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Abstract 

Background:  Gastroenteropancreatic neuroendocrine tumors most commonly metastasize to the liver; however, 
high normal background 68Ga-DOTATATE activity and high image noise make metastatic lesions difficult to detect. The 
purpose of this study is to develop a rapid, automated and highly specific method to identify 68Ga-DOTATATE PET/CT 
hepatic lesions using a 2D U-Net convolutional neural network.

Methods:  A retrospective study of 68Ga-DOTATATE PET/CT patient studies (n = 125; 57 with 68Ga-DOTATATE hepatic 
lesions and 68 without) was evaluated. The dataset was randomly divided into 75 studies for the training set (36 
abnormal, 39 normal), 25 for the validation set (11 abnormal, 14 normal) and 25 for the testing set (11 abnormal, 14 
normal). Hepatic lesions were physician annotated using a modified PERCIST threshold, and boundary definition by 
gradient edge detection. The 2D U-Net was trained independently five times for 100,000 iterations using a linear com-
bination of binary cross-entropy and dice losses with a stochastic gradient descent algorithm. Performance metrics 
included: positive predictive value (PPV), sensitivity, F1 score and area under the precision–recall curve (PR-AUC). Five 
different pixel area thresholds were used to filter noisy predictions.

Results:  A total of 233 lesions were annotated with each abnormal study containing a mean of 4 ± 2.75 lesions. A 
pixel filter of 20 produced the highest mean PPV 0.94 ± 0.01. A pixel filter of 5 produced the highest mean sensitiv-
ity 0.74 ± 0.02. The highest mean F1 score 0.79 ± 0.01 was produced with a 20 pixel filter. The highest mean PR-AUC 
0.73 ± 0.03 was produced with a 15 pixel filter.

Conclusion:  Deep neural networks can automatically detect hepatic lesions in 68Ga-DOTATATE PET. Ongoing 
improvements in data annotation methods, increasing sample sizes and training methods are anticipated to further 
improve detection performance.

Keywords:  Deep learning, Convolutional neural network, Neuroendocrine tumor, DOTATATE, Somatostatin receptor, 
Positron emission tomography, Liver tumor
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Background
Neuroendocrine tumors (NETs) are rare neoplasms that 
can present with a wide array of symptoms, frequently 
contributing to delayed diagnosis and late presentation 
with metastatic disease [1]. Early and accurate detec-
tion of NETs is important for appropriate treatment. 
Low- and intermediate-grade NETs frequently have high 
expression of somatostatin receptors (SSTR subtype 2), 
an ideal target for a radionuclide-bound peptide imaging 
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and therapy [2, 3]. The risk of NET metastasis is great-
est for tumors arising in the pancreas and small intestine, 
with the liver being the most common site for metastasis 
(82% of patients) [4].

68Ga-DOTATATE PET/CT has demonstrated the high-
est accuracy in detection and staging of gastroentero-
pancreatic neuroendocrine tumors (GEP-NETs) [5]), and 
high uptake is essential for effective 177Lu-DOTATATE 
peptide receptor radionuclide therapy [6]. Despite the 
treatment benefit of 177Lu-DOTATATE of improved pro-
gression-free survival, only 17% had a partial response 
and only 1% had a complete response. The majority of 
these patients had persistent disease, potentially requir-
ing retreatment [7]. High pre-therapy 68Ga-DOTATATE 
tumor uptake, low 18FDG avidity, low tumor volume 
and a significant change between 68Ga-DOTATATE 
uptake pre- and post-therapy show some correlation with 
response to treatment and patient outcomes [8, 9]. Yet, 
despite the need for retreatment, no established method 
to quantitatively assess response to therapy currently 
exists. Although subjective 68Ga-DOTATATE PET/CT 
interpretation is relatively consistent [10], an objective 
method could greatly improve the assessment of therapy 
response and facilitate the development of next-genera-
tion therapies.

Recently, convolutional neural networks (CNNs) have 
demonstrated high accuracy in lesion classification, 
image segmentation and object detection tasks with FDG 
PET/ CT [11–16]. Previous studies have demonstrated 
excellent results in classification and localizing lesions 
using 18F-FDG PET/CT; however, no such CNN has been 
created to analyze studies utilizing 68Ga-DOTATATE 
PET. Development of deep learning algorithms to iden-
tify tumors could be a valuable diagnostic and prognostic 
tool by aiding readers in the detection and quantifica-
tion of lesions, and by identifying residual tumors after 
therapy. The purpose of the study is to develop and test 
a deep learning algorithm to accurately detect 68Ga-
DOTATATE avid hepatic lesions.

Methods
Patients
This study was approved by our Institutional Review 
Board, and informed consent was waived. Between 
1/10/18 and 4/16/20, 290 68Ga-DOTATATE PET/CTs 
were performed at our University hospital on conven-
tional analog detector PET/CT (GE Discovery STE; GE 
Medical systems). Of the 290 studies performed and 
retrospectively reviewed, 106 were found to have 68Ga-
DOTATATE avid hepatic lesions. Of these, 58 of the 
studies met the inclusion criteria of fewer than 10 well-
defined, non-confluent lesions without liver disease that 
would significantly impact the interpretation of the study 

or result in poorly defined or abnormal background 
activity (i.e., cirrhosis or steatosis). These studies were 
paired with 68 68Ga-DOTATATE PET/CT studies evalu-
ating for metastatic NETs which were found to have no 
liver metastases.

Manual liver segmentation and semi‑automated lesion 
annotation
Prior to analysis, all studies were anonymized using a 
five-digit numerical ID. The 68Ga-DOTATATE PET/CTs 
were clinically reviewed and reported by three board-cer-
tified Nuclear Medicine physicians with > 5 years’ experi-
ence. Lesions identified by the resident performing the 
workflow were correlated with the experienced board-
certified Nuclear Medicine attending physician’s clini-
cal report. Segmentation was performed by two trained 
physicians using a semi-automated MIM workflow (MIM 
version 7.03) that integrated segmentation of the liver 
on PET and CT with the modified PERCIST criteria for 
lesion detection [17]. The modified PERCIST thresh-
old is based on the normal background liver volume of 
interest, placed by the semi-automated workflow and 
modified by the physician operator, to provide mean and 
standard deviation of 68Ga-DOTATATE activity using 
three separate spheres (3 cm diameter) placed in normal 
background liver. The computer workflow would auto-
matically generate the 3 cm spheres; however, they were 
manually placed and verified in the liver by the opera-
tor. The modified PERCIST threshold was defined as the 
mean normal activity multiplied by 1.5, plus 2 standard 
deviations of background normal liver. To ensure accu-
rate and consistent identification of lesions for the gold 
standard, results of the semi-automated workflow were 
correlated with the studies’ original clinical report. Once 
lesions detected by the workflow were confirmed as cor-
rect, a commercially available gradient edge detection 
tool (PET Edge plus; MIM software 7.0.3) was used to 
define lesion boundaries. All lesions were then verified 
visually by the resident physician operator who has the 
option of accepting, modifying or deleting these based 
on visual inspection. The time required to annotate the 
lesions was highly dependent upon the number of lesions 
in the liver. On average, the entire manual annotation 
and segmentation process took approximately 30  min 
per study. Some individual processes were assisted by 
the semi-automated workflow, such as verifying correct 
lesion detection and boundaries.

Studies were transferred from the analysis worksta-
tion (MIM) to a secure remote server. A custom pipe-
line written in Python (version 3.7.6) converted the PET 
images and regions in RT-structure format into 8-bit 
PNG image files. The PET images were converted with-
out alteration; however, the liver segmentation data and 
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lesion annotations were converted into binary color maps 
for use within the CNN. The dataset was then randomly 
divided into 75 studies for the training set (36 abnor-
mal, 39 normal), 25 for the validation set (11 abnormal, 
14 normal) and 25 for the testing set (11 abnormal, 14 
normal).

CNN architecture, training and validation
The CNN developed for this study is a 2D fully con-
volutional, U-Net-like neural network. The encoder–
decoder architecture contains a down-sampling path, 
which consists of four stacked residual learning blocks 
[18] and a convolutional operation with stride of 2 used 
to connect adjacent blocks. The up-sampling path also 
contains four residual blocks linked up with transposed 
convolutions with stride of 2 [19]. Four long-range skip 
connections were used to directly connect the outputs 
of the down-sampling residual blocks to the outputs of 
corresponding up-sampling residual blocks. We also 
introduced two contextual information aggregation 
layers to the up-sampling path and fused the informa-
tion with the output of the last residual block, which is 

fed into a final convolutional layer for lesion detection. 
These two aggregation layers use transposed convolu-
tions with stride 4 and 8, respectively. The 2D U-Net 
network was trained by minimizing a linear combina-
tion of binary cross-entropy loss and dice loss with a 
stochastic gradient descent algorithm for 100,000 itera-
tions and stopped the training if the performance on 
the validation set did not improve for 20,000 successive 
iterations [20]. We applied the trained model to each 
slice in the test set for output map prediction. To reduce 
the effects of noisy predictions, filters based on pixel 
area were applied that removed values below a certain 
threshold (e.g., areas of 5, 7, 10, 15 and 20 pixels) to 
determine which generated the best results. We finally 
located true positive predictions if the intersection over 
union between the predictions and corresponding gold 
standards was greater than 0.05. Figure  1 details the 
flow of data and architecture of the 2D U-Net visually. 
Additional information on performance metrics was 
chosen, and loss functions and model implementation 
information is available in the Additional file 1.

Fig. 1  Overview of the convolutional neural network developed for automated detection of 68Ga-DOTATATE avid hepatic lesions. Each study in the 
training and validations sets contained three directories of images: PET images, liver masks and lesion labels. The CNN was trained on the masked 
PET images with lesion labels as ground truth. The trained network was then used for detection on the testing data, again with associated lesion 
labels used as the ground truth
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Statistical analysis
The performance of automated 68Ga-DOTATATE 
lesion detection was evaluated with two separate met-
rics: F1 score, the weighted means of positive predictive 
value (PPV) and sensitivity, as well as the area under 
the precision–recall curve (PR-AUC). Here, preci-
sion is the same as PPV and recall the same as sensi-
tivity, but PR-AUC is retained as the more commonly 
used nomenclature. Once optimal hyperparameters for 
training the model were found, the training, validation 
and testing processes were independently run a total 
of five times to account for random variations in image 
augmentation during the training process and ensure 
that the model performed consistently. The mean of the 
five PR AUC and F1 scores was then taken. All statis-
tical analysis was performed with R 4.0 (open source, 
GNU project).

Results
A total of 125 patients with a mean age of 61.2 ± 13.4 
met inclusion criteria and were included in this study. 
Of these, 68 subjects (54.4%) were female, and 57 (45.6%) 
were male. Metastatic NETs were present in 58 (46.4%) 
of the subjects, while 67 (53.6%) had no hepatic tumor 
burden. Of the 58 studies with 68Ga-DOTATATE avid 
hepatic lesions, 233 distinct lesions were annotated by 
two trained physicians and correlated with Nuclear Med-
icine fellowship trained clinical interpretations. There 
were 4.0 ± 2.75 (mean ± STD) lesions per abnormal 
study, with each lesion typically present on 4–5 consecu-
tive slices and studies ranging between 23 and 71 trans-
axial slices. Flow diagrams for the dataset can be found in 
Fig. 2 and patient demographics and baseline characteris-
tics can be found in Table 1.

Of the various models tested on the dataset, a 2D U-Net 
using a 6:1 linear combination of binary cross-entropy 

Fig. 2  Study flowchart of subjects used in this study
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and dices losses was found to produce the best and most 
consistent results. A lesion was considered to be detected 
if the intersection over union of the prediction and gold 
standard was > 0.05. For the five runs of the model, a pixel 
area noise filter was applied to the predicted lesions at 
various pixel area thresholds and any prediction below 
the threshold was discounted from the quantitative 
analysis. A noise filter of 5 pixels was found to produce 
the highest sensitivity (0.74 ± 0.02), whereas the highest 
PPV was produced with a filter of 20 pixels (0.95 ± 0.01). 
A noise filter of 20 pixels was also produced the high-
est mean F1 score (0.79 ± 0.01). For all above values, an 
F1 threshold of 0.05 was used. The threshold is distinct 
from the noise filter and was used to binarize the data in 
the prediction map, where any value above the thresh-
old was considered a lesion as opposed to background. 
The F1 scores increased with increasing filter size, rang-
ing from 0.66 ± 0.02 at 5 pixels to 0.79 ± 0.01 at 20 pixels. 
Similarly, precision increased with increasing filter size, 
whereas sensitivity decreased. The five PR AUC values 
exhibited slightly more variability, ranging from 0.70 to 
0.73, with the highest value at a noise filter of 15 pixels 

(0.73 ± 0.03). While F1, PPV, sensitivity and PR-AUC var-
ied between pixel filter thresholds used, the values were 
highly consistent between the five runs of the model with 
low standard deviations for all. The mean the metrics of 
the five retrained models at all tested pixel thresholds is 
shown in Table 2.

A graphical representation of the precision–recall 
curve is shown in Fig.  3. The various filter sizes per-
formed relatively similarly for PPV and sensitivity, with 
nearly all filter permutations decreasing rapidly at a sen-
sitivity of approximately 0.8. An example of the model is 
shown in Fig. 4, which shows true positives as output by 

Table 1  Patient demographics and baseline characteristics

Values in parentheses are percentages, except for age (Standard Deviation)

Parameter Value

Mean age (years) 61.2 (13.4)

 Women 60.2 (14.3)

 Men 62.3 (12.4)

Sex (no. of patients)

 Women 68 (54.4)

 Men 57 (45.6)

Tumor present in liver

 Yes 58 (46.4)

 No 67 (53.6)

Primary tumor site

 Small bowel 53 (42.4)

 Pancreas 28 (22.4)

 Large Bowel 12 (9.6)

 Retroperitoneal 5 (4.0)

 Head and neck 4 (3.2)

 Lung 3 (2.4)

 Stomach 3 (2.4)

 Esophagus 1 (0.8)

 Gall bladder 1 (0.8)

 Prostate 1 (0.8)

 None (normal scans) 14 (11.2)

Ki-67 index

 Low/intermediate (< or = 20%) 66 (52.8)

 High grade (> 20%) 3 (2.4)

 No pathology report/Index not reported 56 (44.8)

Table 2  Metrics used to track model performance on the testing 
data at different pixel noise threshold levels

All data points are the mean of the five retrained models. F1 is a weighted mean 
of PPV and sensitivity, giving a composite score for model performance. PR AUC 
is the area under the precision–recall curve, where precision is PPV and recall is 
sensitivity. Data in parentheses are the standard deviations of the mean of the 
five retrained models

Parameter 
(STD)

Noise filter threshold in pixels

5 7 10 15 20

PPV 0.69 (0.03) 0.75 (0.03) 0.82 (0.01) 0.90 (0.02) 0.94 (0.01)

Sensitivity 0.74 (0.02) 0.74 (0.03) 0.72 (0.02) 0.69 (0.02) 0.63 (0.03)

F1 score 0.66 (0.02) 0.68 (0.02) 0.72 (0.02) 0.76 (0.01) 0.79 (0.01)

PR AUC​ 0.70 (0.02) 0.71 (0.02) 0.72 (0.02) 0.73 (0.02) 0.71 (0.02)

Fig. 3  Precision–recall curves for the model’s evaluation on the 
testing dataset. Each curve represents one of the five different pixel 
area thresholds that were used in 68Ga-DOTATATE avid hepatic lesion 
detection. The greater the area under the curve (AUC), the better the 
model was at correctly predicting true lesions. Precision is equivalent 
to positive predictive value and recall is equivalent to sensitivity
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the model. The slices demonstrate close approximation 
between the physician-annotated lesion labels and lesion 
labels output by the trained model. Figure 5 shows exam-
ples of model output false positives. A common false 
positive was due to a small number of voxels with high 
uptake located on a transaxial slice that was adjacent to 
a true positive lesion. False negatives are shown in Fig. 6 
where a lesion was present on the annotated dataset but 
not detected by the trained model, adjacent to a true 
positive.

Discussion
This deep learning-based, automated hepatic lesion 
algorithm for 68Ga-DOTATATE PET consistently per-
formed with good F1 scores when noise filtering was 
applied to the prediction modeling. The use of a noise fil-
ter (15 voxels) provided the highest precision recall AUC 
0.73 ± 0.02, which was also associated with an accept-
able  F1 score 0.76 ± 0.02, an excellent PPV 0.90 ± 0.02 
and a modest sensitivity 0.69 ± 0.02. A semi-automated 
method of data annotation (modified PERCIST and 

Fig. 4  Output of the prediction model on the testing dataset showing true positives. Each row of transaxial PET slices is taken from a single study. 
(left column) original PET image, (middle column) physician-annotated ground truth and (right column) the output of the model prediction 
overlayed on the PET image



Page 7 of 11Wehrend et al. EJNMMI Res           (2021) 11:98 	

gradient edge) provided a rapid method to identify 
lesions and determine the lesion boundaries with mini-
mal user intervention. The results reported are concord-
ant with expected values based on the relatively modest 
sample size, the inherent difficulty of the lesion identifi-
cation task and the relatively noisy images compared to 
FDG PET. Future developments extended to whole body 
analysis in larger studies could add to the growing body 
of evidence that deep learning analysis of PET/CT is 

capable of predicting response to treatment and survival 
similar to data emerging for FDG PET/CT [21, 22].

This study uses a semi-automated method to assist 
the physician operator in defining the lesions and their 
boundaries for the annotated dataset used to develop the 
algorithm. Manual data annotation is extremely time and 
effort intensive and can be a limiting factor in obtaining 
adequate datasets for deep learning algorithms [23]. In 
preliminary work, the use of a modified PERCIST to both 

Fig. 5  Output of the prediction model on the testing dataset showing false positives. The first and second patient rows demonstrate small voxel 
areas not detected using the gold standard criteria, but they were detected as lesions by the trained model. These “false positive” lesions are on 
transaxial slices immediately adjacent to “true positive” gold standard lesions (at the edge of a true positive). Row three demonstrates a false positive 
due to significant misregistration between the PET and CT. Each row of transaxial 68Ga-DOTATATE PET slices is taken from a single study
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identify the candidate lesion and to define their bounda-
ries resulted in relatively modest performance yielding an 
initial F1 score of 0.60 [17]. By modifying the boundary 
definition using a gradient edge detection method and 
using a pixel noise filter, the F1 metric improved to as 
high as 0.79. This method demonstrates the potential for 
better DL algorithm performance when the criteria for 
lesion boundaries more accurately depicts the true lesion 
boundary.

This method also allows flexibility in defining how 
sensitive the input data can be to define a true lesion. 
Because we set this threshold to a relatively high level, 
it facilitates a rapid (approximately 3  min per subject), 
semi-automated editing and approval by the physician 
who is annotating the data. A lower threshold could be 
chosen to result in higher algorithm sensitivity at the cost 
specificity; however, it potentially requires more time 
and effort by the physician when editing the annotations. 

Fig. 6  Output of prediction model on the testing dataset showing false negatives. These lesions were detected using the modified PERCIST, and 
gradient edge criteria, however, were not detected by the trained model on the testing data. The majority of these lesions were relatively low in 
activity. Each row of 68Ga-DOTATATE transaxial slices is taken from a single patient study
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The current data annotation method demonstrates the 
potential to rapidly generate high-quality annotated 
datasets while simultaneously reducing the time and 
effort required by a skilled physician operator. Finally, a 
semi-automated method could improve consistency and 
reduce operator bias. After further validation, the rules 
for lesion identification and boundary definition could be 
more readily adapted by other users, thereby facilitating 
a mechanism to acquire data from multiple institutions 
and facilitate a federated model of deep learning.

The study task and the PET imaging data in this study 
are also quite different compared to prior studies of FDG 
PET. To our knowledge, this is the first study to report 
automated hepatic lesion detection using deep learning 
in 68Ga-DOTATATE PET. Hepatic lesion detectability 
is an especially difficult task in 68Ga-DOTATATE imag-
ing because of high normal background liver activity [5, 
24] and high variability of uptake [24–27]. Prior studies 
of 68Ga-DOTATATE PET have confirmed that detect-
ability is not only dependent on tumor uptake, but it is 
also highly dependent upon the normal background and 
the background image noise [28, 29]. These factors highly 
influence the signal-to-noise ratio (SNR), a metric of 
lesion detectability [28].

68Ga-DOTATATE PET lesion detectability is also influ-
enced by higher image noise compared to FDG PET 
due to lower administered dose and rapid radionuclide 
decay. The 68Ga-DOTATATE administered dose (typi-
cally 4–5  mCi or 148–185  MBq) is approximately 50% 
lower, and the physical decay approximately twice as fast 
(68Ga t½ = 68  min). This typically results in > 60% lower 
true coincidence events for 68Ga-DOTATATE PET com-
pared to 18F-FDG PET imaging [28]. The physical char-
acteristics of 68Ga compared to 18F are also inferior due 
to partial volume effect, resulting in lower peak detected 
activity. The combination of these factors contributes to 
higher image noise and lower signal-to-noise ratio (SNR) 
of 68Ga compared to 18F in reconstructed tomographic 
images [28].

Normal 68Ga-DOTATATE PET hepatic uptake is also 
likely influenced by individual patient tumor burden, 
or the “sink effect” [30]. These differences in liver 68Ga-
DOTATATE PET uptake, compared to FDG liver uptake, 
support the rationale for use of individual patient specific 
normal liver uptake and the variability metric in image 
noise (i.e., standard deviation of the background) to 
define a relatively high threshold level for hepatic lesion 
identification. Lesions detected by this method were 
confirmed as positive when compared to the clinically 
reported studies.

Although the precise reason for false positives and 
false negatives in DL algorithms is difficult to ascertain, 
we subjectively examined the discordance between the 

predicted and annotated gold standard (i.e., semi-auto-
mated data annotation method) and their relationships to 
their slice locations and relative intensity of uptake. The 
most common false positives (6/12; 50%) occurred where 
the predicted transaxial slice of a lesion was located at the 
edge of a true lesion, scored above the PERCIST thresh-
old, but was discordant with the annotated gold standard 
which was located on an adjacent slice (i.e., the gradient 
edge detection rule determined that the boundary was 
located in an adjacent transaxial slice). With each slice 
treated as a discrete entity in the 2D CNN, the transaxial 
slice with high activity may be predicted by the model, 
but was not considered true positive by the annotated 
gold standard. The gradient edge detection determined 
that the boundary edge was in the adjacent slice.

Another discordance may result if the voxels are below 
the PERCIST criteria threshold for inclusion as true posi-
tive in the gold standard annotated dataset. These regions 
may not be labeled as true lesions in the gold standard 
training dataset, although visually they could be con-
sidered positive. Several false positives generated by the 
model are hypothesized due to this effect (4/12; 33%).

False positive thought due to misregistration between 
PET and CT occurred in only two instances (2/12; 17%) 
and represented the smallest potential source of error. 
Finally, the use of a voxel noise filter was used to reduce 
small regions of false positives because relatively high 
image noise could have a similar appearance to true 
hepatic lesions.

False negatives were subjectively thought to be primar-
ily attributable to low uptake in parts of the lesion which 
were not detected on a specific slice (35/59; 59%), but 
located adjacent to a true lesion. The next most com-
mon category could be due to low or modest lesion 
uptake (21/59; 36%), not located adjacent to a detected 
true lesion. A small number of undetected true lesions, 
despite relatively high uptake, were not predicted and 
classified as unknown cause for missed lesions (3/59; 5%).

The primary limitation of this study is the relatively 
modest sample size for the development of the CNN. 
A 2D dataset was therefore implemented to obtain 233 
unique tumor regions. As a single site feasibility study, 
our dataset size is of modest size due to the relatively 
recent introduction of 68Ga-DOTATATE PET, and the 
limited number of indications compared to FDG PET. 
This 2D algorithm does not incorporate the informa-
tion from the adjacent transaxial images. A larger sample 
size and use of a 3D CNN could result in better algo-
rithm performance. The second limitation arises from 
high noise images, and high normal background in liver 
68Ga-DOTATATE studies. Image noise can be partially 
reduced by longer image acquisition times, or by using 
data from modern high sensitivity digital PET cameras. 
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Most centers, however, have practical imaging proto-
cols designed to balance image quality and efficiency, 
and older generation analog PET cameras. These data 
from this study are obtained from an analog PET system, 
which is typical of retrospectively collected real-world 
data.

Finally, our study also limited the task to detection of 
a relatively modest number of fewer than 10 non-conflu-
ent lesions with excluded patients with high volume liver 
disease. Patients with intrinsic liver disease including cir-
rhosis or steatosis were also excluded. The first restriction 
simplified the type of lesions to detect by excluding large 
confluent lesions with highly variable morphology; how-
ever, nuclear medicine physicians can readily recognize 
this pattern. The second restriction reduced the poten-
tial for variability in the background to avoid unknown 
effects of diseased liver uptake which could affect the 
threshold value used by the modified PERCIST criteria. 
In the future, larger datasets may be developed to iden-
tify lesions specifically within these subpopulations.

Conclusion
This single-center pilot study demonstrates the feasibility 
of automated deep learning detection of hepatic lesions 
in 68Ga-DOTATATE PET/CT. Our use case supports the 
detection of clinically relevant lesions with high specific-
ity. Ongoing improvements in data annotation methods, 
increasing sample sizes and improvements in algorithm 
training methods are anticipated to further improve 
detection performance.
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