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External validation: a simulation study 
to compare cross‑validation versus holdout 
or external testing to assess the performance 
of clinical prediction models using PET data 
from DLBCL patients
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Abstract 

Aim:  Clinical prediction models need to be validated. In this study, we used simulation data to compare various inter-
nal and external validation approaches to validate models.

Methods:  Data of 500 patients were simulated using distributions of metabolic tumor volume, standardized uptake 
value, the maximal distance between the largest lesion and another lesion, WHO performance status and age of 296 
diffuse large B cell lymphoma patients. These data were used to predict progression after 2 years based on an existing 
logistic regression model. Using the simulated data, we applied cross-validation, bootstrapping and holdout (n = 100). 
We simulated new external datasets (n = 100, n = 200, n = 500) and simulated stage-specific external datasets (1), 
varied the cut-off for high-risk patients (2) and the false positive and false negative rates (3) and simulated a dataset 
with EARL2 characteristics (4). All internal and external simulations were repeated 100 times. Model performance was 
expressed as the cross-validated area under the curve (CV-AUC ± SD) and calibration slope.

Results:  The cross-validation (0.71 ± 0.06) and holdout (0.70 ± 0.07) resulted in comparable model performances, 
but the model had a higher uncertainty using a holdout set. Bootstrapping resulted in a CV-AUC of 0.67 ± 0.02. The 
calibration slope was comparable for these internal validation approaches. Increasing the size of the test set resulted 
in more precise CV-AUC estimates and smaller SD for the calibration slope. For test datasets with different stages, the 
CV-AUC increased as Ann Arbor stages increased. As expected, changing the cut-off for high risk and false positive- 
and negative rates influenced the model performance, which is clearly shown by the low calibration slope. The EARL2 
dataset resulted in similar model performance and precision, but calibration slope indicated overfitting.

Conclusion:  In case of small datasets, it is not advisable to use a holdout or a very small external dataset with similar 
characteristics. A single small testing dataset suffers from a large uncertainty. Therefore, repeated CV using the full 
training dataset is preferred instead. Our simulations also demonstrated that it is important to consider the impact 
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Background
With technology advancements around biomarker devel-
opment, the potential to generate multiple biomark-
ers for a single patient is expanding. In recent years, the 
potential of quantitative radiomics features derived from 
baseline 18F-FDG PET/CT scans to develop prognostic or 
predictive models is being explored. Several oncological 
studies have shown the added value of radiomics features 
when predicting outcome [1–6]. Often, radiomics analy-
ses is performed with machine learning. Both machine 
learning and radiomics require large datasets. However, 
PET studies typically have small sample sizes. Conse-
quently, many studies end up with multiple potential 
predictors using datasets with relatively small numbers 
of cases, leading to optimistic models that are adjusted to 
the data and decreased generalizability of the predictive 
model.

Optimism, or overfitting, is a well-known problem 
of predictive models: the model performance in new 
patients is often worse than expected from the devel-
opment data set [7, 8]. The extent of optimism of pre-
specified models can be estimated for similar patient 
populations using internal validation techniques such 
as bootstrapping [8], cross-validation or split-sample 
approaches [9]. With a split-sample approach you select 
part of your sample as a holdout set for validation; this 
sample is usually smaller than the training set. The lat-
ter frequently results in models with suboptimal perfor-
mance due to small sample size. Split sample approaches 
can be used in very large samples but are not necessary 
because overfitting is no issue in this context [10].

External validation of a model is generally required 
to ensure that model prediction remain true in vari-
ous settings [8, 10]. For clinical application this external 
validation is most interesting. Typically, external valid-
ity or generalizability is studied in an independent sam-
ple with patients from a plausibly related population. A 
split-sample (holdout) approach is often used when an 

external validation dataset is not available. However, this 
split-sample approach does not lead to truly external 
validation.

With the rise of many new biomarkers, scientific jour-
nals stress the need for the classical paradigm of exter-
nal validation for new biomarkers. However, this might 
not always be feasible and methods traditionally used for 
internal validation are than the best alternative. In this 
study, we used simulated data to evaluate three internal 
validation methods: cross-validation (CV), holdout or 
bootstrapping against external validation using another 
external data set. Moreover, we tested the influence of 
the size of external test sets and different patient charac-
teristics on validation performance.

Methods
Data
We simulated Ann Arbor stage-specific PET param-
eters and clinical characteristics for 500 patients, which 
is representative of a large PET dataset. Simulation 
parameters were generated based on data of 296 DLBCL 
patients from the HOVON-84 trial [5, 11]. Table 1 shows 
the PET and clinical parameters that were applied. For 
age > 60  years and World Health Organization (WHO) 
performance status > 1 fixed percentages were used that 
were observed clinically, whereas for log SUVpeak, log 
MTV, log Dmaxbulk values were simulated using the mean 
and standard deviations (SD) of the values that were 
observed clinically. The Pearson correlations between 
individual PET parameters and clinical parameters were 
low (Pearson’s r: 0.05–0.52). Moreover, after log trans-
formation PET features had normal distributions. As 
both assumptions for using random sampling were met 
(e.g., normal distribution and independent variables), the 
500 patients were simulated using the rnorm function 
in R using the mean and SD of the log transformed PET 
parameters and frequencies of clinical parameters.

of differences in patient population between training and test data, which may ask for adjustment or stratification of 
relevant variables.

Keywords:  Internal validation, External validation, Model performance, CV-AUC​

Table 1  PET and clinical characteristics used for simulations

Stage Number of patients 
(%)

Log-SUVpeak Log-MTV Log-Dmaxbulk Prevalence of 
age > 60 years (%)

Prevalence 
of WHO > 1 
(%)

2 16 2.78 ± 0.50 12.0 ± 1.5 4.74 ± 0.6 30 23

3 21 2.78 ± 0.50 12.0 ± 1.5 5.4 ± 0.6 30 16

4 63 2.84 ± 0.50 13.0 ± 1.5 5.8 ± 0.6 30 6
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Calculation of probability
The probability (p) of progression within 2  years was 
calculated using the regression coefficients of our previ-
ously published model [5] using 296 patients from the 
HOVON-84 study.

In that dataset, the cut-off for the probability for the 
high-risk group was 0.375. Thus all probabilities of 0.375 
and higher were classified as having high risk for progres-
sion within 2 years, which resulted in a false positive rate 
(FPR) of 45% and a false negative rate (FNR) of 15%. In 
our simulation study, we used a probability of 0.375 as 
cut-off for high-risk patients, and randomly relabeled 
45% of the high-risk patients as non-events and 15% of 
the low-risk patients as events to obtain the same FPR 
and FNR as seen in the actual clinical data.

Statistical analyses
We analyzed model performance in terms of discrimi-
nation and calibration. Discrimination was expressed as 
the area under the curve (AUC) of the receiver-operating 
characteristic curve, the standard deviation of the AUCs 
for each fold and the confidence interval of AUCs over all 
folds and calibration was assessed using the calibration 
slope. The slope is 1 in a perfectly calibrated model. A 
calibration slope smaller than 1 indicates that predictions 
were too extreme (caused by overfitting of the model), 
leading to too low predictions for low risk patients and 
too high predictions for high risk patients. A calibration 
slope larger than 1 indicates that the spread in prediction 
is limited, with underestimation of high risk predictions 
and overestimation of low risk patients.

To assess internal model validity, we tested the influ-
ence of cross-validation, split-sample datasets and boot-
strapping on model performance. To assess external 
model validity, we simulated external datasets with differ-
ent sample sizes. Moreover, we simulated external data-
sets with different PET or patient characteristics to assess 
generalizability of the model. External datasets were sim-
ulated using the same approach as for the 500 simulated 
patients described under data. For the test set within the 
cross-validations and holdout set, patients were selected 
using the sample function in R stratified for Ann Arbor 
stage. For all external model validity approaches, we 
trained a model using fivefold 100 times repeated cross-
validation using 400 simulated patients and then applied 
it to the simulated external dataset. For all internal and 

(1)p =
1

1+ e−6.532+(0.533∗log (MTV))− 1.395∗log(SUVpeak) +(0.257∗log (Dmaxbulk))+(0.773∗IPIage)+(0.787∗WHO)

external validation approaches, the calculation of prob-
ability of progression was performed using Eq. 1. More-
over, the entire procedure was repeated 100 times by 
randomly reshuffling the data, resulting in a mean cross-
validated AUC (CV-AUC), standard deviations (SD) and 

95% confidence intervals (CI). Within each repeat, we 
determined overfitting in the regression coefficients of 
the best model by applying the train linear predictor (cal-
ibration slope) in the test datasets.

Internal model validity approaches

1.	 Fivefold repeated cross-validation using all 500 
simulated patients. In this simulation 400 simulated 
patients were used for training and 100 for testing.

2.	 Fivefold repeated cross-validation using 400 simu-
lated patients, the model was then applied on a hold-
out test set of 100 patients. This holdout set was not 
seen during training and had the same patient char-
acteristics and PET metric distributions as the train-
ing set.

3.	 Bootstrapping as described by Harrell et al. [7]. Five 
hundred bootstrap samples were generated by resa-
mpling with replacement using all simulated patients.

External model validity approaches

4.	 A simulated external dataset of 100, 200 and 500 
patients, respectively. The external test datasets were 
simulated using same patient characteristics and PET 
metric distributions.

5.	 A simulated external dataset of 500 patients where 
PET metrics were changed using offset and scale to 
mimic EARL2 reconstructed data. These reconstruc-
tions were based on non-small cell lung cancer and 
lymphoma patients with both EARL1 and EARL2 
reconstructions [12].

6.	 A simulated external dataset of 500 patients where 
the prevalence of Ann Arbor stages 2,3 and 4 are 
changed from 16%, 21% and 63% to 33%,33%,34% 
and to 100% stage 2, 100% stage 3 and 100% stage 4, 
respectively.

7.	 A simulated external dataset of 500 patients where 
the threshold of the probability for high-risk patients 
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was lowered to 0.10 and increased to 0.66 and 0.90, 
respectively.

8.	 A simulated external dataset of 500 patients where 
the FPR and FNR were changed both to 12%, both to 
45% and both to 25%.

Results
Internal model validity
The apparent AUC of the model that included all 500 
simulated patients was 0.73 (Table 2). The fivefold cross-
validation using all simulated patients yielded a CV-AUC 
and 95% CI of 0.71 ± 0.06 (approach 1). The mean CV-
AUC for the holdout set was 0.70 ± 0.07 (approach 2); 
both approaches had similar confidence intervals. The 
model performance using a bootstrap approach was 
slightly lower (approach 3; 0.67 ± 0.02) but model perfor-
mance was more stable with a narrow confidence inter-
val. As expected, the models suffered from overfitting. 
The calibration slope of all internal validation approaches 
was below 1 (range: 0.89–0.93), indicating that the coef-
ficients of our model required shrinking.

External model validity
An external test set of 100 newly simulated patients 
resulted in a CV-AUC of 0.69 ± 0.07, 200 newly simu-
lated patients resulted in a CV-AUC of 0.70 ± 0.05 and 
an external dataset of 500 newly simulated patients 
yielded a CV-AUC 0.70 ± 0.03 (approach 4; Fig. 1). With 
larger sample size of the externally simulated datasets 
the standard deviation decreased which as a conse-
quence resulted in smaller confidence intervals. Because 
the patient characteristics and PET metric distributions 
were identical between training and external validation, 
the mean calibration slope is close to 1 indicating good 
calibration of the model coefficients. As the sample size 
increased, the calibration between the model coefficients 
was better, which is shown by the smaller standard devia-
tions of the calibration slope (n = 100: 1.05 ± 0.45 vs 
1.04 ± 0.17 for n = 500).

When applying an offset and scaling to mimic an 
EARL2 reconstructed dataset, the model performance 
was 0.70 ± 0.07 (approach 5). The mean calibration slope 
of this model was 0.83, indicating overfitting of the model 
leading to too low predictions for low-risk patients and 
too high predictions for high-risk patients. If prevalence 

Table 2  model performance expressed as CV-AUC and confidence interval and the standard deviation of models

CV-AUC​ cross-validated area under the curve, SD standard deviation, CI confidence interval, FPR false positive rate, FNR false negative rate

Model Discrimination: CV-AUC (± SD and 95% CI) Calibration slope ± SD

Simulated true expected AUC​ 0.73 1

Internal:

1: CV-AUC​ 0.71 ± 0.06 (0.59–0.81) 0.93 ± 0.41

2: 20% holdout test 0.70 ± 0.07 (0.57–0.82) 0.89 ± 0.33

3: Bootstrap 0.67 ± 0.02 (0.62–0.71) 0.90 ± 0.37

External validation

4: External test

n = 100 0.69 ± 0.07 (0.56–0.83) 1.05 ± 0.45

n = 200 0.70 ± 0.05 (0.61–0.80) 1.01 ± 0.23

n = 500 0.70 ± 0.03 (0.64–0.74) 1.04 ± 0.17

5: EARL 2 0.70 ± 0.07 (0.56–0.82) 0.83 ± 0.33

6: Prevalence stage

33–33–34 0.66 ± 0.04 (0.59–0.74) 0.99 ± 0.21

100% 2 0.59 ± 0.04 (0.49–0.66) 0.41 ± 0.14

100% 3 0.63 ± 0.04 (0.56–0.71) 0.56 ± 0.12

100% 4 0.72 ± 0.03 (0.66–0.76) 1.56 ± 0.28

7: Positivity rate

0.10 0.73 ± 0.02 (0.69–0.78) 1.07 ± 0.15

0.66 0.64 ± 0.04 (0.58–0.70) 0.32 ± 0.12

0.90 0.61 ± 0.04 (0.53–0.66) 0.25 ± 0.11

8: FPR/FNR

0.12/0.12 0.78 ± 0.03 (0.73–0.83) 1.78 ± 0.22

0.45/0.45 0.53 ± 0.02 (0.49–0.57) 0.15 ± 0.10

0.25/0.25 0.66 ± 0.03 (0.61–0.71) 0.86 ± 0.10
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Fig. 1  AUCs of 25 repeats of external simulated datasets with different sizes in blue with the simulated true expected AUC in black A an simulated 
external dataset of 100 patients, B simulated external dataset of 200 patients and C simulated external dataset of 500 patients

Fig. 2  AUCs of 25 repeats of external simulated datasets with different distributions of Ann Arbor stage in blue with the simulated true expected 
AUC in black A simulated dataset with 33% Stage 2, 33% Stage 3 and 34% stage 4 patients, B simulated dataset with Stage 2 patients, C simulated 
dataset with Stage 3 patients, D Simulated dataset with stage 4 patients
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of all stages in the external test set was equal, the model 
yielded a CV-AUC of 0.66 ± 0.04. Model performance 
increased from 0.59 ± 0.04 when only Ann Arbor stage 
2 patients were included to 0.72 ± 0.03 when only Ann 
Arbor stage 4 patients were included in the external test 
set (approach 6; Fig.  2). As expected, calibration of the 
models where only one Ann Arbor stage was included 
showed poor calibration. For Ann Arbor stage 2 and 3 
models suffered from overfitting with calibration slopes 
of 0.41 ± 0.14 and 0.56 ± 0.12, respectively. Including 
only Ann Arbor stage 4 patients led to underestima-
tion of high-risk predictions, as shown by the calibra-
tion of 1.56 ± 0.28. Lowering the positivity rate to 0.10 
resulted in slightly higher model performance (approach 
7; CV-AUC 0.73 ± 0.02) and slightly decreased spread 
in predictions causing underestimation of high-risk and 
overestimation of low-risk patients (calibration slope: 
1.07 ± 0.15). Higher cut-offs resulted in lower model 
performance (approach 8; CV-AUC 0.64 ± 0.04 and 
0.61 ± 0.04; Fig.  3), with lower model calibration caus-
ing overfitting of the model coefficients with extreme 
predictions (calibration slope 0.32 ± 0.12 and 0.25 ± 0.11, 
respectively). As expected, a FPR and FNR of 12% yielded 
in a higher CV-AUC (0.78 ± 0.03), and a FPR and FNR 
of 45% in lower model performance (approach 9; CV-
AUC 0.53 ± 0.02). A FPR and FNR of 25% resulted in 
lower results compared to our original model (CV-AUC 
0.66 ± 0.03) with poor model calibrations.

Discussion
This study showed that in case of small sample sizes, 
there is no difference in performance when using a hold-
out approach (approach 2) or a small external dataset 
(approach 4, n = 100) with similar patient characteris-
tics and image qualities. A single small dataset suffers 

from large uncertainty suggesting that repeated cross-
validation using the full dataset is preferred instead in 
this situation. Moreover, external validation has limited 
additional value when patient and PET characteristics 
are similar (approach 4). However, our simulations dem-
onstrated that external datasets with different patient or 
PET characteristics have added value, and these differ-
ences may ask for adjustment of relevant variables in the 
final model (approaches 5–9), as shown by the calibration 
slopes of the models. Yet again, small datasets result in 
large uncertainty in model performance.

In line with other studies [9, 13], our simulation results 
show that no single internal validation method clearly 
outperformed other internal validation methods when 
looking at the CV-AUCs, standard deviation and calibra-
tion slopes (approaches 1–3). Bootstrapping (approach 3) 
resulted in a smaller standard deviation than cross-vali-
dation or holdout. Model performance using a bootstrap 
approach resulted in slightly lower but more stable model 
performance. Although mean calibration slopes and 
mean CV-AUC are comparable for all internal valida-
tion approaches, large differences in model performance 
are observed per fold, stressing the need for repeated 
validation.

Using a small training set or test set may not be rep-
resentative of all the possible cases. A small training set 
results in poor generalization ability and a small test set 
leading to large confidence intervals. This is also shown 
in our simulation results, where the confidence interval 
became smaller as the sample size of the external test 
set increased (Approach 4). Similarly, the uncertainty of 
the predictions was lower in the cross-validated model 
where all simulated patients were used, compared 
to the uncertainty in the holdout approach, thereby 
reducing the sample size for the cross-validation 

Fig. 3  AUCs of 25 repeats of external simulated datasets varying the positivity rate in blue with the simulated true expected AUC in black A 
positivity rate of 0.10, B positivity rate of 0.66, C positivity rate of 0.90



Page 7 of 8Eertink et al. EJNMMI Research           (2022) 12:58 	

training. Moreover, using a holdout set as test set is 
essentially the same as onefold of the cross-validation 
as the patient characteristics and metric distributions 
are identical for the training and test set for both the 
cross-validation and holdout approaches. Therefore, 
a holdout set is only effective if you have a very large 
dataset [10]. As PET studies often have small sample 
sizes (< 100 patients) a CV-AUC or bootstrap approach 
is favored over a holdout set in small datasets. Moreo-
ver, larger external datasets with similar patient and 
PET characteristics only result in higher certainty of 
model predictions as shown by lower standard devia-
tions in CV-AUC and calibration slope, but do not pro-
vide meaningful information about generalizability.

The focus of a validation study should not be on the sta-
tistical testing of differences in performance but on gener-
alizability of the model in other settings [8, 10]. Our study 
showed that PET and patient characteristics, such as EARL 
reconstruction and Ann Arbor stage, influence the model 
validation (approaches 5–6), this effect is more prominent 
in the lower calibrations between the models. A model 
with high generalizability is more likely to be implemented 
in clinical practice. Often, an external dataset is not avail-
able and a training set that is not representative (e.g., due 
to aberrant patient or PET characteristics) might lead to 
overfitting of the model in the training set, reducing its 
performance in the test set and therefore reducing its 
clinical applicability. Therefore, it is important to check the 
influence of patient and PET characteristics within your 
sample using simulations, if possible. An external dataset 
allows to assess case-mix differences, whereas internal 
validity approaches only correct for sampling variation.

It is important to note that for this simulation study we 
assumed that the model to predict outcome was fixed 
and the test set is only used to validate the model that was 
developed in the training set. Therefore, our results only 
apply for the validation of a fixed model. If a new model 
was trained or feature selection was incorporated in the 
training set a holdout set or external set would not be com-
parable to a cross-validation approach. However, in this 
scenario a small validation set also results in large uncer-
tainty of model performance. Moreover, a holdout set 
always results in a smaller training set, thereby leading to 
larger uncertainty for both the training and validation set. 
Therefore, most of our conclusions remain the same when 
selecting models and/or features in your training set. How-
ever, feature selection leads to overfitting of the training set.

Based on our results we can conclude that in case of 
small sample sizes there is no added value of a holdout 
approach (internal validation) or a very small external 
dataset with similar patient and PET characteristics. PET 
studies often have small sample sizes; therefore, a holdout 
approach is not favored as it leads to larger uncertainties 

for both the training set and validation set. Moreover, a 
single small external dataset also suffers from a large 
uncertainty. External validation provides important infor-
mation regarding the generalizability of a model in dif-
ferent settings. Our simulations also demonstrated that 
it is important to consider the impact of differences in 
patient population between training, cross-validation and 
(external) testing data, which may ask for adjustment or 
stratification of relevant variables or recalibration of the 
models. Therefore, we suggest that for future studies with 
small sample sizes, a repeated CV or bootstrap approach 
is superior to holdout or only one small external test set 
with similar patient characteristics, and editors should 
stress the need for proper internal validation of models.
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