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Abstract

Background: '®F-FDG brain PET measures metabolic changes in neurodegenerative disorders and may discriminate
between different diseases even at an early stage. The objective of this study was to classify patients with amyotrophic
lateral sclerosis (ALS) and Parkinson plus syndromes (PP). To this end, different approaches were evaluated using
generalized linear models and corresponding glucose metabolic brain patterns. Besides direct classification, healthy
controls were also included to generate disease-specific metabolic brain patterns and to perform a classification using
disease expression scores.

Methods: ALS patients (n=70) and PP patients (n =33: 20 PSP, 3 CBD, and 10 MSA) were available from an existing
database of patients with neuromuscular and movement disorders while age-matched healthy controls (n = 29) were
selected from a prospective study. To generate both disease-discriminative (direct classification) and disease-specific
(classification versus controls) metabolic brain patterns, data were spatially normalized and a principal component
analysis (PCA) was performed prior to classification using either logistic regression (PCA-LR) or a support vector
machine (PCA-SVM). Furthermore, a direct SVM approach was considered. To compare the three different approaches,
Pearson correlations (r) between pattern expression scores and metabolic brain patterns were evaluated, while pairs of
ALS- and PP-specific pattern expression scores were compared using the RV coefficient.

Results: Classification between ALS and PP resulted in a sensitivity and specificity = 0.82 for both direct classification
and classification according to disease-specific pattern expression scores. PCA-LR, PCA-SVM, and SYM generated very
similar metabolic brain patterns with voxelwise correlations = 0.66, while all patterns allowed straightforward
identification of ALS- and PP-specific brain regions of hyper- and hypometabolism. Moreover, pattern expression scores
were highly correlated among different classifiers with a mean r of 0.94 while a RV coefficient 2 0.91 was found
between pairs of ALS- and PP-specific pattern expression scores.

Conclusion: We demonstrated that a classification between ALS and PP using expression scores of an ALS and
PP metabolic brain pattern leads to a similar and high prediction accuracy as direct classification between ALS
and PP. Classification performance and disease-specific metabolic patterns, which could support visual reading
and improve insight in brain pathology, were very related for different classifiers.

Keywords: Positron emission tomography, '®F-FDG, Classification, Glucose metabolic brain patterns, Amyotrophic
lateral sclerosis vs Parkinson plus

* Correspondence: martijn.devrome@kuleuven.be

'Department of Nuclear Medicine and Molecular Imaging, Division of
Nuclear Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

@ Springer Open International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
— reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13550-018-0458-5&domain=pdf
mailto:martijn.devrome@kuleuven.be
http://creativecommons.org/licenses/by/4.0/

Devrome et al. EINMMI Research (2018) 8:110

Background

'8E-FDG brain positron emission tomography (PET) im-
aging is currently the quantitative imaging modality of
choice for studying regional brain glucose metabolism
and is increasingly being used for diagnostic and re-
search purposes. Moreover, its clinical use has been
established for specific diagnostic questions in neurode-
generative diseases [1, 2]. Over recent years, different
methods have been developed to generate disease-spe-
cific metabolic patterns using '*F-FDG brain PET im-
aging. These brain patterns facilitate the differential
diagnosis by providing a score representing the pattern
expression of a specific brain disease. Moreover, these
disease-specific glucose metabolic patterns allow the
identification of specific brain networks, and therefore, a
better understanding of the underlying mechanisms and
topology of different brain disorders. For this purpose, a
scaled subprofile model (SSM) [3] was used to identify
brain networks in Alzheimer’s disease [4], Huntington’s
disease [5], and Parkinson’s disease [6, 7], while corre-
sponding methodological issues, such as network selec-
tion criteria and data log transform, were discussed by
Spetsieris et al. [8]. Furthermore, a support vector ma-
chine (SVM) and independent component analysis
(ICA) were considered to construct a spatial connectivity
pattern in amyotrophic lateral sclerosis (ALS) [9]. SVM,
originally proposed by Vapnik et al. [10], is based on the
theory of structural risk minimization and is very effi-
cient for high dimensional input data with only a few
data sets available for training. Therefore, a SVM ap-
proach is particularly well suited for the analysis and
classification of neuroimaging data in general and brain
PET data in particular which was already demonstrated,
e.g., for the classification of ALS patients and healthy
controls using 8E_FDG PET [11], and for classification
of healthy controls and patients with Alzheimer’s disease
and mild cognitive impairment (MCI) using '*F-fluteme-
tamol brain PET [12].

The aim of this study was to discriminate patients with
amyotrophic lateral sclerosis (ALS) from Parkinson plus
syndromes (PP). Discrimination between these two brain
disorders is clinically relevant as motor neuron disease
may occur in association with diverse parkinsonian mani-
festations [13-15]. Similarly, Parkinson’s disease can also
manifest itself with atypical features, such as amyotrophy
[16]. This overlap is further highlighted by the fact that
both ALS and PP are considered neurodegenerative dis-
eases with prion-like inclusions, i.e., TDP43 in ALS, Tau in
corticobasal degeneration (CBD) and progressive supra-
nuclear palsy (PSP) and alpha-synuclein in multiple sys-
tem atrophy (MSA) [17]. In order to differentiate between
ALS and PP, we used the framework of the generalized lin-
ear model (GLM). We demonstrated that different classi-
fiers can be used to generate a disease-specific metabolic
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brain pattern if a data set of patients and healthy controls
is available for training. Moreover, we aimed to evaluate
whether classification based on expression scores of
disease-specific metabolic brain patterns is more perfor-
mant than a direct classification between two different
brain disorders. The latter approach uses the same classi-
fiers but does not require a training set of healthy controls
and generates a disease-discriminative instead of a
disease-specific brain pattern. For this study, we used a
principal component analysis (PCA) prior to classification
by logistic regression (LR) and SVM, and focused on the
discrimination between patients with ALS and Parkinson
plus syndromes (PP).

Materials and methods

Generalized linear model as framework for classification
and disease-specific brain patterns

Consider a vectorized medical image x with correspond-
ing discrete class label t. For a generalized linear model
[18] with linear feature transform characterized by the
transformation matrix A, the estimated output y is given
by:

y=7 (w'Ax+b) (1)

where f'is the activation function. A training set of data-
sets {x,,t,} (n=1,...,N) is used to determine the values
of the weight vector w and constant b such that a linear
decision boundary in feature space is created. However,
since the input data space is high dimensional compared
to the number of subjects (typically not exceeding a few
hundreds), the classification problem is ill-conditioned.
Therefore, the weight vector and constant are obtained
from the training data by searching the minimum of a
cost function which includes a loss function L(w,b) to
fit the GLM to the data (Eq.1) and a regularization term
R(w) to avoid overfitting [19]. As such, the weight vec-
tor is obtained by:

Ww* = arg min, {%Zf_lcn(w, b) HR(W)}
(2)

with A the parameter determining the degree of
regularization.

To differentiate between different neurodegenerative
disorders, various (multiclass) classifiers can be applied
which basically only differ in loss L(w,b) and
regularization R(w). Moreover, these classifiers can be
used to identify disease-specific brain patterns. The gen-
eration of these disease-specific patterns can be under-
stood from the GLM framework (Eq.1), which can be
rewritten as
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y=f ((ATw,x) +b) (3)

If the weight vector w is determined by training a clas-
sifier to discriminate between healthy controls and pa-
tients suffering from a specific brain disorder, (Eq.3)
demonstrates that classification is based upon taking the
inner product between A”w and «x, thus projecting the
image data x onto the vector A”w which could therefore
be interpreted as an imaging biomarker or a disease-spe-
cific brain pattern.

PCA as feature transform

A principal component analysis (PCA) can be regarded
as a dimensionality reduction technique by projecting
the data onto a subspace spanned by the eigenvectors
(principal components) of the data covariance matrix
[20]. For this study, we used PCA to define the feature
transformation matrix A, such that the rows of A are
given by the principal components. Therefore, the
marker A”w can be expressed as a weighted sum of prin-
cipal components.

LR and SVM as classifiers

Logistic regression is a probabilistic discriminative
model with an output variable y which can be inter-
preted as the probability that the transformed feature
vector Ax belongs to a specific class. Within the GLM
framework, LR corresponds to a logistic sigmoid as acti-
vation function (Eq.1) [21] with the logistic loss com-
bined with elastic-net regularization (Eq.2) [22]. Since
neighboring voxels are highly correlated, LR will only se-
lect a subset of representative voxels from the image
data [23], generating less dense image patterns which
are less appropriate for identifying disease-specific meta-
bolic brain patterns or for assisting clinicians in visual
readings. By applying PCA as a feature transform prior
to LR classification, the corresponding pattern is given
by a linear combination of voxelwise dense principal
components, therefore retaining regional information of
disease-related hyper- and hypometabolism.

On the other hand, SVM is an inherent binary classi-
fier that defines a hyperplane between two classes by
maximizing the margin representing the minimum dis-
tance from a separating hyperplane to the nearest data
point. In case no hyperplane can be found separating the
data completely, a soft margin SVM is used [24]. Within
the GLM framework (primal formalism), a soft margin
SVM is characterized by a step activation function (Eq.1)
and hinge loss with Ly-norm regularization (Eq.2). To
avoid overfitting given the limited PET data and to en-
sure an interpretable pattern, a SVM with a linear kernel
was considered [25]. Since SVM has an elegant dual for-
malism by expressing the classification model in terms
of Lagrange multipliers [26], the weight vector is a sum
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of training data weighted by these Lagrange multipliers
and can therefore already be interpreted as an image pat-
tern. As such, a feature transformation prior to SVM clas-
sification is not mandatory. However, a SVM-only-based
pattern is a superposition of noise and relevant metabolic
brain information, and therefore, a feature transform such
as PCA prior to SVM classification can still be useful as a
denoising step to increase classification performance and
improve pattern interpretability.

Classification of ALS and PP patients using '®F-FDG brain
PET imaging

Patient groups

An age- and gender-matched group of healthy controls
(HC;, n=29, 624 +6.4 years; 16 M/13F) was selected
from a prospective study. Exclusion criteria were a
history of neurological or psychiatric disorders, first-de-
gree relatives of persons with dementia and psychiatric
disorders needing treatment, major internal disorders
(including diabetes), abnormalities on blood and urine
screening, drug/alcohol abuse, abnormalities in clinical
neurological examination or on a neuropsychological
battery, or structural brain abnormalities on 3 Tesla
MPRAGE T1 or FLAIR MRI sequences.

ALS patients (7 =70, 62.1 + 12.5 years; 44 M/26 F) (9)
and PP patients (n=33, 68.5+7.9 years; 21 M/12 F;
preferential diagnosis: 20 PSP, 3 CBD, and 10 MSA)
were selected from an existing database of referrals
made to the tertiary neuromuscular and movement dis-
order clinic at the University Hospital Leuven, Belgium.
None of the patients had a history of other neurological
disorders. ALS patients were diagnosed using the Awaji
criteria [27]. All ALS patients underwent full neuro-
logical evaluation and electrodiagnostic testing as part of
their clinical workup by an experienced specialist in
neuromuscular disorders. None of the patients showed
evidence of respiratory compromise or nutritional ab-
normalities, such as dehydration or ketosis, at the time
of the '*F-FDG-PET scan.

'8F_-FDG brain PET data acquisition, reconstruction, and
preprocessing

All subjects fasted at least 6 h before the **F-FDG PET
acquisition. Before '®F-FDG injection, blood glucose was
measured to ensure a glucose level< 160 mg/dl. "*F-FDG
(153.5+15.0 MBq) was injected intravenously under
standard conditions, that is, subjects lying supine in a
dimly lit, quiet room, with ears and eyes open. Thirty
minutes after **F-FDG injection, a static scan of 30 min
was acquired. '®F-FDG PET scans were acquired using
ECAT HR+ camera for the ALS patients, HC and 19 PP
patients (Siemens, Erlangen, Germany) and a Biograph
16 HiRez PET/CT camera for 20 PP patients. On the HR
+ camera, attenuation-corrected '*F-FDG images were
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reconstructed using a 68Ge/68Ga transmission scan,
resulting in full width at half maximum (FWHM) of
7 mm. On the HiRez PET/CT camera, '*F-FDG images
were reconstructed using iterative ordered-subset ex-
pectation maximization (OSEM) with four iterations
over four subsets (FWHM 8 mm). During the acquisi-
tion, the subject’s head was immobilized by means of a
vacuum pillow. Reconstructed PET data were normal-
ized to Montreal Neurological Institute (MNI) space
using a brain '®F-FDG template using (PMOD version
3.7, PMOD Inc., Zirich, Switzerland). Subsequently,
scans were smoothed by applying a three-dimensional
isotropic 6 mm Gaussian kernel, after which the images
were masked (full brain mask) and vectorized. In order
to correct for intersubject variability including potential
scanner dependencies, the vectorized images were nor-
malized (divided by L,-norm) after performing a de-
mean, i.e., mean value for every subject was subtracted.

Training and validation

SVM and LR, combined with a PCA prior to classifica-
tion (PCA-SVM and PCA-LR), were evaluated to classify
ALS and PP patients and to generate ALS- and
PP-specific metabolic brain patterns. In addition, SVM
without prior feature transform was evaluated. For the
SVM implementation, a L; soft margin SVM with linear
kernel was considered (MATLAB version 2016b, The
MathWorks Inc., Massachusetts, USA). As illustrated in
Fig. 1, all binary classifiers were trained and tested by
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applying tenfold cross-validation (CV) while preserving
the balance in size of both classification groups. Within
each tenfold, an inner loop tenfold CV was defined over
the training folds to tune classifier-specific parameters.
For SVM, the soft margin and kernel scale hyperpara-
meters were optimized by applying a grid search over
the nested inner loop while for LR, the parameters con-
trolling the elastic-net and overall regularization were
determined by cyclical coordinate descent using the
Glmnet package [28]. The tenfold CV scheme was iter-
ated ten times randomly, and therefore, performance re-
sults were interpreted as average values together with
the corresponding standard deviation. Classification per-
formance was assessed by the receiver operating charac-
teristic (ROC) curves with corresponding area under the
curve (AUC) values, and by the sensitivity and specificity
(true positives are the patients having ALS diagnosed by
the model as ALS). Moreover, Pearson correlations were
determined between the individual pattern expression
scores (averaged over the ten random iterations) as de-
termined by PCA-SVM, PCA-LR, and SVM to compare
the output of three classifiers for direct classification be-
tween ALS and PP. Besides direct classification between
ALS and PP, ALS- and PP-specific brain patterns were
generated by classifying HC versus ALS and PP respect-
ively using either PCA-SVM, PCA-LR, or SVM. By ap-
plying tenfold CV over ten random validation schemes,
a series of ten pairs of pattern expression scores for both
the ALS- and PP-specific brain pattern was obtained for

Ten-fold outer loop
(train with optimal parameters)

~

|:| Training fold

[l Testing fold

¢

For each set of training folds: ten-fold
inner loop (tune parameters)

|:| Training fold

_

[l Validation fold

ol

Fig. 1 Schematic overview of the tenfold cross-validation. Within each tenfold of the outer loop for training and testing, a tenfold cross-validation
inner loop was defined over the training folds to optimize classifier-specific parameters
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each subject. To evaluate a classification based on these
ALS- and PP-specific pattern expression scores, a linear
SVM was trained and evaluated by tenfold CV and ROC
curves with corresponding AUC, sensitivity, and specifi-
city were determined to allow comparison with direct
classification between ALS and PP. Additionally, the RV
coefficient, which is a multivariate generalization of the
squared Pearson correlation coefficient with values in
the interval [0, 1] [29], was determined for the pairs of
individual ALS- and PP-specific pattern expression
scores (averaged over the ten random iterations) as de-
termined by the three classifiers to compare the output
of PCA-SVM, PCA-LR, and SVM in terms of disease-
specific pattern expression scores.

To compare the glucose metabolic brain patterns ob-
tained with SVM, PCA-SVM, and PCA-LR, all image data
were included to train the three classifiers for both classifi-
cation between ALS and PP and classification between
HC and either ALS or PP. Resulting discriminative and
disease-specific metabolic brain patterns were compared
using a voxelwise Pearson correlation coefficient.

Results

Direct classification between ALS and PP

The average ROC curves obtained by SVM, PCA-SVM,
and PCA-LR for direct classification between ALS and
PP are given in Fig. 2. The corresponding AUC values
are given in Table 1 together with the sensitivity and
specificity. Furthermore, the Pearson correlation coeffi-
cient (r) between the individual pattern expression
scores, as determined by the three classifier, is given in
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Table 3. For each classifier, the 3D discriminative pattern
A'w (see Eq. 2), obtained by using all image data for
training, is illustrated in Fig. 3. The values in each voxel
are the weights of the contribution of the classifier. The
positive values, marked in red, indicate regions of rela-
tive hypermetabolism in ALS patients compared to PP
patients, whereas the negative values, indicated in blue,
correspond to relative, regional hypometabolism in ALS
patients compared to PP patients.

Classification between ALS and PP using disease-specific
pattern expression scores

The performance measures for a classification between
ALS versus HC and PP versus HC for SVM, PCA-SVM,
and PCA-LR are given in Table 2. RV coefficients be-
tween the pairs of individual ALS- and PP-specific pat-
tern expressions scores are given in Table 3 for the three
classifiers. Since the RV coefficients demonstrated a high
correlation between ALS- and PP-specific pattern ex-
pression scores for all three classifiers, only the individ-
ual ALS- and PP-specific pattern expression scores as
determined by PCA-SVM were used to classify both
groups using a linear SVM. The average ROC curve for
this SVM classification, based on disease-specific pattern
expression scores and evaluated by a tenfold CV, is illus-
trated in Fig. 2, with a corresponding AUC of 0.91 and a
prediction accuracy of 85% (point along ROC curve with
identical sensitivity and specificity). Individual ALS- and
PP-specific pattern expression scores, averaged over the
ten random iterations, as determined by PCA-SVM are
plotted in Fig. 5, together with the hyperplane (in this

True positive rate
© o o o o o o
w s (6, » ~ o] ©

©
N}

0.1

— SVM
= PCA-SVM B
= PCA-LR
= ALS and PP expression scores | -

L 1 L L L

0 1 1 1 L
0 0.1 0.2 0.3 0.4

False positive rate

Fig. 2 Average ROC curves for the classification between ALS and PP using SVM, PCA-SVM, and PCA-LR respectively combined with the ROC curve for
a SVM classification between ALS and PP based on the ALS- and PP-specific pattern expression scores as determined by PCA-SVM using
a healthy control group and projecting individual "®F-FDG PET scans onto the ALS- and PP-specific metabolic brain patterns

0.5 0.6 0.7 0.8 0.9 1
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Table 1 Performance measures for classification between ALS and PP for SYM, PCA-SVM, and PCA-LR: sensitivity, specificity, and AUC. In
addition, the accuracy measures are also given for a SVM classification between ALS and PP based on the ALS- and PP-specific pattern
expression scores as determined by PCA-SVM by using a healthy control group and projecting individual '®F-FDG PET scans onto the

ALS and PP-specific metabolic brain patterns

Sensitivity Specificity AUC
SVM 0.86+0.01 0.82+0.01 0.89+0.01
PCA-SVM 0.86 +0.02 0.82+0.02 0.90 +0.01
PCA-LR 0.85+0.02 0.82£0.02 0.90 £0.01
Classification based on ALS and PP expression scores (SVM) 0.90+0.02 0.83+0.01 091 +001
case a line) separating both groups as determined by Discussion

a linear SVM. ALS- and PP-specific metabolic brain
patterns, obtained by differentiating ALS and PP pa-
tients from HC and including all image data for train-
ing, are illustrated in Fig. 4 for the three classifiers.
Again positive values, marked in red, indicate regions
of relative hypermetabolism in ALS or PP patients
compared to HC, whereas the negative values, indi-
cated in blue, correspond to relative, regional hypo-
metabolism in ALS or PP patients compared to HC.
Specifically for the ALS-specific brain pattern, relative
hypometabolism in the frontal and parietal cortex and
relative hypermetabolism in the anteromedial tem-
poral cortex was observed while the PP-specific brain
patterns demonstrated relative hypometabolism in the
striatum, pons and frontal cortex, and cerebellum.
The voxelwise Pearson correlation coefficients be-
tween the disease-specific patterns as determined by
the three classifiers are given in Table 3, demonstrat-
ing a consistently high correlation (>0.66) between
disease-specific glucose metabolic brain patterns.

The aim of this study was twofold. First, we demonstrated
that a direct classification between different brain disor-
ders such as ALS and PP is equally performant as a classi-
fication based on the individual expression scores of
disease-specific glucose metabolic patterns. More specific-
ally for discriminating between ALS and PP, a linear SVM
using ALS- and PP-specific pattern expression scores clas-
sified the two groups with a AUC of 0.91 (as determined
by PCA-SVM and illustrated in Fig. 5), which is very close
to the AUC of 0.90 for a direct classification by PCA-SVM
(Table 1). Moreover, the high classification accuracies
allow both approaches to support the sometimes difficult
early differential diagnosis between ALS and PP in a clin-
ical setting. This is particularly relevant if the main clinical
question is to discriminate between two specific diseases
as it obviates the need for healthy controls to generate
disease-specific glucose metabolic patterns. In terms of
direct classification between ALS and PP, PCA-LR, SVM,
and PCA-SVM performed very similar (see ROC curves in
Fig. 2 and Table 1), wherein additionally, the disease-

PP patients

Fig. 3 Discriminative patterns (arbitrary units) between ALS and PP determined by PCA-LR (a), PCA-SVM (b), and SVM (c). The values in each voxel
represent the weights of the contribution of the voxel for the classifier. Positive values (red) indicate regions of relative hypermetabolism of
ALS patients compared to PP patients, whereas negative values (blue) correspond to relative hypometabolism of ALS patients compared to

-0.008
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Table 2 Performance measures for classification between ALS
versus HC and PP versus HC for SVM, PCA-SVM, and PCA-LR:
sensitivity, specificity, and AUC

Sensitivity Specificity AUC

ALS

SVM 0.98 £0.01 0.97 £0.01 0.99 £0.01

PCA-SVM 0.98 +£0.01 0.99+0.01 0.99 +£0.01

PCA-LR 097 +0.02 0.90+0.02 097+ 001
PP

SVM 0.98 +£0.01 0.97 +£0.01 0.99 +£0.01

PCA-SVM 0.92+001 0.94+001 0.99+0.01

PCA-LR 0.94 +0.02 0.97£0.02 0.98 £0.01

specific pattern expression scores between these three dif-
ferent classifiers also strongly correlated (Table 3). There-
fore, no specific approach could be put forward as the
classifier of choice using either a direct approach or by in-
cluding a group of healthy controls. Importantly, these
findings confirmed that SVM is a suitable classifier for
'8E_FDG brain PET imaging.

Second, we showed that different classifiers can be
used to generate both disease-discriminative (Fig. 3) and
disease-specific (Fig. 4) glucose metabolic brain patterns
using '®F-FDG brain PET imaging. Since ALS patients
match a positive and PP patients a negative pattern
score, positive weights in the disease discriminative pat-
tern constitute hypermetabolism in ALS patients com-
pared to PP patients while negative pattern weights
correspond to hypometabolic brain regions in ALS pa-
tients compared to PP patients. This same holds for the
disease-specific ALS and PP pattern where an ALS or
PP patient corresponds to a positive pattern score and
thus positive pattern weights correspond to hypermetab-
olism in ALS and PP patients compared to healthy con-
trols while negative weights represent hypometabolic
brain regions in ALS and PP patients compared to
healthy controls. Correlating the pairs of individual pro-
jection scores for a ALS- and PP-specific metabolic
brain pattern determined by each of the three methods
resulted in a RV coefficient of 0.93 on average (Table 3).
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Similarly, the voxelwise Pearson correlation coefficient
for the disease-specific patterns demonstrated the strong
correlation between ALS and PP patterns as determined
by the three classifiers, with a lower correlation between
patterns determined by SVM and PCA-LR (r value of
0.70 for ALS and 0.66 for PP respectively). The lower
correlation between SVM and PCA-LR patterns could
be explained by the fact that SVM and PCA handle
noise and intersubject variability differently. Although,
these patterns demonstrated visually the same main re-
gions of hyper- and hypometabolism. Overall, the gener-
ated ALS- and PP-specific patterns were very similar to
the ALS and PP patterns that have been discussed exten-
sively in literature. Specifically, for ALS patients, relative
hypometabolism in the frontal and parietal cortex and
relative hypermetabolism in the anteromedial temporal
cortex, in the absence of concomitant frontotemporal
dementia, cerebellum, and brainstem have been ob-
served [11]. In contrast, PP patients have relative hypo-
metabolism in the striatum and according to the
subtype, relative hypometabolism in the pons and frontal
cortex (PSP), relative hypometabolism in the cerebellum
(MSA), and a very asymmetric relative hypometabolic
pattern in CBD [11, 30-32]. As such, the generated PP
pattern is a composition of different subtype patterns
and therefore masks some subtype-specific characteris-
tics such as the CBD-specific hypometabolic asymmetry.
On the other hand, the highly accurate classification
results implied that the generated patterns are to be
considered as disease-specific for ALS and PP or dis-
criminative between ALS and PP. Therefore, the glucose
metabolic brain patterns reflect disease pathogenesis and
hold information about diagnosis and prognosis. This
way, this pattern not only supports differential diagnosis
but can also have an added value for assisting visual
reading.

While the SVM approach is in line with previous SVM
implementations that were used for the classification of
ALS patients [11], the PCA-LR classifier closely resembles
the SSM/PCA approach proposed by Eidelberg et al. [8].
The SSM/PCA has often been applied to identify meta-
bolic disease-specific patterns and corresponding network

Table 3 RV coefficient between pairs of individual ALS- and PP-specific pattern expression scores (averaged over ten random

iterations) as determined by SVM, PCA-SVM, and PCA-LR by projecting corresponding '8F-FDG PET scans on a ALS- and PP-specific
pattern respectively, combined with the Pearson correlation coefficient (r) between the individual projection scores, again averaged
over ten random iterations, onto a discriminative brain pattern for ALS and PP (direct classification) for SVM, PCA-SVM, and PCA-LR.
The voxelwise correlation coefficients between the ALS and PP metabolic brain patterns, determined by the different classifiers are

also reported

RV coefficient for disease expression scores

r for prediction scores ALS vs PP r ALS pattern r PP pattern

SVM PCA-SVM 0.94
SYM PCA-LR 091
PCA-SVM PCA-LR 0.95

0.98 0.89 0.79
092 0.70 0.66
0.92 0.86 0.85
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Fig. 4 Disease-specific patterns (arbitrary units) for ALS (1) and PP (2) determined by PCA-LR (a), PCA-SVM (b), and SVM (c). The values in each
voxel represent the weights of the contribution of the voxel for the classifier. Positive values (red) indicate regions of hypermetabolism of ALS or
PP patients compared to HC whereas negative values (blue) correspond to hypometabolism of ALS or PP patients compared to HC

0.008

-0.008

expression scores, such as to generate a Parkinson’s
disease-related pattern based on metabolic PET data [7].
However, the SSM/PCA approach includes several pre-
processing steps other than PCA such as double demean
and log transform, and selects the relevant principal com-
ponents for the disease-specific glucose metabolic brain
pattern in a more heuristic way [8]. On the other hand,
our approach assigned a proper weight for every single
principle component during the training step of the classi-
fier. This way, all principle components were taken into
account. For a SVM classification, a combination with
PCA did not improved the prediction accuracy of a classi-
fication between ALS and PP (Table 2). Nevertheless, a
feature transform prior to SVM classification can still be
beneficial to reduce the impact of noise on classification
performance and to improve the interpretability of
disease-related glucose metabolic brain patterns (Fig. 5).
For this study, a PCA was applied as feature transform
since it has proven its usefulness for PET imaging [7].
However, other feature transforms such as factor analysis

may be applied prior to classification. Furthermore, inter-
pretable weight maps and patterns could be created by in-
cluding spatial regularization such as total variation (TV)
to couple neighboring voxels and to recover the predictive
disease-related brain regions more accurately [33, 34].
However, TV optimization tends to be slow and challen-
ging since all voxels are spatially coupled.

Some limitation to this study is to be considered. First
of all, PET images were normalized to MNI space using
PET-only information since magnetic resonance (MR) im-
ages were not available. Although this approach could re-
duce the accuracy of the normalization, the impact on the
resulting discriminative and disease-specific patterns is ex-
pected to be limited. Moreover, since high-resolution ana-
tomical MR data were not available, we did not consider a
patient-specific gray matter mask to spatially constrain the
disease-specific or discriminative brain patterns nor did
we apply prior knowledge to generate these pattern. These
approaches could prove beneficial and will be considered
in the future. Another limitation is that not all PET data
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were acquired with the same PET scanner. However,
potential scanner differences were accounted for during
the preprocessing steps which comprised a histogram
normalization and demean. Moreover, it has been shown
that resolution properties of the two PET scanners that
have been used for this study were very similar for the ap-
plied reconstruction settings [35].

In terms of patient groups, this study was limited to ALS
and PP patients. We did not extend the PP group to a more
general ALS mimics group, since the main focus of this
study was to evaluate different approaches using *F-FDG
brain PET only from a methodological point of view.
Finally, we did not include patients with Idiopathic Parkin-
son’s disease (iPD) in the group of patients with Parkinson-
ian symptoms. Since *F-FDG brain PET is not part of the
routine clinical workup, in contrast to imaging of the dopa-
mine transporter (DAT), F-FDG brain PET data are
limited for this patient group. Nevertheless, efforts are
being made to extend the '®F-FDG brain PET data with
iPD patients for future classification and generation of
disease-specific or discriminative glucose metabolic brain
patterns for ALS, iPD, and different subtypes of PP.

Conclusion

We demonstrated that the overall prediction accuracy for
classifying neurodegenerative disorders such as ALS and
PP using the expression scores of disease-specific meta-
bolic brain patterns was very high (> 80%) and equaled the
performance of a direct classification approach. Although
disease-specific glucose metabolic patterns require the

inclusion of healthy controls, these patterns provide
disease-related relative hyper- and hypometabolic infor-
mation, and therefore, can support visual reading. We also
showed that the performance of three different classifiers
was equivalent with very similar glucose metabolic brain
patterns. These findings confirm SVM as an appropriate
classifier for '*F-FDG brain PET imaging and for generat-
ing disease-specific metabolic brain patterns.
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