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Abstract

Background: The folate receptor a (FRa)-targeting antibody-drug conjugate (ADC), IMGN853, shows great
antitumor activity against FRa-expressing tumors in vivo, but patient selection and consequently therapy outcome
are based on immunohistochemistry. The aim of this study is to develop an antibody-derived immuno-PET imaging
agent strategy for targeting FRa in ovarian cancer as a predictor of treatment success.

Methods: We developed [*°Zr]Zr-DFO-M9346A, a humanized antibody-based radiotracer targeting tumor-
associated FRa in the preclinical setting. [¥°Zr]Zr-DFO-M9346A’s binding ability was tested in an in vitro uptake assay
using cell lines with varying FRa expression levels. The diagnostic potential of [3°Zr]Zr-M9346A was evaluated in KB and
OV90 subcutaneous xenografts. Following intravenous injection of [*°Zr]Zr-DFO-M9346A (~90 uCi, 50 pg), PET imaging
and biodistribution studies were performed. We determined the blood half-life of [*°Z1]Zr-DFO-M9346A and compared

it to the therapeutic, radioiodinated ADC ['*'l]

-IMGN853. Finally, in vivo studies using IMG853 as a therapeutic, paired
with [¥9Zr]Zr-DFO-M9346A as a companion diagnostic were performed using OV90 xenografts.

Results: DFO-M9346A was labeled with Zr-89 at 37 °C within 60 min and isolated in labeling yields of 85.7 + 5.7%,
radiochemical purities of 98.0 + 0.7%, and specific activities of 3.08 + 043 mCi/mg. We observed high specificity for
binding FRa positive cells in vitro. For PET and biodistribution studies, [**Zr]Zr-M9346A displayed remarkable in vivo
performance in terms of excellent tumor uptake for KB and OV xenografts (45.8 + 29.0 %IA/g and 26.1 + 7.2 %IA/g),
with low non-target tissue uptake in other organs such as kidneys (4.5 + 1.2 %IA/g and 4.3 + 0.7 %IA/g). A direct
comparison of the blood half life of [¥ZrZr-M9346A and [']IMGN853 corroborated the equivalency of the
radiopharmaceutical and the ADC, paving the way for a companion PET imaging study.

Conclusions: We developed a new folate receptor-targeted ®*Zr-labeled PET imaging agent with excellent
pharmacokinetics in vivo. Good tumor uptake in subcutaneous KB and OV90 xenografts were obtained, and ADC
therapy studies were performed with the precision predictor.
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Background

Over the last years, the development of novel antibody-
drug conjugates (ADCs) has been a trending topic in
cancer therapy [1]. This technology uses an antibody to
deliver a cytotoxic drug selectively to a tumor cell popula-
tion by targeting tumor-associated receptors. There are
several reasons driving the development of antibody-drug
conjugates for cancer treatment. One feature is that a
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humanized or human antibody bears very high specificity
and affinity towards its cancer specific antigen [2]. An-
other feature is that some of the most potent non-targeted
chemotherapeutics such as maytansine have extensive side
effects in patients [3], which intuitively could be reduced
by targeting the drugs to their intended site of action.
However, the transition of antibody-drug conjugates into
the clinic would benefit greatly from non-invasive preci-
sion predictors that could potentially allow for patient
stratification and early evaluation of effectiveness. Patient
stratification according to the expression of membrane-
bound antigens typically requires invasive biopsy via
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needle aspiration of multiple tissue regions to overcome
tumor heterogeneity. In addition, decisions regarding
patient management are often made by using archived
biopsy results that do not necessarily reflect antigen ex-
pression at the time of treatment.

Mirvetuximab soravtansine (IMGN853) is an antibody
-drug immunoconjugate that consists of a humanized
monoclonal antibody (M9346A) targeting folate receptor
alpha (FRa)-positive cancer cells [4] attached to a highly
potent cytotoxic maytansinoid, DM4 (Fig. 1) [5]. Al-
though IMGN853 has been evaluated in a phase 1 ex-
pansion clinical study [6, 7] and is currently being
evaluated in the Forwardl (NCT02631876) phase 3 clin-
ical study, it is noteworthy that IMGN853 is not the only
folate receptor targeting therapeutic approach currently
evaluated in clinical trials [8, 9]. Nonetheless, the anti-
body, with its high specificity and affinity towards FRa,
has limited distribution in normal human tissue [10, 11]
and mainly targets the overexpression in epithelial ovar-
ian cancer and non-small cell lung cancer [12, 13]. After
endocytosis, the ADC releases its toxic payload inside
the cell via lysosomal degradation of the antibody and
disulfide reduction of the sulfo-SPDB linker. Following
binding of DM4 to the microtubules, the targeted cancer
cell undergoes mitotic arrest and cell death.

In order to improve the drug development process of
novel therapeutic agents, it is becoming more and more
important to concurrently develop companion diagnos-
tics [14-16]. With this in mind, the aim of this study
was to develop and evaluate an ®Zr-labeled antibody de-
rived from the FRa-targeting antibody, M9346A, as an
immuno-positron emission tomography (immuno-PET)
companion diagnostic agent for the antibody-drug con-
jugate IMGNS853 that is based on the same humanized
antibody (Fig. 1). In order to develop a M9346A-based
PET imaging agent, we asked the following questions:
(1) Is it possible to achieve the immunoreactivity after
modification with desferrioxamine (DFO) as a chelator
and radiolabeling with Zr-89? (2) Is this antibody-based
PET imaging agent able to delineate ovarian cancer xe-
nografts? (3) Does the pharmacokinetics of the radio-
pharmaceutical match with the pharmacokinetic profile
of the antibody-drug-conjugate? (4) Can we predict
antibody-drug conjugate success using the novel com-
panion diagnostic?

Methods

Materials

Unless otherwise stated, all chemicals and solvents were
used without further purification. Water used for this
study was ultrapure (>182 MQcm™ at 25 °C).
Phosphate-buffered saline (PBS) as well as cell growth
medium was purchased from the Media Preparation Fa-
cility at Memorial Sloan Kettering Cancer Center (MSK)
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(New York, NY). Humanized monoclonal antibody
recognizing FRa and M9346A, as well as antibody-
drug-conjugate IMGN853 were provided by Immuno-
Gen, Inc. (Waltham, MA) and further purified via a
PD10 desalting column (GE Healthcare). Concentrations
of solutions containing antibody were determined by
using a NanoDrop™ 2000 spectrophotometer from
Thermo Fisher Scientific (Waltham, MA). The bifunc-
tional chelator p-isothiocyanatobenzyl-desferrioxamine
(DFO-Bz-NCS) was purchased from Macrocycles (Plano,
TX). %°Zr-oxalate was acquired from 3D Imaging, LLC
(Maumelle, AR). HPLC reactions (1.0 mL/min, phosphate
-buffered saline) were performed on a Shimadzu UFLC
HPLC system equipped with a DGU-20A degasser, a
SPD-M20A UV detector, a LC-20AB pump system, and a

“toxic payload”

IMGN853

“Zr-89 (PET)”

[89Zr]Zr-DFO-M9346A

Fig. 1 Concept of an antibody-based companion diagnostic for
cancer therapy using positron emission tomography (PET) imaging.
The humanized antibody, M9346A, functions as targeting vector for

antibody-drug-conjugate as well as companion diagnostic
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CBM-20A communication BUS module using a size
exclusion column (GE Superdex™ 200, 10/300 GL).

Functionalization and radiolabeling of antibody M9346A
The humanized antibody, M9346A, was functionalized
with the bifunctional chelator p-isothiocyanatobenzyl-des-
ferrioxamine (DFO-Bz-NCS) with a 1:3.5 antibody:DFO
ratio, as previously described [17, 18]. Specifically, a solu-
tion of previously purified antibody M9346A (500 pL,
2.27 mg) in PBS was adjusted to pH = 85 with 1 M
Na,CO3; (1.0 pL). Then, a solution of DFO-Bz-NCS
(4.2 mM, 4.0 pL) in dimethylsulfoxide was slowly added
and the reaction mixture was incubated at 37 °C for
90 min. Afterwards, the DFO-modified antibody was puri-
fied using a PD-10 desalting column and isolated in PBS
solution for in vitro and in vivo studies.

A solution of **Zr-oxalate in 1 M oxalic acid (5.0 pL,
85.1 MBgq, 2.3 mCi) was added to phosphate-buffered saline
(100 pL), and a 1 M sodium carbonate solution (4.8 pL)
was used to adjust the pH to 7.1-7.4. Then, a solution of
DFO-M9346A (500 pL, 500 pg) was added to the neutral-
ized Zr-89 solution and the reaction mixture was incubated
at 37 °C for 1 h. After purification using PD-10 desalting
columns (GE Healthcare), [¥Zr]Zr-DFO-M9346A (85.7 +
5.7% isolated radiochemical yield and 3.08 + 0.43 mCi/mg
specific activity) was isolated in a PBS solution (2.0 mL)
and radiochemical purity (98.0+0.7%) was determined
through radio-instant thin/layer chromatography. Then, the
resulting **Zr-radiolabeled antibody solution was diluted
with PBS to the desired volume for in vitro and in vivo
studies.

Cancer cell lines

We chose four cancer cell lines with variable FRa ex-
pression levels to correlate imaging findings. The
HeLa-derived cancer cell line KB (high expression), the
ovarian cancer cell line OV90 (low/medium expression),
the human lung cancer cell line H2110 (low/medium),
and the human lung cancer cell line A549 (low/no ex-
pression) were purchased from ATCC (Manassas, VA).
No further cell line authentication was conducted, and
the cell lines were expended by passaging 2—3 times, ali-
quoted, and frozen in liquid nitrogen. For use in in vitro
as well as in vivo experiments, the cell lines were grown
in medium recommended by American Type Culture
Collection (ATCC) and passaged regularly at 70-80%
confluence every 3—4 days. All cell lines were cultured at
37 °C and 5% carbon dioxide.

Characterization and in vitro experiments

[3°Zr]Zr-DFO-M9346A was investigated for stability by
incubating the radioligand in 1% bovine serum albumin
at 37 °C for 3 days. Therefore, radiochemical purity of
[39Zr]Zr-DFO-M9346A was tested at various time points
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via radio-instant thin layer chromatography (Eckert &
Ziegler, Germany) with ethylendiaminetetraacetic acid
(50 mM) as mobile phase.

A Lindmo assay [19] was performed to validate the in-
tegrity of the ®Zr-radiolabeled antibody M9346A. In de-
tail, serial dilutions of KB cells were incubated with one
concentration of [*Zr]Zr-DFO-M9346A in Eppendorf
vials (1.5 mL) on a shaking rack. After incubation at
room temperature for 1 h, cells were washed with
ice-cold PBS and the retained radioactivity on cells was
measured using a WIZARD? automatic y-counter from
PerkinElmer.

Furthermore, an in vitro binding assay was performed
with cell lines expressing different levels of FRa, as pre-
viously described [20]. One day prior to the in vitro ex-
periment, the cells lines KB, OV90, and H2110, as well
as A549 (each 1.0 x 10° cells per well, >90% viability for
each cell line) were seeded into 6-well plates containing
growth medium (2.0 mL) and incubated at 37 °C to form
subconfluent cell monolayers. Then, growth medium
was removed from the 6-well plates, cells were washed
with PBS, and 900 pL of growth medium was added.
After 1 h of incubation at 37 °C, a solution of
[3°Zr]Zr-DFO-M9346A (0.5 pCi, 100 ng) in PBS
(100 pL) was added to the wells. For blocking studies,
cells were pre-incubated with humanized antibody
M9346A (10 pg) 5 min prior to the addition of *°Zr-ra-
diolabeled antibody (0.5 pCi, 100 ng). To determine the
number of cells at the time of the experiment, a separate
set (n =3) of wells for each cell line and experiment was
analyzed by detaching the cells with trypsin and counted
immediately using a Vi-cell XR cell viability analyzer
(Beckman Coulter). After 1 h post-incubation at 37 °C,
the supernatant of each well was collected together with
washing solution of ice-cold PBS. Then, cells were lysed
with sodium hydroxide solution (1 M, 1.0 mL) for 5 min
at room temperature. Finally, each cell suspension was
collected and all radioactive samples were measured
using a WIZARD? automatic y-counter from PerkinEl-
mer (Waltham, MA). Receptor-specific uptake was de-
termined by correlating cell-bound activity relative to
non-bound activity in the supernatant and displayed as a
percentage of applied activity per 5.0 x 10° cells.

Animals

All in vivo studies and procedures were performed in ac-
cordance with an approved protocol from the Institu-
tional Animal Care and Use Committee at MSK. All in
vivo experiments were carried out in female, athymic
nude mice (Envigo; outbread; 6-8 weeks, 20-25 g). Sub-
cutaneous KB and OV90 xenografts (150 +20 mm?)
were established as previously described [5, 20]. In de-
tail, suspended KB cells (1.5x 10°, viability >93%) or
suspended OV90 cells (1.0 x 107, viability: >95%) in a
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solution containing a 1:1 mixture of Matrigel (Becton
Dickinson, Bedford, MA) and cell culture media (no FBS
for OV90 xenografts) were subcutaneously inoculated
on the right shoulder of anesthetized mice (1.5-2.0%
isoflurane (Baxter Healthcare) in medical air (2 L/min)).
Prior in vivo studies, KB tumors were grown for 9-
10 days post-implantation and OV90 tumors were
grown for 21 days.

In vivo PET/CT imaging and biodistribution

For in vivo studies, PET images were recorded using a
small-animal Inveon® PET/CT system from Siemens
(Knoxville, TN) and mice were anesthetized with 1.5-
2.0% isoflurane at 2.0 L/min flow of medical air. PET
images were analyzed using AsiPro VM™ software
(Concorde Microsystems) and Inveon research work-
place 4.1 software (Siemens Healthcare). For biodistribu-
tion studies, mice were euthanized at pre-determined
time points through asphyxiation with carbon dioxide
and organs of interest were collected, weighed, and
counted using a WIZARD? automatic y-counter from
PerkinElmer. The percentage of tracer uptake stated as
percentage injected activity per gram of tissue (%IA/g)
was calculated as the activity associated with tissue per
organ weight per actual injected dose, decay corrected
to the start time of counting. KB tumor-bearing mice (n
=10) were injected with [8°Zr]Zr-DFO-M9346A (7.75 +
0.25 MBgq, 209.0 + 6.7 pCi, 50 pg) in PBS (200 pL). PET
images were acquired at 4 h, 24 h, 48 h, and 72 h
post-injection, and biodistribution studies were per-
formed at 24 h and 72 h (each cohort, n=5). OV90
tumor-bearing mice (n=6) were injected with
[3°Zr]Zr-DFO-M9346A (2.02 + 0.08 MBq, 48.4 + 2.0 uCi,
50 pg) in PBS (200 pL). PET images were acquired at
24 h and 48 h post-injection, and biodistribution studies
were performed at 24 h and 48 h post-injection of radi-
oligand. Each tumor-bearing cohort exhibited expected
bone uptake upon release of Zr-89 from the chelator
desferrioxamine (DFO) of about 5-10 %IA/g.

Radiolabeling of ADC

All iodine-131 radiolabeling reactions were performed in
pre-coated Iodogen (1,3,4,6-tetrachloro-3a,6a-diphenyl
glycoluril) tubes (100 pg per tube). For instance, an aque-
ous solution of Na'®'I (37.0 MBgq, 1.0 mCi) was added to a
phosphate buffered saline solution of IMGN853 (250 pg,
45 uL) and the tube containing the reaction mixture was
gently agitated at 1-min intervals at room temperature
over a period of 10 min. After purification using PD-10
desalting columns, [**'1]-IMGNB853 (32.1 MBq, 0.87 mCi)
was isolated in 87% radiochemical yield and high radio-
chemical purity (99.9%).

Page 4 of 10

Blood half-life studies

Female athymic nude mice (6-8 weeks, n=5) were
injected intravenously with [8°Zr]Zr-DFO-M9346A (2.3
+0.2 MBq, 62.6+4.6 pCi, 25 pg) or [*'I]-IMGN853
(2.7 £0.1 MBq, 73.4 £ 2.6 uCi, 25 pg). At predetermined
time points (0.5 h, 1.0 h, 3.0 h, 6.0 h, 24 h, 48 h, and
72 h), a sample of blood was obtained from the great sa-
phenous vein of each animal in a heparin-coated capil-
lary glass tube and the weights of the collected blood
samples were obtained by using an analytical balance
Toledo XS105 from Mettler. The radioactivity of the
blood samples was recorded with a WIZARD? automatic
y-counter from PerkinElmer. The residual radiotracer,
expressed as a percentage injected dose per gram (%IA/
g), was calculated as the activity present in the blood
weighed per actual injected dose, decay corrected to the
time of counting.

Biodistribution studies

For biodistribution studies, OV90 tumor-bearing nude
mice (6—8 weeks, n =5) were injected intravenously with
[**M]-IMGNS853 (1.42 + 0.02 MBq, 38.3 + 0.4 uCi) in PBS
(200 pL). At 48 h post-injection, mice were euthanized
and organs of interest were collected, weighed, and
counted with a WIZARD? automatic y-counter from
PerkinElmer.

In vivo therapy studies

Tumor volumes for all mice were measured via manual
caliper measurements of the longest dimension (x),
shortest dimension (y), and height (z), assuming an el-
lipsoid shape (V= (3.1415/6) x (x x y x z) [mm?]). During
tumor measurements, weight for all mice was recorded,
and after initial tumor measurements, mice were random-
ized into three cohorts (n =3-5) per cohort ensuring all
cohorts had tumor volumes of 150—200 mm?®. One day
after initial tumor volume measurements, mice in the
therapy cohort A were co-administered with a solution of
ADC (1.25 mg/kg, 31.2 pg) and companion imaging agent
[3Zr]Zr-DFO-M9346A (3.34 + 0.04 MBq, 90.3 + 1.1 uCi,
25 pg) in PBS (200 pL). Cohort B was injected with the
companion imaging agent [*Zr]Zr-DFO-M9346A (3.68 +
0.07 MBq, 99.5 + 1.8 uCi, 25 pg). Cohort C was injected
with PBS (200 pL). Two days after administration, mice of
cohort A and cohort B were anesthetized with 1.5-2.0%
isoflurane at 2.0 L/min flow of medical air and PET/CT
imaging was accomplished over 10 min using small-ani-
mal Inveon® PET/CT system from Siemens (Knoxville,
TN). Then, tumor volumes were determined via caliper
measurement every 3 to 4 days up to an endpoint volume
of > 1000 mm?. Additionally, all mice were assessed twice
per week throughout the study for outward signs of tox-
icity and decreasing body weight.
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Results

Development of [3°Zr]Zr-DFO-M9346A

Modification of the humanized monoclonal antibody (mAb),
M9346A, with the bifunctional chelator DFO-Bn-NCS was
accomplished using a previously reported method (Fig. 2a,
Additional file 1: Figure S1) [17, 18, 21]. First, desferrioxa-
mine was coupled to lysine-NH, groups of the parent anti-
body (1:3.5 antibody: DFO ratio) at pH = 8.5 over 90 min in
phosphate buffered saline, followed by purification using
PD-10 desalting columns. Subsequently, radiolabeling of the
modified mAb with neutralized [*°Zr]Zr-oxalic acid solution
proceeded in PBS at 37 °C over 60 min, followed by purifi-
cation using PD-10 desalting columns. DFO-M9346A was
radiolabeled reliably with good specific activity (3.08 +
043 mCi/mg) and radiochemical purity (98.0 +0.7%).
Lindmo assays of the resulting radiolabeled antibody con-
struct confirmed that the immunoreactivity of the con-
struct was established through binding of the antibody to
FRa in vitro (83.4 + 3.5%, Additional file 2: Figure S2). Sta-
bility of [*Zr]Zr-DFO-M9346A was examined in bovine
serum albumin at 37 °C over a period of 72 h and showed
that more than 95% of the radioligand remained intact
(Additional file 3: Figure S3). Further characterization of
[39Zr] Zr-DFO-M9346A included an in vitro cell uptake
assay using cancer cell lines with various expression levels
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of FRa (Fig. 2c). We observed highly specific
cell-associated uptake and retention in KB, OV90, and
H2110 after 1 h of incubation at 37 °C (43.9 + 0.9%, 17.6 +
0.5%, and 17.3 + 0.8%, per 500,000 cells respectively), cor-
responding to their folate receptor expression levels [5].
The cancer cell line A549 with very low expression levels
of FRa displayed negligible uptake (0.4 + 0.1%).

In vivo and ex vivo experiments with [3°Zr]Zr-DFO-
M9346A in subcutaneous epithelial cancer xenografts

We first asked whether [*°Zr]Zr-DFO-M9346A can tar-
get a tumor in vivo known to be high in expression of
FRa (Fig. 3a and Additional file 4: Figure S4). After tail
vein injection of the radioligand, small-animal PET im-
aging (4 h, 24 h, 48 h, and 72 h) and biodistribution studies
(24 h and 72 h) were conducted using KB tumor-bearing
mice (female, athymic, #n = 10). Serial PET imaging showed
clear delineation of the tumor already after 24 h with low
uptake in normal tissue. The maximum intensity projec-
tions (MIPs) indicated that blood-pool and background ac-
tivity cleared over time, leading to improved
tumor-to-background ratios at 48 h post-injection. Ex vivo
biodistribution data corroborated the PET data, as high
tumor localization of [*°Zr]Zr-DFO-M9346A at 24 h (30.1
+19 %IA/g, n=5) was observed and tumor uptake
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Fig. 2 Synthesis and characterization of [°Zr]Z+-DFO-M9346A. a Conjugation of p-isothiocyanatobenzyl-desferrioxamine (DFO-Bz-NCS) to humanized
antibody M9346A in basic aqueous conditions at 37 °C for 90 min and #°Zr-radiolabeling of DFO-M9346A at 37 °C for 60 min. b After purification of
reaction mixture using a PD-10 desalting column, quality control of [#9Zr]Zr-DFO-M9346A was performed using radio-instant thin layer
chromatography in a solution of EDTA (50 mM). ¢ In vitro uptake studies of either [*°Zr]Zr-DFO-M9346A (100 ng) or a mixture of [*°Zr]Zr-
DFO-M9346A (100 ng) and M9346A (10 ug) using cancer cell lines KB, OV90, H2110, and A549 with various expression levels of FRa. **P
<0.01; ***P<0.001. Error bars represent the SD
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Fig. 3 In vivo studies of [*°Zr]Zr-DFO-M9346A: a PET images acquired at 24 h and 48 h post-injection and biodistribution studies performed at
24 h and 72 h with [*°Zr]Zr-DFO-M9346A intravenously administered in KB tumor bearing mice. b PET images acquired at 24 h and 48 h post-
injection and biodistribution studies performed at 24 h and 72 h with [¥°ZrZr-DFO-M9346A intravenously administered in tumor bearing mice

increased over time out to 72 h (45.8 + 29.0 %IA/g, n=5)
post-injection, suggesting an optimal time point for future
PET imaging studies without increasing bone uptake over
time (Additional file 5: Figure S5).

After the first proof-of-concept experiment using KB
cells, we set out to validate [¥Zr]Zr-DFO-M9346A in a
more clinically relevant cancer model using the ovarian
cancer cell line OV90. To this end, [¥Zr]Zr-DFO-M9346A
was intravenously injected into female athymic nude
mice bearing a subcutaneous OV90 xenograft on the
right shoulder. PET imaging and ex vivo biodistribu-
tion after 24 h and 48 h confirmed efficient retention
of the radioligand in the tumor (24.2 + 6.3 %IA/g, n =
6) with very limited background uptake (Fig. 3b and
Additional file 6: Figure S6).

Pharmacokinetic head-to-head comparison between
IMGN853 and [*°Zr]Zr-DFO-M9346A

After successful characterization of the antibody-based
PET imaging agent showing very promising performance
in vivo, we next set out to validate that the

antibody-drug conjugate and companion diagnostic
show nearly identical pharmacokinetic profiles. In order
to achieve this goal, we performed a head-to-head com-
parison between both antibody constructs. In order to
do that, we radiolabeled the antibody-drug conjugate,
IMGNS853, through direct halogenation with I-131
(Fig. 4a). ["*'1]-IMGN853 was isolated in good isolated
radiochemical yields (86.7 + 13.5%) and high radiochem-
ical purity (99.3 + 0.7%). Based on previous in vitro stud-
ies with [¥Zr]Zr-DFO-M9346A, we tested whether the
radiolabeled ADC retains its ability to bind to FRa and
performed an in vitro uptake with using KB cells
(Fig. 4b). Then, we went ahead and compared the drugs’
pharmacokinetic behavior by evaluating each tracer’s
blood half-life in vivo. Figure 4c shows the correlation of
tracer (%IA/g) in the blood at predetermined time
points. The blood half-life for both radioligands was de-
termined through serial bleeds in healthy mice, and the
obtained data points were compared to each other. We
found a good correlation between [*311]-IMGNS853
and [*Zr]Zr-DFO-M9346A  (R*=0.9736). Ex vivo
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Fig. 4 Pharmacokinetic head-to-head comparison between
antibody-drug-conjugate, IMGN853 and companion diagnostic,
[%9Z1Zr-DFO-M9346A. a Introduction of the radionuclide 131 by
direct halogenation of the antibody in the presence of lodogen as
chemical oxidant yielding radiolabeled antibody-drug-conjugate
["*'-IMGN853 (32.2 MBq, 0.87 mCi, 250 ug) in high radiochemical
purity (> 98%). b In vitro characterization of ["*1-IMGN853.
Incubation of KB cells with radiolabeled ADC or with a mixture of
radiolabeled ADC (100 ng) and M9346A (10 ug). ¢ Comparison of
blood half-lives of ['*'-IMGN853 and [*°Zr]Zr-DFO-M9346A
(dashed line indicates the 95% confidence band)

biodistribution data revealed very similar biodistribution
pattern in all organs compared to the companion diagnos-
tic with slightly lower tumor uptake of [**'I]-IMGN853 of
17.3 £ 5.2 %IA/g (Additional file 7: Figure S7).

Leveraging PET imaging with [®°Zr]Zr-DFO-M9346A
during therapy with IMGN853

Finally, we determined whether [8°Zr]Zr-DFO-M9346 A
could be used as a companion diagnostic during ADC
therapy to predict therapy outcome. For these experi-
ments (Fig. 5a), mice bearing OV90 tumor xenografts
were injected with an imaging dose of [*Zr]Zr-
DFO-M9346A (90.3 £ 1.1 puCi, 25 pg) as well as with a
therapy dose of IMGNS853 (1.25 mg/kg, 31.2 pg). PET
images were acquired 2 days post-administration, and
tumor volume of each mouse was tracked over several
days until the end of the study. In general, administra-
tion of [*Zr]Zr-DFO-M9346A during ADC treatment
with IMGN853 confirmed good tumoral uptake with
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high tumor-to-tissue contrast (Fig. 5b). After quantifica-
tion of the acquired PET images, we observed differ-
ences in tumoral uptake with the lowest uptake of
42.4 %IA/g and the highest of 61.6 %IA/g. Following the
tumor volume of individual mice revealed a differential
response in ADC treatment (Fig. 5c). At 6 weeks
post-treatment, two mice of the therapy cohort receiving
IMGNS853 (1.25 mg/kg) responded by inhibited tumor
growth, whereas three mice showed similar tumor growth
curves as the cohorts injected with [8°Zr]Zr-DFO-M9346A
(positive control) and PBS (negative control). No weight
losses were observed in any cohort of the therapy study
(Additional file 8: Figure S8). Correlation between tumoral
uptake (%IA/g) of [3°Zr]Zr-DFO-M9346A and therapy out-
come shows that in this cohort, mice with uptake greater
than 50 %IA/g appeared to be responders and mice with
lower than 50 %IA/g were non-responders (Fig. 5d). The
cutoff level at 50 %IA/g was arbitrarily set and corresponds
to the average tumor uptake of [*°Zr]Zr-DFO-M9346A in
this cohort.

Discussion

Over the last decades, companion diagnostic agents have
become more and more important in the development
process of targeted drugs, particularly in oncology
[14-16, 22]. Especially, nuclear medicine-based com-
panion diagnostics targeting cancer-specific membrane
bound receptors have received considerable attention
[23-26]. In this study, we report a nuclear medicine-based
companion diagnostic, [*°Zr]Zr-DFO-M9346A, for the
ADC mirvetuximab soravtansine (IMGN853). Currently,
patient selections in clinical trials of IMGN853 are based
on immunohistochemical (IHC) assessment of archival
tumor tissue. Expression levels of FRa are not contempor-
aneous, and both intra- and inter-lesion tissue sampling is
limited, making a non-invasive whole body imaging ap-
proach more favorable.

Following published protocols [17, 18], we were able to
modify and radiolabel the FRa-targeting antibody M9346A
in good radiochemical yields (88 + 5%) and high-specific ac-
tivities (3.08 + 0.43 mCi/mg). [**Zr]Zr-DFO-M9346A was
highly stable in human plasma (>97% at 24 h). It also dis-
played relatively high immunoreactivity (>80%) indicating
conservation of the ability to bind to FRa in vitro. Further-
more, we observed high uptake in KB, OV90, and H2110
cells (43.9 £0.9%, 17.6 £ 0.5%, and 17.3 + 0.8%, per 500,000
cells respectively). Co-incubation of OV90 and H2110 with
a 100-fold excess of antibody M9346A further corroborates
specific uptake. In case of the KB cancer cell line, incom-
plete blocking may be a result of the high abundance of
FRa per cell in comparison to the other FRa-positive can-
cer cell lines [27]. Nevertheless, reduction in uptake was
statistically significant (p <0.001). Binding to A549 was



Brand et al. EJINMMI Research (2018) 8:87

Page 8 of 10

a
LIPS
% i =
— > !
g & S
| | | | il
Inoculation of Day 0: Day 2: Measurement of 77 Day 42
QOV90 cancer cells i.v. injections: companion PET imaging tumor size (End)
diagnostic and ADC 2-3 weekly
b
40
_ , o
5 I Mo 42.4%|A/g 48.6%IA/g o
= -1701A/9 <
° =
0
2
g
Max
.
[
=
Min
c + PBS [89Z1]Zr-DFO-M9346A d
-
- [89Zr]Zr-DFO-M9346A + IMGN853 Il Responders
Non-responders
o 1600 o~ 1600
€ |S
€ 1200 Eood =/ 2 s IRR
[0} [0}
: :
3 800 3 800
g 400 g 4004
2 2
o 0
0 10 20 30 40 IR RS
time (days) time (days) YN
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negligible (< 1%), since FRa expression levels are reported
to be low in comparison with other cancer lines.
Encouraged by the successful in vitro characterization
of [¥Zr]Zr-DFO-M9346A, we next sought to test the
companion diagnostic in tumor-bearing mice. Initially,
we injected the PET imaging agent in KB tumor bearing
mice. Already 24 h after tracer administration, we ob-
served good delineation of the tumor. According to the
maximum-intensity-projection, slow blood clearance of
the antibody construct caused accumulation in the heart

region. However, qualitatively improved PET images
were observed at 48 h and 72 h post-injection. Biodistri-
bution data supported the results of the PET imaging
studies, observing good anticipated tumor-to-blood ratios
of 59 and tumor-to-bone ratios of 54 at 72 h
post-administration of [%Zr]Zr-DFO-M9346A. In an
OV90 tumor-bearing PET imaging study, we observed
similar uptake patterns with good delineation of tumor
and high imaging contrast. Based on the biodistribution
studies, we reached slightly lower uptake of the
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companion diagnostic, which is likely due to the lower ex-
pression level of FRa in OV90 cells compared to KB cells.

We next wanted to set stage for being able to predict
ADC therapy success using our new companion diag-
nostic. Both antibody-based constructs had similar phar-
macokinetic profiles, similar to what we showed with a
nanoparticle construct earlier [28]. Therefore, we were
able to directly radiolabel the ADC with iodine-131. A
standard in vitro uptake assay showed that binding as
well as specificity of the antibody-based construct to-
wards FRa was conserved, indicating minor modifica-
tions of the antibody. A direct comparison of the blood
half-life of each radiolabeled antibody construct,
[**'1]-IMGN853 and [*Zr]Zr-DFO-M9346A, success-
fully indicated nearly identical pharmacokinetic behav-
jors in vivo. Radioiodination of antibodies with Iodogen
is a standard method, suggesting that it is very unlikely
that labeling conditions will lead to degradation of
IMGNS853. Since the antibody exhibits a more than
20-fold higher molecular weight in comparison with the
added modifications (3—4 DM4 per antibody and 3-4
chelator per antibody), we expected minor alterations in
the pharmacokinetics of each construct. However, other
physiochemical properties such as polarity and charge of
a molecule can influence drug pharmacokinetics as well.

We tested the ability of [**Zr]Zr-DFO-M9346A to pre-
dict FRa-targeted therapy with IMGN853 in vivo. The
penultimate goal of this study was to distinguish be-
tween responders and non-responders at the beginning
of a therapeutic intervention—which might be an add-
itional first step to improve the interpretation of current
and future clinical trials using IMGN853. Two days
post-co-administration of [*°Zr]Zr-DFO-M9346A and
IMGN853 in OV90 tumor-bearing mice, we were able to
delineate OV90 tumors, in which we observed hetero-
geneity of companion diagnostic, presumably dictated
not only by target expression, but also tumor physiology
[29]. By measuring the tumor volume of each animal
over time, we were able to establish a threshold of tracer
uptake at 50 %IA/g. A higher value indicated that the
animal responded to the therapy, whereas a lower value
indicated a non-responder.

Conclusion

In summary, we have developed an antibody-based com-
panion diagnostic measuring FRa expression in ovarian
cancer during ADC therapy. [**Zr]Zr-DFO-M9346A was
found to be straightforward to radiolabel with Zr-89
after conjugation of desferrioxamine to the antibody.
Our PET imaging agent showed excellent in vivo per-
formance delineating FRoa-positive tumors with high
tumor-to-background ratios. Successful in vivo correl-
ation of the pharmacokinetics between companion diag-
nostic and the radiolabeled ADC allowed us to perform
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therapy studies allowing the precision prediction of re-
sponders and non-responders in small animal studies. In
humans, ADC sensitivity likely depends on FRa expres-
sion. Intuitively, one of the next steps should be to use
this imaging technology in more advanced and heteroge-
neous mouse models of ovarian cancer. We are
confident that [¥Zr]Zr-DFO-M9346A could ultimately
be a suitable companion diagnostic for IMGN853 cancer
therapy, quantitatively assessing the folate receptor ex-
pression levels non-invasively in patients.
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