑degrading coding DNA sequences
Functional analysis of the metagenome derived from the 
microbial enrichment culture revealed that 12 poten-
tial enzymatic classes represented by 1128 coding DNA 
sequences (CDSs) were involved in the degradation of 
aliphatic and aromatic hydrocarbons.

The enzymes considered to be responsible for the 
degradation of aliphatic hydrocarbons included alkane 
1-monooxygenase, long-chain alkane monooxygenase, 
cyclohexanone monooxygenase and gluconolactonase 
(Fig. 2). Two hundred and eighty CDSs were detected to 
play a role in aliphatic hydrocarbon degradation, in which 
121 CDSs belonged to the Actinomycetia and 76 CDSs to 

Fig. 1  a Bacterial community composition of the polluted soil and enrichment culture. Relative abundance of taxonomic classification of the enrichment 
culture at a b class level and c genus level
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the Alphaproteobacteria. It is worth mentioning that our 
consortium contained all the genes involved in cyclohex-
ane degradation, including the alkM, cpnA, chnB, chnC, 
gnl, chnD adh, chnE and aldH genes (Fig. 3a). These genes 
were assigned to seventy four genera (Table S1, despite 
of the unclassified genera), and seven of which contain 
more than 10 CDSs: Rhodococcus (25 CDSs), Mycolici-
bacterium (18 CDSs), Bradyrhizobium (16 CDSs), Myco-
bacterium (14 CDSs), Sphingopyxis (14 CDSs), Gordonia 
(13 CDSs) and Nocardioides (10 CDSs) (Fig. 3b).

In aerobic conditions, the first step of aromatic hydro-
carbon biodegradation is an oxidation catalyzed by 
monooxygenases (hydroxylases) or by dioxygenases. In 
the enrichment culture, five hundred and thirty-seven 
CDSs were detected as oxygenases. Among those CDSs, 
one hundred and ten were catechol 2,3-dioxygenase, 
ninety-nine were homogentisate 1,2-dioxygenase, ninety-
five were benzoate/toluate 1,2-dioxygenase, fifty-nine 
as phthalate 4,5-dioxygenase, thirty-seven as catechol 
1,2-dioxygenase, thirty as phenol/toluene 2-monooxy-
genase, twenty-nine as anthranilate 1,2-dioxygenase, 
twenty-one as p-cumate 2,3-dioxygenase, fourteen as 
naphthalene 1,2-dioxygenase, fourteen as terephthalate 
1,2-dioxygenase, fourteen as toluene monooxygenase, 
six as biphenyl 2,3-dioxygenase, five as toluene methyl-
monooxygenase, four as ethylbenzene dioxygenase 
(Fig. 2).

Upper pathway in the degradation of BTEX
The results showed that our consortium contained 
the genes involved in all the steps for the conversion 
of benzene to catechol, toluene to either benzoate or 
3-methylcatechol, and (o-, m-, p-,) xylene to (o-, m-, p-,) 
methylbenzoate.

The metagenome results revealed that thirty putative 
CDSs were involved in the upper pathway in the degra-
dation of benzene. These CDSs were classified as phenol/
toluene 2-monooxygenase, corresponding to six genes 
dmpKLMNOP (Fig.  4a). Taxonomic assignments indi-
cated that eleven CDSs affiliated to the bacterial genus 
Novosphingobium, which contained all the six genes. 
The other twelve CDSs were assigned to bacterial genus 
Acidovorax (1 CDS), Pseudomonas (2 CDSs), Sphingomo-
nas (1 CDS), Janibacter (1 CDS), Methyloversatilis (4 
CDSs), Mycobacterium (2 CDSs) and Thauera (1 CDS) 
(Fig. 4c).

Ethylbenzene degradation is initiated by ethylbenzene 
dioxygenase (etbAaAbAc) and subsequently transformed 
to 3-ethylcatechol (Fig.  4b). In our consortium, eight 
CDSs participated in the initial oxidation of ethylben-
zene, three of which were assigned to Croceicoccus, Pel-
agerythrobacter and Sphingobium (Fig. 4d).

In the toluene degradation pathway of our consor-
tium, the initial oxidation step was catalyzed by tolu-
ene 2-monooxygenases (tomA0A1A2A3A4A5), toluene 
monooxygenases (tmoABCDEF) or toluene methyl-
monooxygenases (xylMA), producing o-cresol, m-cre-
sol or benzyl alcohol, respectively (Fig.  5a). The toluene 
2-monooxygenases can further transform the o-cresol 
to 3-methylcatechol, these genes (tomA0A1A2A3A4A5) 
possess the same functions as dmpKLMNOP genes and 
assigned to the same genera shown in Fig.  4c. Genus 
assignments demonstrated that 8 out of 14 of toluene 
monooxygenases (tmoABCDEF) belonged to Hypho-
microbium (5 CDSs) and Pseudonocardia (3 CDSs) 
(Fig.  5c). Meaningwhile, five CDSs that belonged to 
Mycolicibacterium (2 CDSs), Novosphingobium (2 CDSs) 
and Croceicoccus (1 CDS), were potentially involved in 

Fig. 2  The number of sequences associated with specific hydrocarbon-degrading enzymes of the enrichment culture with a taxonomic classification at 
a class level
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Fig. 4  The activation of a benzene by monooxygenases and b ethylbenzene by dioxygenases. The number of CDSs involved in the c benzene and d 
ethylbenzene activation at a genus level

 

Fig. 3  a Biodegradation of cyclohexane via the Baeyer-Villiger oxidation pathway, b The number of the CDSs involved in this biodegradation pathway at 
a genus level. Genera that contain over three of the nine genes or over five CDSs are shown
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toluene methyl-monooxygenase (xylMA) degradation 
step. Benzyle alcohol is transformed to benzoate by two 
dehydrogenases, E1.1.1.90 and XylC, while m-cresol is 
metabolized to 3-methylcatechol by a phenol 2-mono-
oxygenase (E1.14.13.7). Our results indicate that 92 CDSs 
were identified based on these three genes (E1.1.1.90, 
xylC and E1.14.13.7), which affiliate to 35 bacterial 
genera (despite of these unclassified genera), includ-
ing Microbacterium (10 CDSs), Nocardioides (8 CDSs), 

Rhodococcus (6 CDSs), Mycobacterium (4 CDSs) and 
Sphingobium (4 CDSs), etc.

The degradation pathway of xylene is similar to tolu-
ene. Toluene methyl-monooxygenase genes xylM and 
xylA initiate the degradation of ortho-, meta-, and 
para-xylenes (Fig.  5b). The aryl-alcohol dehydrogenase 
(E1.1.1.90) and benzaldehyde dehydrogenase (xylC) are 
involved in the subsequent oxidation of 2-methylben-
zyl alcohol, 3-methylbenzyl alcohol and 4-methylbenzyl 

Fig. 5  The activation of a toluene and b xylene by monooxygenases. c The number of CDSs involved in the toluene and xylene activation at a genus level. 
Tulene 2-monooxygenase genes (tmoA0A1A2A3A4A5) belong to the same genera as dmpKLMNOP genes shown in Fig. 4c
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alcohol to o-methylbenzoate, m-methylbenzoate and 
p-methylbenzoate.

Central intermediates degradation pathways of BTEX
The degradation of toluene and xylene produces benzo-
ate and methylbenzoate, which are further transformed 
by the benzoate/toluate 1,2-dioxygenase (benA-xylX, 
benB-xylY and benC-xylZ) and dihydroxycyclohexa-
diene carboxylate dehydrogenase (benD-xylL) to cat-
echol and methylcatechol (Fig. 6a). A total of 109 CDSs 
played a role in the benzoate degradation pathway, which 
were assigned to 25 bacterial genera (despite of these 

unclassified genera). The majority of these CDSs were 
assigned to Nocardioides (12 CDSs), Rhodococcus (12 
CDSs), Gordonia (9 CDSs), Marinobacter (5 CDSs), and 
Sphingopyxis (5 CDSs) (Fig. 6b).

In the ortho-cleavage of catechol pathway, cat-
echol is first oxidized to cis,cis-muconate by catechol 
1,2-dioxygenase (catA), then converted to 3-oxoadipate 
enol-lactone by muconate cycloisomerase (catB) and 
muconolactone D-isomerase (catC), and further metabo-
lized to 3-oxoadipate with 3-oxoadipate enol-lactonases 
(pcaDL) (Fig. 7a). The metagenome data showed that our 
consortium contained 237 CDSs involved in this pathway, 

Fig. 6  a The transformation of benzoate and (o-, m-, p-,) methylbenzoate to catechol and (3-, 4-) methylcatechol, respectively. b The number of CDSs 
involved in the degrading pathways at a genus level
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of which, 19 belonged to Rhodococcus, 13 to Delftia, 13 to 
Pseudonocardia, 10 to Gordonia, 9 to Bradyrhizobium, 9 
to Nocardioides, 8 to Ramlibacter, and 7 to Mycobacte-
rium (Fig.  7b). Our results demonstrated that 66 CDSs 
could not be assigned to any specific genus, and the other 
83 CDSs were affiliated to 43 bacterial genera.

In the meta-cleavage of catechol pathway, the catechol 
and methylcatechol are initiated by the catechol 2,3-diox-
ygenase, then converted to a 4-hydroxy-2-oxoacid inter-
mediate, which is cleaved by the aldolase to produce 
pyruvate, acetaldehyde or propanal. The propanal and 
acetaldehyde are transformed by the aldehyde dehydro-
genase to propanoyl-CoA and acyl-CoA, respectively 
(Fig.  8a). Our results showed that the consortium con-
tained all the genes involved in these reactions, including 
the catE, todF, dmpBCDH, mhpDEF, bphHIJ and praC 
genes, adding up to 523 CDSs. The todF gene, involved 
in the transformation of 3-methylcatechol to 2-hydroxy-
2,4-pentadienoate, corresponding to only 1 CDS affiliated 
to a unclassified genus. Four hundred and eleven of these 
523 CDSs affiliated to 100 specific bacterial genera, and 
the other 112 CDSs were assigned as unclassified genera 
(Table S2). Among the 100 bacterial genera, 19 of which 
contained more than four genes, including Rhodococcus 
(35 CDSs), Novosphingobium (30 CDSs), Pseudonocardia 
(26 CDSs), Mycolicibacterium (20 CDSs), Sphingopyxis 
(20 CDSs), Gordonia (19 CDSs), Nocardioides (16 CDSs), 
Mycobacterium (15 CDSs), Bradyrhizobium (11 CDSs), 
Sphingobium (10 CDSs), Sphingomonas (10 CDSs), Diet-
zia (8 CDSs), Aestuariivirga (7 CDSs), Azospirillum (7 

CDSs), Janibacter (7 CDSs), Prauserella (7 CDSs), Methy-
loversatilis (6 CDSs), Nocardia (5 CDSs) and Micromono-
spora (4 CDSs) (Fig. 8b).

The activation of ethylbenzene degradation resulted in 
the production of 3-ethylcatechol. The central metabo-
lism of 3-ethylbenzene is initiated with a ring cleavage 
reaction by the 2,3-dihydroxyethylbenzene 1,2-dioxygen-
ase (etbC). The product 2-hydroxy-6-oxo-octa-2,4-dieno-
ate is then transformed to 2-hydroxy-2,4-pentadienoate 
by the hydrolase gene etbD. The etbC gene is not detected 
in our consortium, and the etbD gene corresponded to 
only 1 CDS, which assigned to the genus Sphingobium.

Discussion
Crude oil contamination is of great concern owning 
to the toxic components that are devastating to natural 
habitats or harmful to human and animal lives (Harvey 
et al. 2012;Garr et al., 2014;McKee and White, 2014). 
The restoration of petroleum hydrocarbon contaminated 
soil usually requires multiple microorganisms due to the 
complexity of the pollutant. The successive enrichment 
using crude oil resulted in a bacterial consortium that has 
the potential to degrade aliphatic and aromatic hydro-
carbon. The n-alkanes are the main parts of petroleum 
hydrocarbon and can be utilized as sole carbon source by 
bacteria. The biodegradation of n-alkanes is initiated by 
the alkane hydroxylases, including alkanes 1-monooxy-
genase (AlkB or AlkB-like) and long-chain alkane mono-
oxygenase (LadA) (Li et al. 2008, 2020; Rojo 2009). A 
total of 130 CDSs were identified as alkane hydroxylases, 

Fig. 7  a The ortho-cleavage of catechol. b The number of CDSs involved in the ortho-cleavage of catechol at a genus level
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mainly affiliated to Actinomycetia (83 CDSs) and Alpha-
proteobacteria(23 CDSs) (Fig. 2).

Cyclohexane and its derivatives are also the main con-
tents of petroleum hydrocarbon. The cyclohexane can 
be transformed to ε-caprolactone by oxygenases and 
dehydrogenase (Tiralerdpanich et al. 2018; Dallinger et 
al. 2016). Then this lactone is split by an caprolactone 
hydrolase to yield 6-hydroxyhexanoic acid, which further 
oxidized to adipate (Dallinger et al. 2016). These enzymes 
include cyclopentanol dehydrogenase (CpnA), cyclohex-
anone monooxygenase (ChnB), gluconolactonase (Gnl), 
epsilon-lactone hydrolase (ChnC), alcohol dehydroge-
nase (Adh), 6-hydroxyhexanoate dehydrogenase (ChnD), 
aldehyde dehydrogenase (AldH) and 6-oxohexanoate 
dehydrogenase (ChnE) (Fig.  3a). A total of 314 CDSs 
were detected in our consortium, indicating the signifi-
cant potential of cyclohexane degradation ability of the 
microbial community (Fig. 3b).

The degradation of benzene, toluene, ethylbenzene and 
(o-, m- and p-) xylene is initiated by progressive oxida-
tion to produce benzoate or catechol. The degradation 

pathways of BTEX can be diverse, for instance, more than 
five toluene degrading pathways have been discovered, 
including the dioxygenase mediated pathway, toluene 
2-monooxygenase, toluene 3-monooxygenase, toluene 
4-monooxygenase mediated pathway and TOL pathways 
(Parales et al., 2008). The metagenome of our consortium 
contains genes that code for phenol/toluene 2-mono-
oxygenase (dmpKLMNOP), ethylbenzene dioxygenase 
(etbAaAbAc), toluene monooxygenase (tmoABCDEF), 
toluene 2-monooxygenases (tomA0A1A2A3A4A5) and 
toluene methyl-monooxygenase (xylAM) (Figs. 4a and b 
and 5a and b). These genes, dmpKLMNOP, etbAaAbAc, 
tmoABCDEF, tomA0A1A2A3A4A5, xylAM, have been 
reported to be responsible for the activation of BTEX 
degradation (Dalvi et al. 2012; Jindrová et al. 2002). The 
presence of monooxygenases in our metagenome data 
indicates that our consortium can potentially activate 
BTEX compounds mainly through monooxygenase 
pathway. The central intermediates, benzoate and cat-
echol, are then transformed to substrates of the citrate 
cycle. Metagenome results showed that our consortium 

Fig. 8  a The meta-cleavage of catechol. b The number of CDSs involved in the meta-cleavage of catechol at a genus level. Genera that contain over four 
of the twelve genes are shown
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contained all the genes involved in the central interme-
diates degradation pathways, including benzoate deg-
radation (Fig.  6a), catechol ortho-cleavage (Fig.  7a) and 
catechol meta-cleavage (Fig.  8a). Many researchers also 
enriched BTEX degrading consortia, they sometimes 
lack a number of enzymes to completely metabolize the 
BTEX (Eze 2021). While, our consortium contains a full 
range of genes involved in the activation pathways of all 
the six BTEX components and the central intermediates 
metabolism pathways of benzene, toluene and (o-, m-, p-) 
xylene.

The functional genes involved in the BTEX degrada-
tion are initially studied in Rhodococcus and Pseudomo-
nas, such as the todE in Pseudomonas putida F1 (Zylstra 
and Gibson 1991; Busch et al. 2010), tmoA in Pseudomo-
nas mendocina KR1 (Kukor and Olsen 1991), xylMA in 
Pseudomonas putida mt-2 (Greated et al. 2002), akbD 
in Rhodococcus sp. DK17 (Kim et al. 2004), catA/C12O 
and C23O in Pseudomonas putida ND6 (Jiang et al. 
2004), bnzA1 in Rhodococcus opacus B4 (Na et al. 2005), 
and dmpL in Pseudomonas putida CF600 (van der Meer 
1997;Suenaga et al. 2009). Since then, many other gen-
era have been proved to be able to degrade BTEX. In 
this study, taxonomic annotation revealed that the CDSs 
involved in these reactions belong to diverse genera. The 
majority of genera responsible for the activation of BTEX 
were Novosphingobium, Microbacterium, Mycolicibac-
terium, Nocardioides, Hyphomicrobium and Pseudono-
cardia. More genera played a role in the degradation of 
intermediates, including Rhodococcus, Novosphingobium, 
Pseudonocardia, Mycolicibacterium, Sphingopyxis, Gor-
donia, Nocardioides, Mycobacterium, Bradyrhizobium, 
Sphingobium, Sphingomonas, Dietzia, Aestuariivirga, 
Azospirillum, Janibacter, Prauserella, Methyloversatilis, 
Nocardia and Micromonospora. Metagenomic analysis 
showed distinctive degrading microorganisms in different 
bacterial consortia. The bacterial consortium enriched 
by Eze et al. (Eze 2021) could active BTEX degrada-
tion through both the monooxygenase and dioxygenase 
pathways, and the Acidocella and Aquabacter have the 
highest potential for the BTEX degradation. Bacterium 
consortium EC20, could degrade BTEX through TOL 
pathway and TOD pathway, is dominated by Pseudomo-
nas, Mesorhizobium, Achromobacter, Stenotrophomonas, 
and Halomonas (Deng et al. 2017). The Geobacter-related 
bacteria were enriched from the center of the BTEX con-
taminated plume (Farkas et al. 2017). The differentiation 
of degrading genera among different studies might be 
attribute to the diverse sources and enrichment strategies 
of bacterial consortia. Metagenomic analyses of our study 
illustrated the diversity of genera and the corresponding 
genes involved in the BTEX degradation, which would 
provide theoretical basis for their potential application in 
the BTEX bioremediation.

The enrichment of bacterial consortium for hydrocar-
bon degradation were mainly dominated by Pseudomo-
nas (Tiralerdpanich et al. 2018; Oba et al. 2014), while 
our consortium is dominated by Rhodococcus. The genus 
of Rhodococcus can degrade a wide variety of organic and 
xenobiotic compounds, including aliphatic and aromatic 
hydrocarbons (Duetz et al. 2001; Yakimov et al. 1999). 
The metabolic pathways of Rhodococcus have been exten-
sively studied in microbial biotechnology fields world-
wide (Kim et al. 2018). The biodegradation potential of 
different Rhodococcus species has been evaluated based 
on genome analyses and “-omics” approaches (Zampolli 
et al. 2019), such as the degradation of BTEX by R.opacus 
R7 (Orro et al. 2015)d jostii DK17 (Yoo et al. 2012), naph-
thalene by R. opacus M213 (Pathak et al. 2016). In our 
consortium, the genus of Rhodococcus was involved in 
the degradation of n-alkanes, cyclohexane and aromatic 
hydrocarbons. Interestingly, the Rhodococcus did not 
contain the full range of genes involved in either degrada-
tion pathway. This indicates that Rhodococcus might have 
synergistic interactions with different bacterial genera 
during the hydrocarbon degradation.
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