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Abstract

Excessive waiting times for elective surgery have been a long-standing concern in many national healthcare systems
in the OECD. How do the hospital admission patterns that generate waiting lists affect different patients? What are the
hospitals characteristics that determine waiting times? By developing a model of healthcare provision and analysing
empirically the entire waiting time distribution we attempt to shed some light on those issues. We first build a
theoretical model that describes the optimal waiting time distribution for capacity constraint hospitals. Secondly,
employing duration analysis, we obtain empirical representations of that distribution across hospitals in the UK from
1997–2005. We observe important differences on the ‘scale’ and on the ‘shape’ of admission rates. Scale refers to how
quickly patients are treated and shape represents trade-offs across duration-treatment profiles. By fitting the
theoretical to the empirical distributions we estimate the main structural parameters of the model and are able to
closely identify the main drivers of these empirical differences. We find that the level of resources allocated to elective
surgery (budget and physical capacity), which determines how constrained the hospital is, explains differences in
scale. Changes in benefits and costs structures of healthcare provision, which relate, respectively, to the desire to
prioritise patients by duration and the reduction in costs due to delayed treatment, determine the shape, affecting
short and long duration patients differently.
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Background
The existence of long waiting lists and high waiting times
for elective surgery has been a long-standing issue in
many publicly funded healthcare systems in the OECD.
As a result, given the public demand for good quality
and prompt national healthcare, policymakers have exten-
sively focused on average and excessive waiting time as
key performance indicators. Concerns with waiting lists
within the public arena motivated health economists to
develop different frameworks where waiting lists function
as rationing devices (see for instance [1, 2]). Most of this
theoretical literature put emphasis on hospitals decisions
on optimal expected (average) waiting time, reflecting the
benefits of having a single statistic to measure quality
and efficiency of public healthcare provision. However, in
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order to understand and design policies that effectively
tackle waiting times, it is essential to explore how the
wait and order of patients treated is determined. Conse-
quently, the focus must shift from the mean to the whole
distribution of waiting times.
Reflecting the need to increase our understanding of

rationing through waiting lists, this paper provides an
empirical and theoretical analysis of the entire distribu-
tion of patients’ waiting times to investigate how hospi-
tals’ admission patterns for elective surgery affect patients
differently and which hospitals’ characteristics drive the
duration of treatment.1 On the theoretical side, we
develop a dynamic supply-side model for healthcare that
determines the optimal admission behaviour, its drivers
and the overall waiting time distribution. On the empir-
ical side, employing the techniques of duration analysis
and Hospital Episode Statistics (HES henceforth) data for
1997/98 – 2005/06 covering the English NHS, we estimate
the representations of the whole waiting time distribution
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of elective patients and take our model to the data to
estimate the main hospital structural parameters.
Despite vast empirical variation, we can identify par-

ticular admission patterns for elective surgery. First, we
observe important differences on the ‘scale’ of admissions.
That is, some hospitals manage their lists quicker, having
smaller waiting times throughout the whole spectrum of
the distribution, than others. Our estimation shows this
variation is linked to the degree of capacity constraint
of a hospital. Second, we frequently observe large differ-
ences on the ‘shape’ of admission rates. There are cases
in which hospitals put more effort in treating as many
patients as possible quickly (prioritising short waiters),
at the expense, however, of a fraction of patients who
receive treatment with a significant delay. Other hospitals
put more emphasis on medium waiters, whereby patients
receive treatment more gradually, but the long right tail of
the distribution is eliminated. Our estimation shows that
the degree of prioritisation in duration, reflecting a prefer-
ence of the hospital, is an important driver of the waiting
time distribution for short duration patients. The third
relevant structural component is the change in costs due
to postponed treatment; that is, delaying admissions for
elective surgery allows the hospital to manage, plan and
allocate its resources more effectively. We find that this is
an important factor in explaining the admission patterns
of medium duration patients. Hospitals that face a flat
cost structure, implying little gain from containing costs
by delaying treatment, select to treat a higher propor-
tion of medium duration patients, while hospitals whose
costs decay more significantly manage lists by treating
a higher proportion of patients of very short and long
durations. We finally study an extension to the model
that explicitly incorporates less and more severe (com-
plex) cases. That increases the ability of the model to
match the observed variability on empirical waiting dis-
tributions. By exploring differences in patients’ diagnoses
to construct different survival curves we confirm hospi-
tals undergo some degree of clinical prioritisation while
admitting patients for treatment, selecting to treat more
severe/complex cases first.
Although the literature on healthcare provision and

waiting lists and times is vast, empirical and theoretical
contributions that look at the overall distribution of wait-
ing times are not common. Particularly, duration analysis
is only used in a few number of studies. MacCormick
and Parry [3] apply it using data for one hospital in New
Zealand and [4] while looking at a subset of hospitals/
operations in Canada. For the UK, [5] use HES data for
two years and focus on the UK national waiting targets.
Our work expands on the latter in several dimensions.
By employing this technique for the UK, using a longer
time span, and focusing at the hospital level we identify
particular hospital-level patterns of admission as a result

of hospital management practices, and importantly link
those to a theoretical model of healthcare provision. As
such, we are able to estimate healthcare supply-side struc-
tural characteristics that drive the empirical waiting time
distributions highlighting the trade-off between long and
short waiters inherent to the management of waiting lists.
Our framework furthers our understanding of hospitals’
admission patterns and may provide valuable insights for
successful policy design. In [6] we stress the importance of
looking at the entire distribution of waiting times, empir-
ically and theoretically, for a widely used policy designed
to reduce waiting times; by analysing the distribution we
identify asymmetric effects of waiting time targets that are
linked to worse healthcare outcomes.
On the theoretical side the closest analyses to this paper

come from [1, 2, 7]. The first two put emphasis on the
hospital decisions on optimal expected (average) wait-
ing time, with [2] developing a continuous time dynamic
framework. The focal point in [7] lies in the influence of
average waiting times on patients’ welfare when priori-
tisation issues are incorporated. The emphasis of these
studies is on average waiting times while we look at the
entire waiting distribution. Dixon and Siciliani [8] also
look at the entire distribution, mapping the distribution of
patients already treated (HES data) with the distribution
of patients waiting on the list (waiting list returns). At the
steady state, a comparison between the two distributions
is performed; however, the waiting time distributions are
not derived within a model of hospital behaviour like we
do here.

Theoretical analysis
We investigate elective patients’ waiting time distribu-
tions both empirically and theoretically. We first develop
a healthcare supply-side model that generates waiting lists
as optimal outcomes of capacity constrained hospitals.We
obtain a set of theoretical predictions linking the hos-
pital’s key characteristics, namely, the degree of capacity
constraint, the preference for patient prioritisation due to
duration and the cost structure across durations, to the
resulting waiting time distributions.

Theoretical model
Wemodel a hospital that provides healthcare treatment to
maximise the benefits from treatment (utility), subject to a
budget constraint and the inflow of patients. Although the
theoretical literature on waiting lists in healthcare is siz-
able, guiding most of our modeling assumptions detailed
below, no theoretical framework in the literature focuses
on the determination of the optimal distribution of wait-
ing times in its entirety as we do. The theoretical model
consists of two main parts: a set of patients that are cur-
rently waiting to be treated and a hospital that is the
healthcare supplier.
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Patients
Patients currently in the waiting list, Lt , are characterised
by the severity of their disease, s = 1, 2, . . . , p and the time
they have been on the list, their duration d = 1, 2, . . . q. s
is increasing in severity and d denotes the period elapsed
between joining the waiting list of a specialist and admit-
tance for surgery at the hospital. The minimum possible
waiting time is one period (d = 1) and the maximum
time is bounded by q (patients do not wait indefinitely).
At each time t hospitals treat kd,s,t patients that have been
in the list with duration d and severity level s. Thus, total
patients treated at time t is given by kt = ∑

d
∑

s kd,s,t ∈
Lt . Also denote kd,t = ∑

s kd,s,t as the patients of all sever-
ities with duration d treated at time t and ks,t = ∑

d kd,s,t
as the patients of severity s treated at time t across all
durations.
We do not explicitly model the demand for healthcare,

considering a reduced form relationship where the inflow
of patients to the hospital is decreasing in expected dura-
tion. The higher the expected waiting time at the begin-
ning of t is, the lower the demand for public healthcare.2
Formally, the inflow of patients in the list, and equiva-
lently, the demand for elective healthcare at the beginning
of time t is given by

xt = Z − θEt−1(d)

where Et−1(d) denotes the duration patients entering in
the list at time t expect at time t − 1 (defined below),
and Z is the potential demand for healthcare, being a
function of a vector of exogenous demand factors. This
may include socio-economic conditions and morbidity
rates. We assume a proportion δs of xt is the inflow of
severity s = 1, 2, . . . , p, with

∑p
s=1 δs = 1. Thus xs,t =

δsxt . Finally, the sensitivity of demand for healthcare to
expected duration is captured by θ .
Before we describe the hospital’s main features we

briefly present the key theoretical representations of the
patients’ waiting time distribution. Here, waiting time is
modeled as a discrete variable, where a period of time is
equivalent to a month. The probability function of waiting
time depicts the whole spectrum of the relative frequen-
cies of patients of severity s having waited distinct periods
of time until treatment at t, f (d | s) = P(D = d | s). The
cumulative function corresponds to the probability of hav-
ing waited d periods or less, F(d | s) = P(D ≤ d | s). From
here we obtain the two main representations of waiting
time distributions used in our study, namely the survival
and hazard functions. The survival function shows the
probability of a person remaining (surviving) on the list
beyond a given time and is indicative of cumulative rates
of treatment. We derive the survival function as the com-
plement of the cumulative function, that is S(d | s) =
1 − P(D ≤ d | s) = P(D > d | s). The hazard function
is the risk of ‘failure’ at some time t. Essentially, it shows

the rate at which patients leave the waiting list at a given
time, conditional on having waited in the list up to that
point. It thus approximates the conditional instantaneous
probability of admission, rather than the unconditional
one (f (d | s)). Thus, h(d | s) = P(D = d|D ≥ d, s).
Table 1 shows the different formats of the waiting time
distribution.
For simplicity we assume potential patients do not know

their severity.3 Thus, in order to obtain the expected dura-
tion they look at all patients treated. As such expected
waiting time at time t under rational expectations is given
by

EREt−1(d) = Et−1

( q∑
d=1

d
kd,t+d−1

xt

)

= Et−1

(
1 × k1,t

xt
+ 2 × k2,t+1

xt
+ . . . + q × kq,t+(q−1)

xt

)
.

Hospital
The two key features of the hospital in our model are
the benefits of providing treatment (utility) and its cost
structure.

The utility of the hospital
The hospital’s utility from healthcare provision, or the
benefits from treatment of an altruistic hospital, at any
point in time t, is given by

Ut = g(kt) =
∑
d

∑
s

g(kd,s,t). (1)

g(kd,s,t) denotes the hospital’s (monetary or non-
monetary) gain from treating k patients of severity s and
duration d. Recall that here the waiting time (d) is not
a choice variable, but is endogenously determined. The
hospital chooses optimally the number of patients of
each severity and duration to be treated at time t, and

Table 1 Theoretical waiting time distribution for severity s

d f (d | s) F(d | s) Survival Function Hazard Function

P(D = d | s)P(D≤d] | s) P(D>d | s) P(D = d|D≥d, s)

0 0 0 1 0

1 k1,s,t
ks,t

k1,s,t
ks,t

1 − k1,s,t
ks,t

=
∑q

d=2 kd,s,t
ks,t

k1,s,t
ks,t

2 k2,s,t
ks,t

k1,s,t+k2,s,t
ks,t

1 − k1,s,t+k2,s,t
ks,t

=
∑q

d=3 kd,s,t
ks,t

k2,s,t∑q
d=2 kd,s,t

· · · · ·
· · · · ·
q − 1 kq−1,s,t

ks,t

∑q−1
d=1 kd,s,t
ks,t

kq,s,t
ks,t

k(q−1),s,t
k(q−1),s,t+kq,s,t

q
kq,s,t
ks,t

1 0 1
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this choice determines the waiting time implicitly. We
make three general assumptions on the sensitivity of the
hospital’s utility to treatments of different severity and
durations.

Assumption 1. For a given number of patients treated of
the same severity level (i.e. fixed k and s), the higher the
waiting time, the lower the hospital’s utility. That is,
∂g(kd,s,t)

∂d
< 0 or g(kd1,s,t) > g(kd2,s,t) for d2 > d1.

Assumption 2. For a given number of patients treated
of the same duration (i.e. fixed k and d), the higher the
patient’s severity, the higher the hospital’s utility. That is,

∂g(kd,s,t)
∂s

> 0 or g(kd,s1,t) < g(kd,s2,t) for s2 > s1.

Assumption 3. For the same d and s, g(kd,s,t) is concave
in kd,s,t ∈[ 0, k] and exhibits a turning point.

The main rationale for each assumption respectively is:
(i) hospitals prefer to treat as many people as possible
sooner rather than later since later treatments generate
less benefits to patients (see for instance [1] and [2]); (ii)
hospitals are willing to prioritise by the degree of sever-
ity, selecting treatment based on clinical need according
to NHS core principles; (iii) hospitals prefer to spread
treatment across different durations implicitly recognising
that this allows for a better management of capacity and
resource utilisation, increasing the hospital’s gains from
treatment (see [1, 2]4).

The cost of the hospital
With respect to the cost of healthcare provision, we
assume that the hospital is capacity constrained and has
a budget allocated for elective surgeries given by Bt . The
hospital’s cost from providing healthcare can be decom-
posed into two separable parts.

Ct = c(kt ; k̄) +
∑
d

∑
s

c(kd,s,t). (2)

The first part, c(kt ; k̄), is the hospital’s scale cost, while
the second its duration and severity specific cost, denoted
by c(kd,s,t). A similar separation between non-surgical
and surgical (directly related to treatment and thus sever-
ity and duration) is done by [9]. c(kt ; k̄) is a function of
the overall number of treated patients (kt) in relation to
the number of patients (k̄) the hospital can treat given
its physical capacity or capital (we will generally call k̄
the hospital’s capacity). When the potential demand for
health (Z) is greater than capacity (k̄), the hospital cannot
treat all the new patients that demand elective healthcare
at t, being capacity constrained, and thus a waiting list
and waiting times emerge.5 In addition, whenever optimal
kt > k̄, the hospital operates above its capacity, increasing
the utilisation of its resources.

We make three key assumptions on the cost structure of
hospitals. Assumption 4 relates to hospital’s scale cost and
Assumptions 5 and 6 to hospital’s patient-specific cost.

Assumption 4. Once the capacity limit of the hospital is
reached, the scale cost, c(kt ; k̄, τ), is increasing in kt.

Assumption 5. For the same severity and a given number
of treated patients, treating quicker is more costly. That is,

∂c(kd,s,t)
∂d

< 0.

Assumption 6. For the same waiting time and a given
number of treated patients, treating more severe cases is
more costly. That is

∂c(kd,s,t)
∂s

> 0.

The main rationale for each of these assumptions
respectively is: (i) treating more patients relative to the
limit imposed by the hospital’s physical capacity becomes
increasingly costly; (ii) costs decrease monotonically with
duration6; (iii) for the same duration and number of treat-
ments, hospital’s cost is increasing in patients’severity (see
[7, 10, 11] for frameworks that also incorporate severity
levels).

Hospital’s maximisation problem
In order to facilitate notation of the hospital’s problem, let
the number of patients of duration d > 1 and severity s
currently waiting for treatment at time t be �d,s,t−1. This
stock is equal to the inflow of patients in time t − d + 1
minus all patients treated during periods t − d + 1 until
t − 1. Formally, we define7

�d,s,t−1 = xs,t−d+1 −
d−1∑
j=1

kd−j,s,t−j.

The hospital maximises its utility function, g(kd,s,t),
selecting kd,s,t for all d and s at time t subject to its
constraints,

max
{kd,s,t}d,s

E0
∞∑
t=0

q∑
d=1

p∑
s=1

g(kd,s,t)

Subject to
∑
d

∑
s

c(kd,s,t) + c(kt , k̄) ≤ Bt

0 ≤ kd,s,t ≤ �d,s,t−1

xt = Z − θEt−1(d)

�d,s,t = 0 for d > q

The first constraint corresponds to the budget con-
straint of the hospital. Here and unlike in [12] the budget
allocated to the hospital is exogenously given8 and thus
our basic set-up is closely linked to the non-cooperative
game of [1]. The second constraint states that the amount
of patients of duration d and severity s treated at time t
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(kd,s,t) must be between zero and the number of untreated
patients in the list for that duration and severity. In other
words, the number of people selected for treatment at
time t cannot exceed the corresponding number of people
waiting. Third, the hospital takes the evolution of patients
inflow into account, and lastly we impose that the maxi-
mum waiting time is q. We solve this problem assuming
a steady state has been reached (see the Appendix for
details) and thus the number of entries to the list is equal
to the number of patients treated at any point in time
(xt = kt) and the optimal kd,s,t are time-invariant. At the
steady state the expected waiting time becomes

Et−1(d) = d̄ =
q∑

d=1
d f (d) =

q∑
d=1

d
kd
k

= 1 × k1
k

+ 2 × k2
k

+ . . . + q × kq
k
.

Functional forms
Following the restrictions implied by Assumptions 1-6,
generally accepted by the literature, we start by assum-
ing a set of functional forms and parameters for the key
elements of the model and draw conclusions on the link
between hospital characteristics and their respective wait-
ing time distributions. In the empirical section we esti-
mate a subset of those parameters, comparing hospital’s
cost, benefits and capacity constraints across the English
NHS.
The utility of the hospital, U = ∑

d
∑

s g(kd,s) is a func-
tion of (d × s) variables and the main specification for
g(kd,s) is assumed to be a third order polynomial,

g(kd,s) = ad,sk3d,s + bd,sk2d,s + cd,skd,s,

where ad,s < 0, bd,s > 0, cd,s > 0 are functions of dura-
tion and severity such that ∂ad,s

∂d > 0, ∂bd,s
∂d < 0, ∂cd,s

∂d < 0
and ad,s2 � ad,s1 , bd,s2 � bd,s1 and cd,s2 � cd,s1 for s2 > s1,
with at least one with strict inequality. This specification
fulfills Assumptions 1-3 laid out above. In the following
subsection, we will allow for two extra functional forms
of the utility function of the hospital g(kd,s,t) and analyse
their implications: (a) a monotonically increasing function
with increasing rates (quadratic) and (b) a monotonically
increasing function with decreasing rates (logarithmic). In
both of these cases assumption 3 is relaxed. On the cost
side, the hospital is faced with a scale cost, as well as a cost
specific to the duration and severity of each treatment.
Both specifications below conform with assumptions 4-6.
The scale cost is given by9

c(k) = τ(k − k̄)2.

τ reflects the cost sensitivity of operating above physical
capacity. This parameter can be interpreted as the effi-
ciency of the hospital in operating its physical capacity
(allocating the number of beds to patients or the surgery

theaters to procedures efficiently), by treating more or less
patients without utilising as much of the budget assigned
by the NHS.10 The default duration and severity specific
cost is linear on numbers of patients treated and given by

c(kd,s) = ρd,skd,s, with
∂ρd,s
∂d

〈
0and

∂ρd,s
∂s

〉
0, whereρd,s

= ρ0
s

dρ1
s
, such that

ρ0
s controls the scale andρ1

s the sensitivity of cost to
duration or duration decay.

Theoretical implications
Results - benchmark
Our benchmark framework employs the simplest case in
which patients are not differentiated by the severity of
their condition. The default parameterisation is depicted
in Table 5 in the Appendix. For simplicity we set q = 36
periods (maximum duration - 36 months). The solution to
the hospital’s problem and the corresponding waiting time
distribution is obtained numerically.11
The main output of the model are two representations

of the waiting time distribution: the survival curve (a) and
the hazard curve (b) depicted in Fig. 1. The survival curve
starts from one, as all patients are waiting to be treated at
duration zero, and then decreasesmonotonically while the
hospital removes patients off the list, reaching zero at d =
13. The hazard curve exhibits a spike at d = 1, and after
waiting period two, it increases monotonically until one.
The observed decline between durations one and two is
due to the largest proportion (0.168) of treatments taking
place in period one.
The mechanisms that drive such an admission pattern

depend mainly on the interactions of hospital’s costs, util-
ity and patient inflow. The hospital would prefer to treat
as many patients as possible immediately, however this
comes at a higher cost. Additionally, given the cubic spec-
ification assumed, the turning point in each utility curve
for d = 1, 2, . . . , q serves as a natural threshold for the
amount of patients selected from each duration. In par-
ticular, this feature restrains the hospital from excessively
‘front-loading’ treatments. The third factor that restricts
the hospital from treating toomany patients up front is the
impact of a small expected waiting time on future inflow.
If the list is cleared quickly, expected duration will be low
and a higher number of patients will demand healthcare
in the following period. As the hospital is capacity con-
strained, that would lead to increasing waiting lists such
that in the future it might be unable to continue treating
patients of short durations or the list may get explo-
sive. Therefore, the hospital may delay treatment today to
avoid too high inflow relative to capacity in the future.
In order to clarify these forces underlying the hospital’s
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Fig. 1 Survival (a) and Hazard (b) functions for the Benchmark Model

behaviour we solve themodel for different parameters and
functional forms, highlighting the importance of capacity
constraints, prioritisation and sensitivity of costs due to
duration.

Capacity constraint
In this specification we measure the effects of increas-
ing the hospital’s capacity, as measured by the maximum
number of patients, k̄, holding the inflow of patients Z
constant. Define the ratio of Z/k̄ as the degree of capac-
ity restriction of a hospital. With higher capacity, the

hospital has the ability both to treat more patients and
to treat them faster. As the degree of capacity restriction
reduces from 33 % to 28 %, the total number of patients
treated increases by around 4 % and at the same time
the expected waiting time decreases from 5.66 to 4.98
months. Increased capacity produces a clear scale effect;
more patients with short waits are admitted for treatment,
while long waiters (d = 12, 13) are eliminated. The sur-
vival curve shifts towards the origin (see Fig. 2(a)), as
admission rates rise throughout. Regarding instantaneous
rates, together with the ‘usual’ hump at the beginning, the

Fig. 2 Survival (a) and Hazard (b) functions from changes in the hospital’s capacity
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hazard curve shifts leftwards (Fig. 2(b)).12 We find similar
scale effects when we increase, ceteris paribus, the budget
(B).13 Thus, the distance of survival curves from the origin
are related to the degree of capacity constraint hospitals
face measured by the ratio of Z/k̄.

Patient prioritisation
The utility of the hospital determines the overall prefer-
ence for treating patients at different points in time. In
order to verify the relationship between benefits and sur-
vival curves we change the form of the utility function,
relaxing Assumption 3. Instead of the third order poly-
nomial used in the benchmark, we employ a quadratic
function,U(kd) = bdk2d + cdkd + e, thus setting ad = 0 for
all d, and a logarithmic function, U(kd) = γdlog(kd + 1).
Results are presented in Fig. 3.
With a quadratic utility function, the majority of

patients are treated within the same period, while the rest
receive treatment at the largest possible duration. Intu-
itively, since the quadratic utility curve has no turning
point and since ∂u(k1)

∂ k̂
>

∂u(kn)
∂ k̂

for ∀ n > 1, the hos-
pital treats as many patients as possible with duration
one (given the costs and the capacity it faces). However,
the remaining patients are treated at the maximum pos-
sible waiting time, since this is the only way to maintain
a steady state average waiting time and inflow, and min-
imise costs. Consequently, the survival graph becomes a
one-step function, since, in our example, 86 % of patients
are treated with duration one, and the rest after having
waited for 36 periods. In sharp contrast, a logarithmic util-
ity function delivers a very smooth steady state waiting

time distribution, in which the hospital treats patients in
each duration. Again, the number of treated patients is
decreasing in d, with more treated up front, however, as
the logarithmic utility curves are increasing at a decreas-
ing rate (with no turning point compared to the bench-
mark), utility is maximised when a decreasing number of
patients, kd, is admitted from each d.
These two functional forms serve as the two extremes

of the hospital behaviour as regard prioritisation (treating
as many patients as possible with low duration), highlight-
ing the trade-off in place. On the one hand, hospitals have
an incentive to ‘front-load’, treat as many patients as pos-
sible in the first few periods. On the other hand they must
ensure they can deal with the current inflow (without an
ever-increasing waiting list) andmonitor costs. Therefore,
if the first incentive is strong enough (quadratic), sur-
vival functions become a step-function. Otherwise when
utility gains do not change as dramatically with dura-
tion, survival functions are very smooth (logarithmic).
The intermediary case occurs with the third order poly-
nomial, whereby front loading is optimal but utility from
treating too many patients quickly is low, forcing medium
duration patients to be treated as well. Thus, the lower
| ad |, the term controlling the third order term of the
polynomial, the higher is the prioritisation hospitals are
willing to do, although waiting lists as a result become
longer, increasing the convexity of survival curves.

Duration sensitivity of costs
In this specification we alter the duration-specific cost
of the hospital by allowing the unit cost of treatment for

Fig. 3 Survival (a) and Hazard (b) functions for quadratic and logarithmic utility specifications



Dimakou et al. Health Economics Review  (2015) 5:25 Page 8 of 27

Fig. 4 Survival (a) and Hazard (b) functions from changes in ρd

each duration to increase, while its budget remains the
same.14 The unit cost of treatment for d = 1 is always
the same and equal to 20. In the alternative scenario, as d
increases, the cost of treatment of longer waiters is declin-
ing slowly, which implies a higher cost for treating patients
with short, as well as medium durations, relative to the
benchmark case (see Table 2). We call the alternative sce-
nario flat since it represents a flatter unit cost function
comparing to the benchmark case.
As shown in Fig. 4, under the flatter curve it is rela-

tively more costly to treat a significant amount of patients
in the first few periods of wait. As a result, the hospital
starts by treating only a few patients within the first peri-
ods (low decay in the survival curve), treating 14 % less
patients in the first 3 periods compared to the benchmark
case. After that, the decreasing feature of the cost struc-
ture induces the hospital to adopt the ‘typical’ admittance
pattern in which the number of treatments decreases
with duration. Decreasing the sensitivity of costs to dura-
tion (duration decay) holding that initial costs of treating
patients constant (ρ0,d) exacerbates the trade-off between
shorter and longer duration patients, producing concave
survival curves for low d.

Extension: incorporating severity levels
Our analysis is extended to incorporate different severity
levels. Patients are differentiated according to the level of
severity of their health condition. For simplicity we con-
sider two types of severity (s = 1, low) and (s = 2, high).
This allows for some degree of clinical prioritisation of
the list as in [7]. The parameterisation for the new model
is given in the Appendix, and Table 3 and Fig. 5 below
present the steady state optimal waiting time distribution
under the benchmark.
The more severe cases have a higher utility gain, but at

the same time are more costly (for any given d). Given
the magnitude of those two trading-off forces the hospi-
tal admits for surgery the severe cases (30 % of the overall
treatments) much quicker (q∗ = 3 and average duration
at 1.6). At the same time the hospital treats less severe
cases in a pattern similar to the benchmark but exhibits
a long right tail. The overall number of treatments is
919 and the overall average waiting time is 5.6 periods,
although milder patients wait on average much more than
the ones facing a more serious condition (Table 3). Thus,
the hospital prioritises the more severe cases. However,
given the resources/budget available and the higher cost

Table 2 Changes in ρd : Cost of one treatment for the first ten months

ρd\d 1 2 3 4 5 6 7 8 9 10

Benchmark 20
d2

20 5 2.22 1.25 0.80 0.56 0.41 0.31 0.25 0.20

Flat 20
d0.6

20 13.20 10.35 8.71 7.61 6.83 6.22 5.74 5.35 5.02
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Table 3 Optimal steady state results with two severities: s = 1,
low and s = 2, high

Duration Optimal kd,1 Optimal kd,2 Agg. kd,s

0 0 0 0

1 147.922 141.765 289.686

2 96.075 81.802 177.877

3 78.818 52.199 131.016

4 68.982 - 68.982

5 62.223 - 62.223

6 57.045 - 57.045

7 52.847 - 52.847

8 - - -
... - - -

35 39.219 - 39.219

36 40.322 - 40.322

k∗ 643.45 275.765 919.218

E(d) 7.3044 1.6752 5.6156

for the quicker treatment of the more severe patients
(c(kd,2)), some of the milder cases are prolonged until the
maximum possible duration.
As shown in Fig. 5, the survival curve for the more

severe patients is very close to the origin, decreasing
quite steeply and reaching zero after only three peri-
ods of wait. On the other hand, the survival function
for the milder cases is further away from the origin
throughout, decreasing much slower until d = 7, after

which point it flattens until the last 80 patients in the
list are treated. The aggregate survival curve still displays
the same long right tail, however, we also observe a
change in the rate of decrease with admittance rates
relatively larger for the first three durations, slowing down
after that.
Figure 6 shows the hazard functions. The majority of

the treatments take place within the same period (d = 1),
thus, the aggregate hazard curve decreases between d = 1
and 2. In addition, since the more severe cases are treated
within the first three periods, we observe a second drop in
the hazard function between durations 3 and 4. After that
the conditional probability of being treated keeps increas-
ing until duration 7, drops to zero for the next 28 periods
and reaches one at duration 36. The framework produces
more changes in slopes of survival functions and more
volatile hazard functions as the ones depicted in the sim-
ple benchmark, thus the introduction of different severity
levels and clinical prioritisation of care increases the flex-
ibility of the model in matching the empirical waiting
time distributions observed in the NHS, discussed in the
following section.

Empirical results and discussion
Building upon the main theoretical insights of our model,
we now analyse empirically hospital-level waiting time
distributions and link those to hospital characteristics
estimating the parameters of our model that control the
degree of capacity constraint, the degree of prioritisation
and finally the cost structure. Before we discuss the main
empirical results we briefly describe our dataset.

Fig. 5 Aggregate (a) and for each severity (b) Survival functions with two severity levels (Table 3)



Dimakou et al. Health Economics Review  (2015) 5:25 Page 10 of 27

Fig. 6 Aggregate (a) and for each severity (b) Hazard functions with two severity levels (Table 3)

Data
The HES is the database employed. This covers all NHS
hospital patients treated in a given financial year in
England and Wales, recording both the date the patient
was placed on the waiting list and the treatment date.
The difference between the two serves as the measure of
waiting time (or duration). HES data also provide addi-
tional information on specialty, diagnosis, operation, type
of admission (waiting list, booked and planned) and length
of stay. We evaluate three specialties (general surgery,
trauma and orthopaedics, and ophthalmology) consisting
of more than 50 % of patients waiting for elective surgery.
The time coverage is nine years from 1997/98 until
2005/06. We use this data set for two empirical exercises.
The first, employing duration analysis, estimates waiting
time distributions. The second uses the latter empirical
distributions and a minimum distance method to esti-
mate the parameters of our theoretical model, obtaining
a measure for the key hospital’s characteristics that drive
treatment plans.

Empirical waiting times distributions: exploring shape and
scale
For the first empirical exercise we employ duration
(also known as time-to-event or survival) analysis to
obtain empirical representations of patients’ waiting time
patterns.15 Duration analysis, by exploring conditional
probabilities of treatment and the cumulative density
function, is a robust and informative approach, allow-
ing for an in-depth exploration and comparison of dis-
tinct admission behaviours. The two key representations

of interest, following our theoretical model closely, are
the survival and hazard functions. The survival func-
tion is estimated using the non-parametric Kaplan-Meier
(KM) or product limit estimator [13], while an esti-
mate of the hazard function is obtained as a weighted
Kernel density. Comparisons are then performed using
both graphical techniques and log-rank statistical tests
to ensure the survival curves obtained are statistically
different.
Since the aim of the analysis is to examine the variabil-

ity of waiting time distributions across hospitals, data are
classified according to size and type of NHS trust. Taking
under consideration information on NHS trust cluster-
ing by the Department of Health we classify hospitals by
size (large, medium and small acute) and type (acute, spe-
cialist and teaching). The same key admission patterns
are identified for all classifications, consequently, we only
present below the results from a selection of them. Addi-
tional and qualitatively similar results are shown in the
Appendix.16

Large acute hospitals
We first present the survival and hazard curves for seven
large acute trusts for year 2000/01 (Fig. 7). Although we
observe curves with different patterns for each hospital
in all cases at about 600 days of wait, the proportion of
patients on the list has approached zero.
Firstly, we look at scale differences. There are hospi-

tals with higher admission rates throughout the period,
thus their survival curve is always closer to the ori-
gin. Norfolk & Norwich lies to the left of Berkshire &
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Fig. 7 Survival (top) and Hazard (bottom) curves for large acute hospitals, 2000/2001

Battle; after 182 days of wait, there are still 50 % of
patients waiting to be treated in the latter, while only
25 % in the former. Secondly, we observe differences in
the shape. There are cases where survival curves inter-
sect, indicating a reversal in treatment rates. For example,
although Devon & Exeter is admitting patients quicker

than Bradford up until 325 days, after that Bradford hos-
pital treats patients with long waits faster. Furthermore,
while Wirral’s survival curve is decreasing smoothly, also
reflected in a somewhat constant hazard rate, the sur-
vival curves for Bradford, Norfolk &Norwich or Plymouth
exhibit considerable variation in their slope (size and sign
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of the second derivative) which translate intomore volatile
hazard curves.17
In terms of hazard curves, we sometimes see a mild

hump at short times of wait, and a more distinctive one at
longer durations. The first hump, that indicates intensive
admission rates at very short waiting times, is suggestive
of some form of prioritisation of more urgent cases (see
the Appendix for other cases of visible first period humps).
For all the large acute hospitals (apart from Bradford),
the later peak occurs in the proximity of 547 days, which
coincides with the maximum NHS waiting time target
for 2000/01 (18 months).18 Note that while the theoreti-
cal hazard curves approach unity at large durations (since
the waiting list is cleared at the steady state), this is not
the case in practice as some long waiters are still waiting
to be treated. Other than that, however, the theoretical
and empirical hazard and survival curves are qualitatively
matched.

Orthopaedic hospitals
Wenow turn to specialist hospitals.We report the survival
curves for all procedures for four orthopaedic hospitals
(left panel of Fig. 8) but also the waiting distribution for a
specific procedure, total hip replacements (right panel of
Fig. 8). Survival curves of specialist trusts follow similar
patterns as for acute hospitals. Some treat patients quickly
for all durations (Royal Orthopaedic Hospital), displaying

a convex survival curve and others concentrate treatment
to medium durations, selecting not to treat patients of
short durations to better manage lists (Robert Jones &
Agnes Hunt Orthopaedic), thus having a concave survival
curve for short durations. More importantly, we observe
that the differences among hospitals persist even when we
control for the same treatment procedure (which presum-
ably implies similar resource requirements across hospi-
tals). Hence, the results indicate that the differences in the
order of treatment are more likely linked to variations in
hospital characteristics.

Differentiation by patients diagnoses
The extension to our theoretical model allows for dif-
ferentiation by patient’s severity, showing how hospitals
manage their lists when having to treat both milder
cases, and more severe ones that require more atten-
tion and resources. In Section ‘Extension: incorporating
severity levels’, we saw that the hospital attempts to treat
the more severe cases faster, and as a consequence it
may delay treatments of milder cases. Theoretical sur-
vival and hazard curves become richer, with the latter
exhibiting a wider hump at short lengths of wait (see
Fig. 6). We attempt to utilise patient-level information
from our HES data in order to draw some insights on the
actual hospitals’ admission pattern based on complexity of
cases.

Fig. 8 Survival curves hospital level-left graphs and hip replacements-right graphs in four orthopaedic hospitals for 2002/2003
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Using information available on Complications and
Comorbidities (CC3)19 we provide results that differenti-
ate patients by the complexity of their diagnoses. We first
classify HES episodes into the ones identified as exhibiting
major complications, looking up until the sixth secondary
diagnosis of each patient, and then categorise patients into
four groups: the ones that had no complications and the
ones with a small (1 or 2), medium (3 or 4), and large (5
and above) number of CC3 indicators.
Figure 9 presents aggregated results for all teaching

hospitals available in our dataset for year 1998/99, com-
paring the mildest cases (with no complications) and
the ones with more than five CC3s. Figure 10 depicts
KM survival curves for (a) one of the teaching trusts in
the 1998/99 group and (b) for one large acute hospi-
tal in 2000/01 (results are robust across hospitals in our
dataset).
Our results show that, at the aggregate level, patients

with more complications are treated faster throughout
the scale of waiting times, particularly at short dura-
tions. Hence the largest hump at short waits (in hazard
curves) happen for those patients (see Fig. 9(b)). Some
more severe cases seem to wait for long, but the number
of cases is very small. At the hospital level, while plotting
all four categories for degree of severity/complications, we
see again a similar pattern. Guy’s & St. Thomas treat cases
with more complications faster and with a lower maxi-
mum duration, such that no patient from the high group

waits beyond 180 days. Whereas, Tauton & Somerset
treat the more complex cases faster as well, but main-
tain a long right tail for the distribution of more severe
patients. All in all, there is evidence that hospitals pri-
oritise treatment by clinical severity, particularly at short
durations.

Hospital structural characteristics
As we have seen in the preceding analysis, the empirical
waiting time distributions differ across hospitals in both
scale, the conditional probability of treatment are higher
for some hospitals relative to other for all durations, and
shape, indicating that trade-offs between short and long
waiters also vary across hospitals. We now use our theo-
retical model and the empirical survival curves to estimate
the main structural parameters that govern the admission
patterns of healthcare providers, focusing on the degree
of capacity constraint, prioritisation and cost structure to
shed some little on those differences.
The empirical exercise employs a minimum distance

estimator (MDE) such that the distance between the KM
empirical survival function and the one predicted by the
theoretical model is minimised. Let modSF(ϑ ;
) be the
vector (of length 24) that represents the survival curve20
obtained by our model, ϑ the subset of 7 parameters,
which control the hospital’s admission patterns, to be esti-
mated and 
 the remaining parameters of the model.
Finally, let dtaSF be the vector that represents the (KM)

Fig. 9 Survival (a) and Hazard (b) curves by number of complications for all teaching hospitals for 1998/99
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Fig. 10 Survival curves by degree of complications for a teaching (a) and a large acute (b) hospital

empirical survival curve estimated in our first empiri-
cal exercise. Then the set of parameters estimates ϑ̂ is
obtained by

ϑ̂ = argmin�, where � = (dtaSF − modSF(ϑ ;
))

W (dtaSF − modSF(ϑ ;
)) and

W is a positive definite weighting matrix. For any W the
(MDE)21 is consistent and thus we set W = I. The vector
ϑ includes the first four terms of ad ,22 which determine
benefits or prioritisation, ρ0 and ρ1, which determine the
cost structure and the ratio Z/k̄ that determines degree of
capacity restriction.While selecting the remaining param-
eters of the model (
 ), we set the hospital’s budget (B̄)
and capacity (k̄) using the Hospital Estates and Facilities
Statistics data from the NHS (at the Trust Level), partic-
ular the Estates Service Costs (in thousands of $) for a
measure of the hospital’s budget and the Available beds as
a measure of capacity. Finally, bd, cd and θ are set as in our
benchmark model and τ = 10B̄/k̄.
In order to provide some comparison across hospitals

we present results for all large acute hospitals (24) in our
sample for year 1999/00. The estimated parameters and
the list of Large Acute Hospitals and their codes is shown
in the Appendix.

We start by looking at the estimated degree of capacity
constraint (ratio of inflow over physical capacity, the lat-
ter proxied by the number of available beds). We plot this
measure against the number of available beds (Fig. 11(a))
and against the actual average duration of treatment
(Fig. 11(b)). As expected greater physical capacity is asso-
ciated with lower capacity restrictions, which in turn is
associated with lower average waiting times. However,
some hospitals treat patients slower although they face the
same capacity restrictions, and some hospitals although
having greater physical capacity are still as restricted as
others. How are such variations associated with different
degrees of prioritisation and cost structures? Pair-hospital
comparisons can be used to highlight the importance of
these features.
We first compare two hospitals that are relatively more

capacity constrained with an inflow around 40 % greater
than physical capacity, namely, hospitals RQ8 and RTK.
In Fig. 12(a) we plot their empirical survival curves and
Table 4 displays the estimated parameters for benefits and
costs. Both hospitals face similar degrees of capacity con-
straints and have similar prioritisation preference. This
explains why their survival curves are close to one another
for short durations. However, we see a widening of the
curves for medium durations. Hospital RTK is able to
treat patients of medium duration significantly faster such
that its average duration is in fact 2 months lower than
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Fig. 11 Estimated degree of capacity constraint versus number of beds (a) and versus average duration (b)

the one observed for hospital RQ8. The main reason for
the delay in treatment in RQ8 is that the hospital faces a
significantly more persistent cost structure (see decay in
Table 4). As such, after prioritising patients of short dura-
tions, RQ8 is not able to treat medium duration patients
fast enough.

Further, we compare the characteristics of a small
(RVV) and a large (RMK) acute hospital (see Fig. 12(b)).
Although both face similar degrees of capacity constraints
(20 %), hospital RVV treats patients at a slower pace than
RMK, particularly at short durations -the survival curves
diverge significantly in the first three periods. This feature
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Fig. 12 Comparing empirical Survival curves across hospitals: RQ8 vs RTK (a) and RVV vs RMK (b)

is explained by the lack of duration prioritisation (rela-
tively high |̂ad| for low durations). Hospital RMK has a
strong preference to treat as many patients as possible in
the first three periods leading to a more efficient manage-
ment of waiting lists.
In the next two figures we look at all the hospitals

included in our estimation and confirm our pair-hospital
insights. In the first graph, we plot the estimated

∑3
1 |̂ad|

(benefits structure) versus the actual drop in survival rates
for the first four periods of wait (Fig. 13(a)) and ver-
sus average duration (Fig. 13(b)). In the second, we see
the estimated ρ̂1 (cost decay) against the actual drop in
average survival rates from the fourth until the seventh
duration (middle portion of the curve) (Fig. 14(b)) and
against average duration (Fig. 14(b)). While the benefits
structure explains prioritisation of short duration patients
and the cost decay explains the treatment profile of
medium duration patients well across all hospitals, they
are not (or only mildly for

∑3
1 |̂ad|) related to average

duration. Therefore, it becomes clear that our identified
hospital characteristics provide meaningful information

Table 4 Duration prioritisation and costs

Benefits Costs

|̂a1| |̂a2| |̂a3| |̂a4| Level Decay

RQ8 0.0003 0.0004 0.0005 0.0020 0.3102 0.0015

RTK 0.0002 0.0004 0.0004 0.0019 0.2599 2.1855

RVV 0.0002 0.0004 0.0006 0.0008 0.5168 2.5371

RMK 0.0001 0.0001 0.0005 0.0016 0.3459 3.1598

on waiting list management, and most importantly,
on the observed trade-offs across patients waiting for
treatment.

Conclusion
We develop a theoretical model of healthcare admission
behaviour to study the main drivers of the distribution of
waiting times across different healthcare providers. Our
theoretical framework has two distinct features: (i) the
dynamic element of the model and (ii) the derivation of
the entire optimal waiting time distribution of patients
treated at the steady state based on hospital’s structural
characteristics.
Using HES data for elective surgery in the UK for

years 1997–2005 and duration analysis techniques we
also obtain the empirical counterparts of our theoreti-
cal waiting time distributions. Looking at survival and
hazard functions, we verify vast heterogeneity in the way
hospitals are admitting patients for elective surgery. By
using the implications of our model and an estimation
procedure that compares theoretical and empirical wait-
ing time distributions identifying hospital characteristics,
a set of distinct patterns emerge.
On the one hand, some hospitals tend to prioritise dura-

tion, ‘front-loading’ treatment and providing healthcare
for as many patients as quickly as possible, at the expense
however of a fraction that waits for long. Thus, more
emphasis is put on short durations. On the other hand
some hospitals prefer a more evenly distributed waiting
list where patients receive treatment more gradually, but
no one waits extensively; the emphasis is on the medium
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durations. When the treatment specific cost is distinct,
we again observe differences in the shape of the sur-
vival curves, but now the curvature is altered. When the
cost for quick treatment is increased, the survival curves
exhibit concave parts (indicating very low treatment

rates). Finally, changes in the resources allocated to
elective surgery (budget and capacity), relaxing the degree
of capacity constraint of a hospital, produce changes
in the instantaneous admission rates for the whole
distribution, thus we observe shifts in the scale of the
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Fig. 14 Sensitivity of cost to duration: Estimated cost decay versus actual drop in survival rates from the 4th until 7th period (a) and versus average
duration (b)

survival curves. Further research investigating empirically
all supply factors, particularly how the cost structure
and hospitals’ objectives change across duration seems
to be an important step to understand the rationing
of treatment through waiting times, and guide policy
design.

Endnotes
1The terms waiting times and duration will be used

interchangeably.
2This reduced form can be obtained by assuming that

individuals’ benefits from healthcare decrease while
waiting for treatment and that patients have a costly
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alternative available (e.g. private providers). This is
commonly assumed in the literature, with waiting time
acting as rationing devise in order to equilibrate demand
and supply, similar to what prices do. See for instance
[2, 9, 14–19]. Note that extensive expected waiting times
can also reduce demand of elective surgeries by
discouraging GPs from making referrals.

3Our results do not change if patients have information
of a range of possible severities s they might suffer from,
although the problem becomes considerably more
complex since each patient would expect a different
expected duration.

4Siciliani [2] makes a similar assumption for average
waiting time, while here we focus on the duration of each
treatment.

5When Z < k̄, the hospital can treat all the patients
demanding healthcare will idle capacity (kt < k̄),
provided that its budget is sufficient. In this case, all
patients are treated at t and no waiting list is formed.

6This implies it is hard for the hospital to treat patients
quickly or equivalently some waiting allows the hospital
to reduce costs of providing treatment, using resources
more efficiently. Although this negative relationship is
well established in the literature, both theoretically ([1])
and empirically ([20]), these contributions also suggest
that there might be a level of duration beyond which
costs increase (due to higher administrative and medical
resources required to manage a long waiting list). We
assume that increased costs due to long waits do not
occur before q.

7The total list of patients of severity s at time t is given
by the current inflow of new patients (xs,t) plus all
untreated patients from previous periods,

Ls,t = xs,t + �2,s,t−1 + �3,s,t−1 + �4,s,t−1

+ . . . + �q,s,t−1 = xs,t +
q∑

d=2
�d,s,t−1

and denoting the inflow of patients at t as xs,t = �1,s,t−1,
we can write Ls,t = ∑q

d=1 �d,s,t−1.
8In the numerical solution the budget value is tied to

the treatment cost relative to the hospital’s capacity,
representing some sort of a cost-based reimbursement
system.

9Although we use a quadratic specification, implying a
cost for under utilisation, as long as the budget is ample
relative to the treatment-specific cost, conditions we
always ensure, optimal k > k̄.

10Note that more efficiency might be the result of
better management of resources but also lower costs to
outsourcing of equipment or personnel.

11We obtain the solution by employing a constrained
nonlinear optimisation routine in Matlab. Although it is
fairly easy to determine the first and second order

conditions of our maximisation problem, these involve
many Kuhn-Tucker equations. Thus, it is easier to solve
the optimisation problem directly instead of using the
resulting system of equations.

12Note that continually increasing physical capacity
further might not affect the steady state waiting time
distribution. With a given cost structure and budget, the
hospital cannot utilise the extra capacity (thus, the budget
constraint holds strictly as an inequality). For the list to get
shorter, we need to increase the hospital’s budget in line
with physical capacity. This result indicates that policies
aimed at improving hospital performance as regards
waiting lists, must account for both types of investment,
namely, monetary budget (flow) and capacity (stock).

13These results are available from the authors upon
request.

14Although the budget allocated to elective surgery is
exogenous, it is plausible to assume that a different cost
and/or capacity structure imply a different budget. In
particular, the benchmark budget (B = 7000) has been set
proportionally to those two costs (average unit cost (ρd)
times capacity).

15In our context, the ‘event’ of interest is admittance to
hospital, ‘survival’ corresponds to remaining on the list,
and ‘time’ is that between being placed on a waiting list
until admitted for surgery.

16Different selection criteria have been used for
presentation of results. Figures 7 and 8 as well as in the
Appendix depict hospitals with site codes that remain in
the whole sample of 9 years. Figure 10 uses all teaching
hospitals for year 1998/99, while the empirical analysis in
Section ‘Hospital structural characteristics’ employs all
large acute trusts for year 1999/00.

17Log-rank tests, although not reported, confirm
significant variation in waiting time distributions in all
our cases.

18For more details on the analysis of waiting times, see
[6] or [5].

19The hospital payment system in the UK defines a
series of diagnostics that are related to complications or
more complex cases. This information is used for health
resource grouping (HRG) of patients with an aim at
measuring extra resource need for each episode. As such,
it does provide for a proxy measure of the severity or
complexity level of a patient’s case. More information can
be found from the Health and Social Care Information
Centre (HSCIC): http://www.hscic.gov.uk/article/2322/
HRG4-200708-Reference-Costs-Grouper-
Documentation

20Waiting times are rarely longer than 2 years.
21See [21] for details.
22We estimate â1, â2, â3 and â4, and set

ad = â4 + (̂a4/5 − (̂a4/5)/(d − 4)) for all d > 5, such
that ad increases with duration after the forth period.

http://www.hscic.gov.uk/article/2322/HRG4-200708-Reference-Costs-Grouper-Documentation
http://www.hscic.gov.uk/article/2322/HRG4-200708-Reference-Costs-Grouper-Documentation
http://www.hscic.gov.uk/article/2322/HRG4-200708-Reference-Costs-Grouper-Documentation
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This is done to reduce the number of parameters
estimated and since we are concerned with the degree of
prioritisation of low duration patients.

23At the steady state, kd,s ≤ �s,d ⇔ kd,s ≤ ks − ∑d−1
h=1

kh,s ⇔ ks − ∑d
h=1 kh,s ≥ 0 ⇔ ∑q

h=1 kh,s − ∑d
h=1 kh,s ≥

0 ⇔ ∑q
h=d+1 kh,s ≥ 0 which holds given that kd, s ≥ 0.

Appendix
Hospital’s optimisation problem at the steady state
Here we show in more detail the steady state the hospital’s
maximisation problem. That is,

max
{kd,s}d,s

q∑
d=1

p∑
s=1

g(kd,s)

Subject to
∑
d

∑
s

c(kd,s) + c(k, k̄) ≤ B

0 ≤ kd,s ≤ �d,s

k = Z − θE(d)

�d,s = 0 for d > q

Recall that k = ∑
d
∑

s kd,s, the steady state expected
duration is defined as E(d) = ∑

d d
kd
k and �d,s = ks −∑d−1

h=1 kh,s. At the steady state the restrictions that kd,s ≤
�d,s are satisfied as long as kd,s are non-negative.23 Thus,
the Lagrange function reads:

max
{kd,s}d,s

L =
∑
d

∑
s

g(kd,s) + λ

(
B −

∑
d

∑
s

c(kd,s) − c(k, k̄)
)

+
∑
d

∑
s

vd,skd,s + +μ (Z − θE(d) − k)

(3)

where λ is the lagrangian multiplier of the hospital budget
constraint, vd,s is the lagrange multiplier of the Kuhn-
Tucker constraint kd,s ≥ 0, and μ is the multiplier for
the condition that ensures that the steady state inflow and
outflow are equal.
Solving the hospital’s problem gives rise to 2(d × s) + 2

Karush–Kuhn–Tucker (KKT) conditions. For each kh,m
where h = 1, 2, ...q andm = 1, 2,

∂L

∂kh,m
= ∂

∑
d
∑

s g(kd,s)
∂kh,m

− λ

(
∂

∑
d
∑

s c(kd,s)
∂kh,m

+ ∂c(k, k̄)
∂kh,m

)
+ vh,m

− μ

(
θ

∂E(d)

∂kh,m
+ ∂

∑
d
∑

s k
∂kh,m

)
= 0

∂L

∂vh,m
= kh,m ≥ 0, vh,m ≥ 0 and vh,mkh,m = 0

∂L

∂λ
= B −

∑
d

∑
s

c(kd,s) − c(k, k̄) ≥ 0, λ ≥ 0 and λ
∂L

∂λ
= 0

∂L

∂μ
= Z − θE(d) − k = 0

Table 5 Benchmark functional specifications and parameters

g(kd) = adk3d + bdk2d + cdkd Utility from treating k patients with
duration d

where ad = −0.0002 + 0.0001
d parameters of the cubic utility function

bd = 0.02 − 0.01
d

cd = 2 + 5
d

c(kd) = ρdkd Cost from treatments at duration d

where ρd = 20
d2

parameter of the linear duration cost
function

c(k) = τ(k − k)2 Scale cost of the total number
of patients treated

where k̄ = 900 Hospital’s capacity in terms of
number of patients

τ = 10 sensitivity of cost to deviations from
full capacity k̄

B = 7000 Hospital’s budget

Z = 1200 Potential demand for healthcare

θ = 50 Sensitivity of inflow to expected
waiting time

q = 36 Maximum allowed waiting time

Table 6 Parameters specification with two levels of severity

g(kd,s) = ad,sk3d + bd,sk2d + cd,skd Utility from treating k patients
with duration d & severity s

where for the case of low severity: parameters of the cubic utility
function for low severity

ad,1 = −0.0002 + 0.0001/d

bd,1 = 0.02 − 0.01/d

cd,1 = 2 + 5/d

and for the case of high severity: parameters of the cubic utility
function for high severity

ad,2 = 0.9(−0.0002 + 0.0001/d)

bd,2 = 0.02 − 0.01/d

cd,2 = 3 + 5/d

c(kd,s) = ρd,skd,s Cost from treatments at duration
d and severity s

where ρd,1 = 20/d2 parameters of the linear duration
& severity cost function

and ρd,2 = 30/d

c(k) = τ(k − k)2 Scale cost of the total number of
patients treated

where k̄ = 900 hospital’s capacity in terms of
number of patients

τ = 10 sensitivity of cost to deviations
from full capacity k̄

B = 13500 Hospital’s budget

Z = 1200 Potential demand for healthcare

θ = 50 Sensitivity of inflow to expected
waiting time

δ1 = 0.7 Proportion of the milder
diagnosis (s = 1)

q = 36 Maximum allowed waiting time
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Fig. 15 Survival (a) and Hazard (b) curves for teaching hospitals in London, 2002/2003
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Fig. 16 Survival curves for medium acute hospitals, 1998/1999 (top) and 2004/2005 (bottom)
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Fig. 17 Hazard curves for medium acute hospitals, 1998/1999 (top) and 2004/2005 (bottom)
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Fig. 18 Survival (top) and hazard (bottom) curves for small acute hospitals for 2005/2006
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Given that we do not allow for interaction terms in both
the hospital’s utility (

∑
d
∑

s g(kd,s)) and the treatment-
specific cost (

∑
d
∑

s c(kd, s)) functions, the derivative of
the Lagrange function with respect to kh,m simplifies to:

∂L

∂kh,m
= ∂g(kh,m)

∂kh,m
− λ

(
∂c(kh,m)

∂kh,m
+ ∂c(k, k̄)

∂kh,m

)

+ vh,m − μ

(
θ
∂E(d)

∂kh,m
+ 1

)
= 0.

From this we can derive the optimal number of patients
of each severity level treated after having waited d
durations as a function of all the structural parameters
(denoted z) of the model, ∀{d, s} k∗

d,s = k∗
d,s(z).

Parameter specifications
Tables 5 and 6 show the parameter values and functional
forms employed for the benchmark and extended models.

Empirical analysis - additional results
In Fig. 15, 16, 17, and 18, we present additional results of
survival and hazard functions for different types of hos-
pitals (teaching, medium acute and small acute). The two
key patterns of treatment observed for large acute hos-
pitals are also observed here. Some hospitals concentrate
capacity in treating many patients quickly (focus on short
waiters), and as a result of scarce resources, are forced to
let a sizeable proportion of patients waiting longer until
treatment. Other hospitals focus treatment on clearing the
list at longer duration, electing not to treat patients quickly
but making sure long waits do not occur. Finally, some
hospitals are very efficient in treating all patients faster
than others.

Teaching hospitals
Figure 15 demonstrates the waiting time distributions of
a set of seven teaching hospitals in London for years
2002/2003. The admission rates by St George are the
worst, and more than 25 % of patients are still awaiting
treatment after a year of wait. It is worth mentioning
the different tactics by Hammersmith and Chelsea &
Westminster hospitals. The former handles quicker the
short waiters (< 200 days, where the intersection lies)
while delaying admission to long waiters compared with
the latter. While looking at the hazard curves, with the
exception of Hammersmith that exhibits a high intensity
peak between 365 and 456 days, the rest of the hos-
pitals have low intensity wider peaks and Hamstead
a constant hazard rate (a result of the smoothest
survival curve).

Medium acute hospitals
Figures 16 and 17 show the survival and hazard curves for
1998/99 and for 2004/2005 for medium acute hospitals.

In the first year of comparison, although hospitals exhibit
similar activity levels, they manage quite differently their
waiting lists. In 2004/05, all KM curves have shifted
leftwards towards the origin and are more concen-
trated than before. This shows clear response to wait-
ing time targets, as overall waiting times are brought
down. Hazard curves confirm this, with observed peaks
also moving leftwards. Trade-offs between short and long
waiters are still evident. For example,Walsall and Bromley
exhibited similar behaviour in 1998/99, but followed
different tactics in 2004/05 with the former focusing
on long waiters and the latter on handling quickly the
short waiters.

Small acute hospitals
Figure 18 shows the survival and hazard curves for small
acute hospitals for 2005/06. Due to a smaller overall num-
ber of admissions, survival curves have more visible steps.
We observe a considerable scale difference between East
Somerset and Royal West Sussex, with the latter treating
short waiters (up to 91 days) quite slowly. The rest of the

Table 7 List of large acute hospitals in 1999

Hospital code Hospital name

RJE NORTH STAFFORDSHIRE HOSPITAL NHS TRUST

RL4 THE ROYAL WOLVERHAMPTON HOSPITALS NHS TRUST

RLN CITY HOSPITALS SUNDERLAND NHS TRUST

RTG SOUTHERN DERBYSHIRE ACUTE HOSPITALS NHS TRUST

RVV EAST KENT HOSPITALS NHS TRUST

RAG DONCASTER ROYAL INFIRMARY & MONTAGUE HOSPITAL
NHS TRUST

RAJ SOUTHEND HEALTH CARE NHS TRUST

RBA TAUNTON & SOMERSET NHS TRUST

RCJ SOUTH TEES ACUTE HOSPITALS NHS TRUST

RDZ ROYAL BOURNEMOUTH & CHRISTCHURCH NHS TRUST

REM AINTREE HOSPITALS NHS TRUST

RG7 HAVERING HOSPITALS NHS TRUST

RGQ IPSWICH HOSPITAL NHS TRUST

RGU BRIGHTON HEALTH CARE NHS TRUST

RHU PORTSMOUTH HOSPITAL NHS TRUST

RKB WALSGRAVE HOSPITALS NHS TRUST

RLW THE CITY HOSPITAL NHS TRUST

RMF PRESTON ACUTE HOSPITALS NHS TRUST

RMK NORTH MANCHESTER HEALTHCARE NHS TRUST

RMR BLACKPOOL VICTORIA HOSPITAL NHS TRUST

RQ8 MID ESSEX HOSPITAL SERVICES NHS TRUST

RTK ASHFORD & ST PETER’S NHS TRUST

RTX MORECAMBE BAY HOSPITALS NHS TRUST

RNA THE DUDLEY GROUP OF HOSPITALS NHS TRUST
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Table 8 Estimated parameters - 24 large acute hospitals 1999

Benefits Costs Capacity constraint

|̂a1| |̂a2| |̂a3| |̂a4| ρ̂0 ρ̂1 Ẑ
k̄

RJE 0.00004 0.00008 0.00044 0.00063 0.2205 3.8135 1.1370

RL4 0.00039 0.00033 0.00024 0.00042 0.6880 2.4762 1.2896

RLN 0.00018 0.00033 0.00081 0.00094 0.4864 2.1974 1.2749

RTG 0.00008 0.00016 0.00017 0.00102 1.6116 1.5153 1.2188

RVV 0.00021 0.00042 0.00060 0.00080 0.5168 2.5371 1.1939

RAG 0.00013 0.00022 0.00043 0.00233 0.0002 0.7880 1.2799

RAJ 0.00004 0.00016 0.00016 0.00069 0.2027 3.8300 1.3346

RBA 0.00018 0.00036 0.00095 0.00075 0.1670 4.5388 1.3285

RCJ 0.00017 0.00034 0.00062 0.00162 0.0000 3.0879 1.1671

RDZ 0.00031 0.00043 0.00074 0.00098 0.0006 2.1725 1.2205

REM 0.00020 0.00007 0.00063 0.00166 0.0002 3.6294 1.1755

RG7 0.00017 0.00021 0.00021 0.00137 0.3819 3.0383 1.3777

RGQ 0.00021 0.00018 0.00032 0.00119 0.3335 4.3211 1.4112

RGU 0.00051 0.00036 0.00068 0.00047 0.1616 4.0379 1.5495

RHU 0.00005 0.00009 0.00011 0.00075 0.7299 2.6364 1.2176

RKB 0.00022 0.00030 0.00050 0.00187 0.0000 2.6826 1.1287

RLW 0.00022 0.00041 0.00046 0.00084 0.5423 2.4319 1.2768

RMF 0.00019 0.00021 0.00031 0.00185 0.4209 3.4504 1.2971

RMK 0.00010 0.00009 0.00052 0.00158 0.3459 3.1598 1.2173

RMR 0.00005 0.00017 0.00037 0.00075 0.3988 3.0638 1.2455

RQ8 0.00031 0.00043 0.00050 0.00197 0.3102 0.0015 1.4369

RTK 0.00020 0.00045 0.00041 0.00194 0.2599 2.1855 1.4268

RTX 0.00025 0.00034 0.00035 0.00157 0.3587 0.7540 1.2034

RNA 0.00024 0.00026 0.00062 0.00175 0.0000 2.5812 1.1564

hospitals are clustered between those two. The hazard
curve of East Somerset remains the highest for until about
three months, while the one of Royal West Sussex is the
lowest. Many trusts exhibit an increased probability of
admission at around six months, which is the target of that
year.
Tables 7 and 8 depict the list of large acute hospitals

and the estimated parameters from the MDE empirical
exercise.
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