
Kürschner et al. Journal of Mathematical Neuroscience (2019) 9:9
https://doi.org/10.1186/s13408-019-0077-0

R E S E A R C H Open Access

Greedy low-rank algorithm for spatial
connectome regression
Patrick Kürschner1, Sergey Dolgov2, Kameron Decker Harris3 and Peter Benner4*

*Correspondence:
benner@mpi-magdeburg.mpg.de
4Computational Methods in
Systems and Control Theory, Max
Planck Institute for Dynamics of
Complex Technical Systems,
Magdeburg, Germany
Full list of author information is
available at the end of the article

Abstract
Recovering brain connectivity from tract tracing data is an important computational
problem in the neurosciences. Mesoscopic connectome reconstruction was
previously formulated as a structured matrix regression problem (Harris et al. in Neural
Information Processing Systems, 2016), but existing techniques do not scale to the
whole-brain setting. The corresponding matrix equation is challenging to solve due
to large scale, ill-conditioning, and a general form that lacks a convergent splitting. We
propose a greedy low-rank algorithm for the connectome reconstruction problem in
very high dimensions. The algorithm approximates the solution by a sequence of
rank-one updates which exploit the sparse and positive definite problem structure.
This algorithm was described previously (Kressner and Sirković in Numer Lin Alg Appl
22(3):564–583, 2015) but never implemented for this connectome problem, leading
to a number of challenges. We have had to design judicious stopping criteria and
employ efficient solvers for the three main sub-problems of the algorithm, including
an efficient GPU implementation that alleviates the main bottleneck for large
datasets. The performance of the method is evaluated on three examples: an artificial
“toy” dataset and two whole-cortex instances using data from the Allen Mouse Brain
Connectivity Atlas. We find that the method is significantly faster than previous
methods and that moderate ranks offer a good approximation. This speedup allows
for the estimation of increasingly large-scale connectomes across taxa as these data
become available from tracing experiments. The data and code are available online.

Keywords: Matrix equations; Computational neuroscience; Low-rank
approximation; Networks

1 Introduction
Neuroscience and machine learning are now enjoying a shared moment of intense inter-
est and exciting progress. Many computational neuroscientists find themselves inspired
by unprecedented datasets to develop innovative methods of analysis. Exciting examples
of such next-generation experimental methodology and datasets are large-scale record-
ings and precise manipulations of brain activity, genetic atlases, and neuronal network
tracing efforts. Thus, techniques which summarize many experiments into an estimate
of the overall brain network are increasingly important. Many believe that uncovering
such network structures will help us unlock the principles underlying neural computation
and brain disorders (Grillner et al. [17]). Initial versions of such connectomes (Knox et al.
[25]) are already being integrated into large-scale modeling projects (Reimann et al. [40]).

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13408-019-0077-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13408-019-0077-0&domain=pdf
http://orcid.org/0000-0003-3362-4103
mailto:benner@mpi-magdeburg.mpg.de

Kürschner et al. Journal of Mathematical Neuroscience (2019) 9:9 Page 2 of 22

We present a method which allows us to perform these reconstructions faster, for larger
datasets.

Structural connectivity refers to the synaptic connections formed between axons (out-
puts) and dendrites (inputs) of neurons, which allow them to communicate chemically
and electrically. We represent such networks as a weighted, directed graph encoded by a
nonnegative adjacency matrix W . The network of whole-brain connections or connectome
is currently studied at a number of scales (Sporns [46], Kennedy et al. [24]): Microscopic
connectivity catalogues individual neuron connections but currently is restricted to small
volumes due to difficult tracing of convoluted geometries (Kasthuri et al. [23]). Macro-
scopic connectivity refers to connections between larger brain regions and is currently
known for a number of model organisms (Buckner and Margulies [7]). Mesoscopic con-
nectivity (Mitra [32]) lies between these two extremes and captures projection patterns
of groups of hundreds to thousands of neurons among the 106–1010 neurons in a typical
mammalian brain.

Building on previous work (Harris et al. [19]; Knox et al. [25]), we present a scalable
method to infer spatially-resolved mesoscopic connectome from tracing data. We apply
our method to data from the Allen Mouse Brain Connectivity Atlas (Oh et al. [34]) to
reconstruct mouse cortical connectivity. This resource is one of the most comprehensive
publicly available datasets, but similar data are being collected for fly (Jenett et al. [22]), rat
(Bota et al. [6]), and marmoset (Majka et al. [30]), among others. Our focus is on present-
ing and profiling an improved algorithm for connectome inference. By developing scalable
methods as in this work, we hope to enable the reconstruction of high-resolution connec-
tomes in these diverse organisms.

1.1 Mathematical formulation of a spatial connectome regression problem
We focus on the mesoscale because it is naturally captured by viral tracing experiments
(Fig. 1). In these experiments, a virus is injected into a specific location in the brain, where
it loads the cells with proteins that can then be imaged, tracing out the projections of those
neurons with cell bodies located in the injection site. The source and target signals, within
and outside of the injection sites, are measured as the fraction of fluorescing pixels within
cubic voxels. These form the data matrices X ∈ R

nX×ninj and Y ∈ R
nY×ninj , where parame-

ters nX and nY are the number of locations in the discretized source and target regions of
the d-D brain, and ninj is the number of injections. In general, nX and nY may be unequal,
e.g. if injections were only delivered to the right hemisphere of the brain. Each experiment
only traces out the projections from that particular injection site. By performing many
such experiments, with multiple mice, and varying the injection sites to cover the brain,
one can then “stitch” together a mesoscopic connectome for the average mouse. We refer
the interested reader to (Oh et al. [34]) for more details of the experimental procedures.

We present a new low-rank approach to solving the smoothness-regularized optimiza-
tion problem posed by Harris et al. [19]. Specifically, they considered solving the regular-
ized least-squares problem

W ∗ = arg min
W≥0

1
2
∥
∥PΩ (WX – Y)

∥
∥

2
F

︸ ︷︷ ︸

loss

+
λ

2
∥
∥LyW + WLᵀ

x
∥
∥

2
F

︸ ︷︷ ︸

regularization

, (1)

Kürschner et al. Journal of Mathematical Neuroscience (2019) 9:9 Page 3 of 22

Figure 1 In this paper, we present an improved method for the mesoscale connectome inference problem.
(A) The goal is to find a voxel-by-voxel matrixW so that the pattern of neural projections y arising from an
injection x is reproduced by matrix-vector multiplication, y ≈ Wx. The vectors x and y contain the fraction of
fluorescing pixels in each voxel from viral tracing experiments. (B) An example of the data, in this case a
coronal slice from a tracing experiment delivered to primary motor cortex (MOp). Bright green areas are
neural cells expressing the green fluorescent protein. (C) The raw data are preprocessed to separate the
injection site (red/orange) from its projections (green). Fluorescence values in the injection site enter into the
source vector x, whereas fluorescence everywhere else is stored in the entries of the target vector y. The x and
y are discretized volume images of the brain reshaped into vector form. EntryWij models the expected
fluorescence at location i from one unit of source fluorescence at location j, a linear operator mapping from
source images to target images. Image credit (B and C): Allen Institute for Brain Science

where the minimum is taken over nonnegative matrices. The operator PΩ defines an
entry-wise product (Hadamard product) PΩ (M) = M ◦ Ω , for any matrix M ∈ R

nY×ninj ,
and Ω is a binary matrix, of the same size, which masks out the injection sites where the
entries of Y are unknown.a We take the smoothing matrices Ly ∈R

nY×nY and Lx ∈R
nX×nX

to be discrete Laplace operator, i.e. the graph Laplacians of the voxel face adjacency graphs
for discretized source and target regions. We choose a regularization parameter λ̄ and set
λ = λ̄

ninj
nX

to avoid dependence on nX, nY and ninj, since the loss term is a sum over nY × ninj

entries and the regularization sums over nY × nX many entries.
We now comment on the typical parameters for problem (1). The mouse brain gridded

at 100 μm resolution contains approximately nX, nY ∈O(105) voxels in 3-D. On the other
hand, the number of experiments ninj is less than O(103). By projecting the 3-D cortical
data into 2-D, as we do in this paper, we can reduce the size by an order of magnitude
to nX, nY ∈ O(104), but focusing on the cortex reduces ninj to O(102). Since ninj � nX, nY,
a least-squares estimation of W (i.e. λ = 0) is highly underdetermined and will remain
underdetermined unless orders of magnitude more tracing experiments are performed.
Regularization is thus essential for filling the gaps in injection coverage. Furthermore, the
vast size of the nY ×nX matrix W for whole-brain connectivities has motivated our search
for scalable and fast low-rank methods.

Kürschner et al. Journal of Mathematical Neuroscience (2019) 9:9 Page 4 of 22

1.2 Previous methods of mesoscale connectome regression
Much of the work on mesoscale mouse connectomes leverages the data and processing
pipelines of the Allen Mouse Brain Connectivity Atlas available at http://connectivity.
brain-map.org (Lein et al. [28]; Oh et al. [34]). In the early examples of such work, Oh
et al. [34] used viral tracing data to construct regional connectivity matrices. Nonnega-
tive matrix regression was used to estimate the regional connectivity. First, the injection
data were processed into a pair of matrices XReg and Y Reg containing the regionalized in-
jection volumes and projection volumes, respectively. The rows of these matrices are the
regions and the columns index injection experiments. Oh et al. [34] then used nonnega-
tive least squares to fit a region-by-region matrix W Reg such that Y Reg ≈ W RegXReg. Due to
numerical ill-conditioning and a lack of data, some regions were excluded from the analy-
sis. Similar techniques have been used to estimate regional connectomes in other animals.
Ypma and Bullmore [49] took a different approach, using a likelihood-based Markov chain
Monte Carlo method to infer regional connectivity and weight uncertainty from the Allen
data.

Harris et al. [19] made a conceptual and methodological leap when they presented a
method to use such data for spatially-explicit mesoscopic connectivity. The Allen Mouse
Brain Atlas is essentially a coordinate mapping which discretizes the average mouse brain
into cubic voxels, where each voxel is assigned to a given region in a hierarchy of brain
regions. They used an assumption of spatial smoothness to formulate (1), where the spe-
cific smoothing term results in a high-dimensional thin plate spline fit (Wahba [48]). They
then solved (1) using the generic quasi-Newton algorithm L-BFGS-B (Byrd et al. [8]). This
technique was applied to the mouse visual areas but limited to small datasets since W was
dense. Using a simple low-rank version based on projected gradient descent, Harris et al.
[19] argued that such a method could scale to larger brain areas. However, the initial low-
rank implementation turned out to be too slow to converge for large-scale applications.
Times to convergence were not reported in the original paper, but the full-rank version
typically took around a day, while the low-rank version needed multiple days to reach a
minimum.b

Knox et al. [25] simplified the mathematical problem by assuming that the injections
were delivered to just a single voxel at the injection center of mass. Using a kernel smoother
led to a method which is explicitly low-rank, with smoothing performed only in the in-
jection space (columns of W). This kernel method was applied to the whole mouse brain,
yielding the first estimate of voxel–voxel whole-brain connectivity for this animal. How-
ever, these assumptions do not hold in reality: The injections affect a volume of the brain
that encompasses much more than the center of mass.c We also expect that the connectiv-
ity is also smooth across projection space (rows of W), since the incoming projections to
a voxel are strongly correlated with those of nearby voxels. These inaccuracies mean that
the kernel method is prone to artifacts, in particular ones arising from the injection site
locations, since there is no ability for that method to translate the source of projections
smoothly away from injection sites. It is thus imperative to develop an efficient method
for the spline problem that works for large datasets.

1.3 Continuous formulation motivates the need for sophisticated solvers
We will now describe, for the first time, the continuous mathematical properties of this
problem, in order to illuminate why it is challenging to solve. Equation (1) can be seen as a

http://connectivity.brain-map.org
http://connectivity.brain-map.org

Kürschner et al. Journal of Mathematical Neuroscience (2019) 9:9 Page 5 of 22

discrete version of an underlying continuous problem (similar to Rudin et al. [42], among
others), where we define the cost as

1
2

ninj
∑

i=1

∫

T∩Ωi

(∫

S
W(x, y)Xi(x) dx – Yi(y)

)2

dy +
λ

2

∫

T

∫

S

(

�W(x, y)
)2 dx dy. (2)

The cost is minimized over W : T ×S →R, the continuous connectome, in an appropriate
Sobolev space (square-integrable derivatives up to fourth order on T × S is sufficiently
regular). The function W may be seen as the kernel of an integral operator from S to T .
These regions S and T are both compact subsets of Rd representing source and target
regions of the brain. The mask region Ωi ⊂ T is the subset of the brain excluding the
injection site. Finally, the discrete Laplacian terms L have been replaced by the continuous
Laplacian operator � on S × T . The parameter λ again sets the level of smoothing.d

For simplicity, consider S = T = the whole brain, Ωi = T for all i = 1, . . . , ninj and relax the
constraint of nonnegativity on W . Taking the first variational derivative of (2) and setting
it to zero yields the Euler–Lagrange equations for this simplified problem:

0 = λ�2W(x, y) –
ninj
∑

i=1

Xi(x)Yi(y) +
∫

S
W

(

x′, y
)

(ninj
∑

i=1

Xi
(

x′)Xi(x)

)

dx′

= λ�2W(x, y) – g(x, y) +
∫

S
W

(

x′, y
)

f
(

x′, x
)

dx′, (3)

where for convenience we have defined the data covariance functions f (x′, x) =
∑ninj

i=1 Xi(x′)Xi(x) and g(x, y) =
∑ninj

i=1 Xi(x)Yi(y), analogous to XXT and YXT . The opera-
tor �2 is the biharmonic operator or bi-Laplacian. Equation (3) is a fourth-order partial
integro-differential equation in 2d dimensions.

Iterative solutions via gradient descent or quasi-Newton methods to biharmonic and
similar equations can be slow to converge (Altas et al. [1]). It takes many iterations to prop-
agate the highly local action of the biharmonic differential operator across global spatial
scales due to the small stable step size (Rudin et al. [42]), whereas the integral part is inher-
ently nonlocal. Very slow convergence is what we have found when applying methods like
gradient descent to problem (1), also for low-rank versions. This includes quasi-Newton
methods such as L-BFGS (Byrd et al. [8]). When we attempted to solve the whole-cortex
top view and flatmap problems as in Sects. 3.2 and 3.3, the method had not converged
(from a naive initialization) after a week of computation. These difficulties motivated the
development of the method we present here.

1.4 Outline of the paper
We present a greedy, low-rank algorithm tailored to the connectome inference problem.
To leverage powerful linear methods, we consider solutions to the unconstrained problem

W ∗ = arg min
W

1
2
∥
∥PΩ (WX – Y)

∥
∥

2
F +

λ

2
∥
∥LyW + WLᵀ

x
∥
∥

2
F , (4)

where all of the matrices and parameters are as in (1). In practice, solutions to the linear
problem (4) are often very close to those of the nonnegative problem (1), since the data
matrices X and Y and the “true” W are nonnegative. Setting any negative entries in the

Kürschner et al. Journal of Mathematical Neuroscience (2019) 9:9 Page 6 of 22

computed solution W ∗ to zero is adequate, or it can serve as an initial guess to an iterative
solver for the slower nonnegative problem.

Equation (4) is another regularized least-squares problem. In Sect. 2.1, we show that
taking the gradient and setting it equal to zero leads to a linear matrix equation in the
unknown W . This takes the form of a generalized Sylvester equation with coefficient ma-
trices formed from the data and Laplacian terms. The data matrices are, in fact, of low
rank since ninj � nX, nY, and thus we can expect a low-rank approximation W ≈ UV ᵀ to
the full solution to perform well (see Harris et al. [19], although we do not know how to
justify this rigorously). We provide a brief survey of some low-rank methods for linear
matrix equations in Sect. 2.2. We employ a greedy solver that finds rank-one components
uivᵀ

i one at a time, explained in Sect. 2.3. After a new component is found, it is orthogo-
nalized and a Galerkin refinement step is applied. This leads to Algorithm 1, our complete
method.

We then test the method on a few connectome fitting problems. First, in Sect. 3.1, we test
on a fake “toy” connectome, where we know the truth. This is a test problem consisting
of a 1-D brain with smooth connectivity (Harris et al. [19]). We find that the output of
our algorithm converges to the true solution as the rank increases and as the stopping
tolerance decreases. Next, we present two benchmarks using real viral tracing data from
the isocortices of mice, provided by the Allen Institute for Brain Science. In each case, we
work with 2-D data in order to limit the problem size and because the cortex is a relatively
flat, 2-D shape. It has also been argued that such a projection also denoises such data
(Van Essen [47]; Gămănuţ et al. [14]). In Sect. 3.2, we work with data that are averaged
directly over the superior-inferior axis to obtain a flattened cortex. We refer to this as the
top view projection. In contrast, for Sect. 3.3, the data are flattened by averaging along
curved streamlines of cortical depth. We call this the flatmap projection.

Finally, Sect. 4 discusses the limitations of our method and directions for future research.
Our data and code are described in Sect. 5 and freely available for anyone who would like
to reproduce the results.

2 Greedy low-rank method
2.1 Linear matrix equation for the unknown connectivity
We now derive the equivalent of the “normal equations” for our problem. Denote the ob-
jective function (4) as J(W), with decomposition

J(W) = Jloss(W) + Jreg(W) =
1
2
∥
∥PΩ (WX – Y)

∥
∥

2
F +

λ

2
∥
∥LyW + WLᵀ

x
∥
∥

2
F .

Writing Jloss indexwise, we obtain (note that Ω ◦ Ω = Ω)

Jloss =
1
2

n,ninj
∑

i,α=1

Ωi,α

(m
∑

k=1

Wi,kXk,α – Yi,α

)2

.

Kürschner et al. Journal of Mathematical Neuroscience (2019) 9:9 Page 7 of 22

The derivative reads

∂Jloss

∂W
ı̂,k̂

=
n,ninj
∑

i,α=1

Ωi,α

(m
∑

k=1

Wi,kXk,α – Yi,α

)

Xk̂,αδi,ı̂

=
ninj
∑

α=1

Ωı̂,αXk̂,α

m
∑

k=1

(Xk,αWı̂,k – Xk̂,αΩı̂,αYı̂,α),

or in vector form

∂Jloss

∂ vec(W)
=

ninj
∑

α=1

[(

XαXᵀ
α

) ⊗ diag(Ωα)
]

vec(W) – vec
(

(Ω ◦ Y)Xᵀ)

,

where Xα is the αth column of X and likewise for Ω . Setting the derivative equal to zeros
leads to the system of normal equations

A vec(W) = vec
(

(Ω ◦ Y)Xᵀ)

, (5)

where vec(W) is the vector of all columns of W stacked on top of each other. This linear
system features the following (nYnX) × (nYnX) matrix, consisting of ninj + 3 Kronecker
products,

A =
ninj
∑

α=1

(

XαXᵀ
α

) ⊗ diag(Ωα) + λ
(

L2
x ⊗ InY + 2Lx ⊗ Ly + InX ⊗ L2

y
)

. (6)

Note that without the observation mask, Ω is a matrix of all ones, and the first term com-
presses to XXᵀ ⊗ InY .

The linear system (5) can be recast as the linear matrix equation

A(W) = D, (7)

with the operator A(W) := λB(W) + C(W), where

B(W) := WL2
x + 2LyWLx + L2

yW ,

C(W) :=
ninj
∑

α=1

diag(Ωα)WXαXᵀ
α , and D := (Ω ◦ Y)Xᵀ.

The smoothing term B can be expressed as a squared standard Sylvester operator B(W) =
L(L(W)), where L(W) := LyW + WLx. The operator L is the graph Laplacian operator on
the discretization of T × S. Furthermore, the right hand side D is a matrix of rank ninj,
since it is an outer product of two rank ninj matrices.

2.2 Numerical low-rank methods for linear matrix equations
Because of the potentially high dimensions nX, nY, directly solving the algebraic matrix
equation (7) is numerically inefficient since the solution will be a dense nY × nX matrix,
making even storing it infeasible. However, the rank of the right hand side of (7) is at

Kürschner et al. Journal of Mathematical Neuroscience (2019) 9:9 Page 8 of 22

most ninj � nX, nY. It is often observed and theoretically shown (Grasedyck [16]; Benner
and Breiten [3]; Jarlebring et al. [21]) that the solutions of large matrix equations with
low-rank right hand sides exhibit rapidly decaying singular values. Hence, the solution W
is expected to have small numerical rank in the sense that few of its singular values are
larger than machine precision or the experimental noise floor. Intuitively, since we also
seek very smooth solutions, this also helps control the rank, since high frequency compo-
nents tend to be associated with small singular values. This motivates us to approximate
the solution of (7) by a low-rank approximation W ≈ UV ᵀ with U ∈ R

nY×r , V ∈R
nX×r and

r � min(nX, nY). The low-rank factors are then typically computed by iterative methods
which never form the approximation UV ᵀ explicitly.

Several low-rank methods for computing U , V have been proposed, starting from meth-
ods for standard Sylvester equations AX +XB = D (e.g. Benner [2]; Benner et al. [4]; Benner
and Saak [5]; Simoncini [44]) and more recently for general linear matrix equations like
(7) (Damm [13]; Benner and Breiten [3]; Shank et al. [43]; Ringh et al. [41]; Jarlebring et al.
[21]; Powell et al. [39]). However, these methods are specialized and require the problem
to have particular structures or properties (e.g., B,C have to form a convergent splitting
of A), which are not present in the problem at hand. The main structures present in (7)
are positive definiteness and sparsity of Lx, Ly.

An approach that is applicable to the matrix equation (7) is a greedy method as pro-
posed by Kressner and Sirković [26], which is based on successive rank-1 approximations
of the error. Because this method is quite general, we tailored specific components of the
algorithm to our problem. Three main challenges were overcome: First, we choose a sim-
pler stopping criterion for the ALS routine. Second, specific solvers were chosen for the
three main sub-problems of the algorithm, which maximizes its efficiency. Third, we de-
veloped a GPU implementation of the Galerkin refinement, to make this bottleneck step
more efficient. We advocate this method in the rest of the paper.

2.3 Description and application of the greedy low-rank solver
Here we briefly review the algorithm from (Kressner and Sirković [26]) and explain how it
is specialized for our particular problem. Assume there is already an approximate solution
Wj ≈ W ∗ of the linear matrix equation A(W) = D, equation (7), with solution W ∗. We will
improve our solution by an update of rank one: Wj+1 = Wj + uj+1vᵀ

j+1, where uj+1 ∈R
nY and

vj+1 ∈ R
nX . The update vectors uj+1, vj+1 are computed by minimizing an error functional

that we will soon define. Since the operator A is positive definite, it induces the A-inner
product 〈X, Y 〉A = Tr(Y ᵀA(X)) and the A-norm ‖Y‖A :=

√〈Y , Y 〉A. So we find uj+1, vj+1

by minimizing the squared error in the A-norm:

(uj+1, vj+1) = arg min
u,v

∥
∥W ∗ – Wj – uvᵀ∥

∥
2
A

= arg min
u,v

Tr
((

W ∗ – Wj – uvᵀ)ᵀA
(

W ∗ – Wj – uvᵀ))

= arg min
u,v

Tr
((

W ∗ – Wj – uvᵀ)ᵀ(

D – A(Wj) – A
(

uvᵀ)))

.

Discarding constant terms, noting that 〈X, Y 〉A = 〈Y , X〉A, and setting Rj = D–A(Wj) leads
to

(uj+1, vj+1) = arg min
u,v

〈

uvᵀ, uvᵀ〉

A – 2 Tr
(

uvᵀRj
)

. (8)

Kürschner et al. Journal of Mathematical Neuroscience (2019) 9:9 Page 9 of 22

Notice that the rank-1 decomposition uvᵀ is not unique, because we can rescale the factors
by any nonzero scalar c such that (uc)(v/c)ᵀ represents the same matrix. This reflects the
fact that the optimization problem (8) is not convex. However, it is convex in each of the
factors u and v separately.

We obtain the updates uj+1, vj+1 via an alternating linear (ALS) scheme (Ortega and
Rheinboldt [35]). Although we only consider low-rank approximations of matrices here,
ALS methods are also used for computing low-rank approximations of higher order ten-
sors by means of polyadic decompositions (e.g. Harshman [20]; Sorber et al. [45]). First,
a fixed v is used in (8) and a minimizing u is computed which is in the next stage kept
fixed and (8) is solved for a minimizing v. For a fixed vector v with ‖v‖ = 1 the minimizing
problem is

û = arg min
u

〈

uvᵀ, uvᵀ〉

A – 2 Tr
(

uvᵀRj
)

= arg min
u

(

λ
((

uᵀu
)

vᵀL2
xv + 2

(

uᵀLyu
)(

vᵀLxv
)

+ uᵀL2
yu

)

+
ninj
∑

α=1

(

uᵀ diag(Ωα)u
)(

vᵀXαXᵀ
α v

)

)

– 2uᵀRjv

and, hence, û is obtained by solving the linear system of equations

Âû = Rjv, Â := λ
((

vᵀL2
xv

)

I + 2Ly
(

vᵀLxv
)

+ L2
y
)

+
ninj
∑

α=1

diag(Ωα)
(

vᵀXαXᵀ
α v

)

. (9a)

The second half iteration starts from the fixed u = û/‖û‖ and tries to find a minimizing v̂
by solving

B̂v̂ = Rᵀ
j u,

B̂ := λ
(

L2
x + 2Lx

(

uᵀLyu
)

+
(

uᵀL2
yu

)

I
)

+
ninj
∑

α=1

(

uᵀ diag(Ωα)u
)(

XαXᵀ
α

)
(9b)

which can be derived by similar steps. The linear systems (9a) and (9b) inherit the sparsity
from Lx, Ly and Ω . Therefore they can be solved by sparse direct or iterative methods. We
use a sparse direct solver for (9a), as this was faster than the alternatives. The coefficient
matrix B̂ in (9b) is the sum of a sparse (Laplacian terms) matrix and a low-rank (rank ninj

data terms) matrix. In this case, we solve (9b) using the Sherman–Morrison–Woodbury
formula (Golub and Van Loan [15]) and a direct solver for the sparse inversion.

Both half steps form the ALS iteration which should be stopped when the iterates are
close enough to a critical point, which might be difficult to check. Here we propose a
simpler approach compared to the one in (Kressner and Sirković [26]). Since we rescale
u and v such that ‖u‖2 = ‖v‖2 = 1, the norm of the other factor is equal to the norm of
the full matrix. In other words, ‖û‖2 = ‖ûvᵀ‖2 after solving for û, and hence ‖û‖2 should
converge to the norm of the exact solution. This motivates a simple criterion: we stop the
ALS when (1 – δ)‖û‖2 ≤ ‖v̂‖2 ≤ (1 + δ)‖û‖2, where û and v̂ are taken from two consecutive
ALS steps, and δ < 1 is a small threshold. It turns out that a relatively crude tolerance

Kürschner et al. Journal of Mathematical Neuroscience (2019) 9:9 Page 10 of 22

of δ = 0.1, corresponding to 2–4 ALS iterations, is sufficient in practice for the overall
convergence of the algorithm.

The second stage of the method is a non-greedy Galerkin refinement of the low-rank fac-
tors. Suppose a rank j approximation Wj =

∑j
i=1 uivᵀ

i of W has been already computed. Let
U ∈R

nY×j and V ∈ R
nX×j have orthonormal columns, spanning the spaces span{u1, . . . , uj}

and span{v1, . . . , vj}, respectively. We compute a refined approximation UZV ᵀ for Z ∈R
j×j

by imposing the following condition onto the residual:

(Galerkin condition)

Find Z so that A
(

UZV ᵀ)

– D ⊥ {

UZV ᵀ ∈R
nY×nX , Z ∈R

j×j}.

This leads to the dense, square matrix equation in Z of dimension j ≤ r � nX, nY:

λ
(

Z
(

V ᵀL2
xV

)

+ 2
(

UᵀLyU
)

Z
(

V ᵀLxV
)

+
(

UᵀL2
yU

)

Z
)

+
ninj
∑

α=1

(

Uᵀ diag(Ωα)U
)

Z
(

V ᵀXαXᵀ
α V

)

= UᵀDV . (10)

Equation (10) is a projected version of (7) and inherits its structure including the positive
definiteness of the operator which acts on Z. Instead of using a direct method to solve (10)
(as in Kressner and Sirković [26]), we employ an iterative method similar to Powell et al.
[39]. Due to the positive definiteness, the obvious method of choice is a dense, matrix-
valued conjugate gradient method (CG). Moreover, we reduce the number of iterations
significantly by taking the solution Z from the previous greedy step as an initial guess.
The improved solution Wj+1 = UZV ᵀ yields a new residual Rj+1 = D –A(Wj+1) onto which
the ALS scheme is applied to obtain the next rank-1 updates. The complete procedure is
illustrated in Algorithm 1.

This Galerkin refinement substantially improves the greedy approximation, leading to
a faster convergence rate (Kressner and Sirković [26]). The ALS stage is primarily used to
sketch the projection bases for the Galerkin solution, which justifies the limited number
of ALS steps. Use of the Galerkin refinement in the low-rank decomposition literature can
be traced back to the greedy approximation in the CP tensor format (Nouy [33]), as well as
orthogonal matching pursuit approaches in sparse recovery and compressed sensing (Pati
et al. [37]) and deflation strategies in low-rank matrix completion (Hardt and Wootters
[18]).

3 Performance of the greedy low-rank solver on three problems
There are three test problems to which we apply Algorithm 1: a toy problem with synthetic
data (Sect. 3.1), the top view projected mouse connectivity data (Sect. 3.2), and the flatmap
projected data (Sect. 3.3). These tests show that the method easily scales to whole-brain
connectome reconstruction.

We investigate the computational complexity and convergence of the greedy algorithm.
Since the matrices in (9a) are sparse, the ALS steps need O(nr2ninj) operations in total for
the final solution rank r, where n = max(nX, nY). In turn, if the solution of (10) takes γ

CG iterations, this step will have a cost of O(γ r3ninj). Although γ can be kept at the same
level for all j, it depends on the stopping tolerance τ , as does the rank r. We will therefore

Kürschner et al. Journal of Mathematical Neuroscience (2019) 9:9 Page 11 of 22

Algorithm 1: Greedy rank-1 method with Galerkin projection for (7)
Input : Matrices Lx, Ly, X,Ω , Y , maximal rank r ≤ min(nX, nY), tolerance 0 < τ � 1
Output: Low-rank approximation of W = UZV ᵀ in factored form

1 Initialize W0 = 0, R0 = D, U0 = V0 = [], j = 0
2 repeat
3 Pick initial vector v for ALS with ‖v‖ = 1, then get rank-1 update:
4 while δ > 0.1 do
5 Solve Âû = Rjv for û (sparse direct solver) and set u = û/‖û‖ Eq. (9a)
6 Solve B̂v̂ = Rᵀ

j u for v̂ (sparse direct + low-rank update)
7 and set v = v̂/‖v̂‖ Eq. (9b)
8 δ = | ‖û‖

‖v̂‖ – 1|
9 Uj+1 = orth([Uj, u]), Vj+1 = orth([Vj, v]) Orthogonalize new factors

10 Increment rank j ← j + 1
11 Solve Eq. (10) for Zj (CG to tolerance τ /2) Galerkin update
12 Rj = D – A(UjZjV ᵀ

j) Update residual
13 δW = ‖UjZjV ᵀ

j – Uj–1Zj–1V ᵀ
j–1‖F /‖UjZjV ᵀ

j ‖F

14 until j = r or δW ≤ τ

investigate the cost in terms of the total computation time and the corresponding solution
accuracy for a range of solution rank values.

The numerical experiments were performed on an Intel® E5-2650 v2 CPU with 8 threads
and 64 Gb RAM. We employ an Nvidia® P100 GPU card for some subtasks: The Galerkin
update relies on dense linear algebra to solve (10) by the CG method, so this stage admits
an efficient GPU implementation. Algorithm 1 is implemented in MATLAB® R2017b, and
was run on the Balena High Performance Computing Service at the University of Bath.
See Sect. 5 for additional data and code resources.

We measure errors in the solution using the root mean squared error. Given any refer-
ence solution W
 of size nY × nX, e.g. the truth or a large-rank solution when the truth
is unknown, and a low-rank solution Wr , the RMS error is computed as E(Wr , W
) =
‖Wr–W
‖F√nYnX

. We also report the relative error in the Frobenius norm Erel(Wr , W
) = ‖Wr–W
‖F
‖W
‖F

.

3.1 Test problem: a toy brain
We use the same test problem as in Harris et al. [19], a one-dimensional “toy brain.” The
source and target space are S = T = [0, 1]. The true connectivity kernel corresponds to a
Gaussian profile about the diagonal plus an off-diagonal bump:

Wtrue(x, y) = e–(x–y
0.4)2

+ 0.9e– (x–0.8)2+(y–0.1)2

(0.2)2 . (11)

The input and output spaces were discretized using nX = nY = 200 uniform lattice points.
Injections are delivered at ninj = 5 locations in S, with a width of 0.12 + 0.1ε, where ε ∼
Uniform(0, 1). The values of X are set to 1 within the injection region and 0 elsewhere,
Ωij = 1 – Xij, Y is set to 0 within the injection region, and we add Gaussian noise with
standard deviation σ = 0.1. The matrices Lx = Ly are the 3-point graph Laplacians for the
1-D chain.

Kürschner et al. Journal of Mathematical Neuroscience (2019) 9:9 Page 12 of 22

Figure 2 Toy brain test problem. Top: true connectivity mapWtrue (left) and the low-rank solution with
rank = 40 and λ = 100 (right). Bottom: solutions with Ω = 1 (left) and λ = 0 (right). The locations of simulated
injections are shown by the gray bars. This shows that both the mask (Ω) and the smoothing (λ > 0) are
necessary for good recovery

Table 1 Computing times and errors for the toy brain test problem. The outputW is compared to
truth and a rank 140 reference solution

rank(W) 10 20 40 60 80

CPU time (sec.) 0.0396 0.1554 0.9653 2.6398 3.1108

E (W ,W140) 3.2324e–01 5.5407e–02 1.4162e–02 1.2125e–03 3.1549e–04
E (W ,Wtrue) 2.9418e–01 7.9921e–02 7.1537e–02 6.9777e–02 6.9821e–02

Erel(W ,W140) 4.3320e–01 8.9700e–02 2.4900e–02 2.5000e–03 5.1300e–04
Erel(W ,Wtrue) 4.0130e–01 1.1410e–01 1.0350e–01 1.0040e–01 1.0040e–01

We depict the true toy connectivity Wtrue as well as a number of low-rank solutions
output by our method in Fig. 2. Both the mask and the regularization are required for
good performance: If we remove the mask, setting Ω equal to the matrix of all ones, then
there are holes in the data at the location of the injections. If we try fitting with λ = 0, i.e. no
smoothing, then the method cannot fill in holes or extrapolate outside the injection sites.
It is only with the combination of all ingredients that we recover the true connectivity.

In Table 1 we show the performance of the algorithm for ranks r = 10, 20, 40, 60, and
80. The output W is compared to Wtrue as well as the rank 140 output of the algorithm.
The stopping tolerance was τ = 10–7 to ensure that the algorithm has reached this maximal
rank. We see that the RMS distance to the reference solution W140 decreases as we increase
the rank, as does the relative distance. However, the RMS and relative distances from Wtrue

asymptote to roughly 0.07 and 10%, respectively, by rank 40. This shows that rank 40 is a
suitable maximum rank for this problem given the input data and noise.

Kürschner et al. Journal of Mathematical Neuroscience (2019) 9:9 Page 13 of 22

The computing time of the greedy method (in this example we use the CPU only version)
remains in the order of seconds even for the largest considered ranks. In contrast, the
unpreconditioned CG method needs thousands of iterations (and hundreds of seconds of
time) to compute a solution within the same order of accuracy. Since it is unclear how to
develop a preconditioner for Eq. (5), especially for a non-trivial Ω , in the next sections we
focus only on the greedy algorithm.

3.2 Mouse cortex: top view connectivity
We next benchmark Algorithm 1 on mouse cortical data projected into a top–down view.
See Sect. 5 for details about how we obtained these data. Here, the problem sizes are nY =
44,478 and nX = 22,377 and the number of injections ninj = 126. We use the smoothing
parameter λ̄ = 106.

We run the low-rank solver with the target solution rank varying from r = 125 to 1000.
The stopping tolerances τ were decreased geometrically from 10–3 for r = 125 to 10–6

for r = 1000. This delivers accurate but cheap solutions to the Galerkin system (10) while
ensuring that the algorithm reached the target rank.

These low-rank solutions are compared to the full-rank solution Wfull with r = nX =
22,377 found by L-BFGS (Byrd et al. [8]), similar to Harris et al. [19], which used L-BFGS-B
to deal with the nonnegativity constraint. Note that this full-rank algorithm was initialized
from the output of the low-rank algorithm. This led to a significant speedup: The full-rank
method, initialized naively, had not reached a similar value of the cost function (4) after a
week of computation, but this “warm start” allowed it to finish within hours.

The computing times and errors are presented in Fig. 3. We see that the RMS errors
are relatively small for ranks above 500, below 10–6. Neither the RMS or relative error
seem to have plateaued at rank 1000, but they are small. At rank 1000, the vector
∞ er-
ror (maximum absolute deviation of the matrices as vectors, not the matrix ∞-norm)
‖W1000 – Wfull‖∞ is less than 10–6, which is certainly within experimental uncertainty. In
Fig. 4, the value of the cost function J(Wr) is plotted against the rank r of the approxima-
tion Wr for the top view (left) and flatmap data (right). Apparently, around r = 500 the
cost function begins to stagnate indicating that the approximation quality does not signif-
icantly improve any more. Hence, we continue the investigation with the numerical rank
set to r = 500.

Figure 3 Computing times and errors for the top view data. The errors are computed with reference to the
full-rank solutionW
 =Wfull . Full rank time: � 6× 105 s (see text)

Kürschner et al. Journal of Mathematical Neuroscience (2019) 9:9 Page 14 of 22

Figure 4 Value of cost function J(Wr) versus the rank r of the low-rank approximationWr

We analyze the leading singular vectors of the solution. The output of the algorithm is
Wr = UZV ᵀ, which is not the SVD of Wr because Z is not diagonal. We perform a final
SVD of the Galerkin matrix, Z = ŨΣṼ ᵀ and set Û = UŨ and V̂ = V Ṽ , so that Wr = ÛΣV̂ ᵀ

is the SVD of the solution.
The first four of these singular vectors are shown in Fig. 5. The brain is oriented with the

medial-lateral axis aligned left–right and anterior–posterior axis aligned top–bottom, as
in a transverse slice. The midline of the cortex is in the center of the target plots, whereas
it is on the left edge of the source plots. We observe that the leading component is a
strong projection from medial areas of the cortex near the midline to nearby locations. The
second component provides a correction which adds local connectivity among posterior
areas and anterior areas. Note that increased anterior connectivity arises from negative
entries in both source and target vectors. The sign change along the roughly anterior–
posterior axis manifests as a reduction in connectivity from anterior to posterior regions
as well as from posterior to anterior regions. The third component is a strong local connec-
tivity among somatomotor areas located medially along the anterior–posterior axis and
stronger on the lateral side where the barrel fields, important sensory areas for whisking,
are located. Finally, the fourth component is concentrated in posterior locations, mostly
corresponding to the visual areas, as well as more anterior and medial locations in the
retrosplenial cortex (thought to be a memory and association area). The visual and retro-
splenial parts of the component show opposite signs, reflecting stronger local connectivity
within these regions than distal connectivity between them.

These patterns in Fig. 5 are reasonable, since connectivity in the brain is dominantly local
with some specific long-range projections. We also observe that the projection patterns
(left components ÛΣ) are fairly symmetric across the midline. This is also expected due
to the mirroring of major brain areas in both hemispheres, despite the evidence for some
lateralization, especially in humans. The more specific projections between brain regions
will show up in later, higher frequency components. However, it becomes increasingly
difficult to interpret lower energy components as specific pathways, since these combine
in complicated ways.

3.3 Mouse cortex: flatmap connectivity
Finally, we test the method on another problem which is a flatmap projection of the brain
(see Sect. 5 for details). This projection more faithfully represents areas of the cortex which

Kürschner et al. Journal of Mathematical Neuroscience (2019) 9:9 Page 15 of 22

Figure 5 Top four singular vectors of the top view connectivity with r = 500. Left: scaled target vectors ÛΣ .
Right: source vectors V̂

are missing from the top view since they curl underneath that vantage point. The flatmap
is closer to the kind of transformation used by cartographers to flatten the globe, whereas
the top view is like a satellite image taken far from the globe.

The problem size is now larger by roughly a factor of three relative to the top view.
Here, nY = 126,847 and nX = 63,435. The number of experiments is the same, ninj = 126,
whereas the regularization parameter is set to λ̄ = 3 × 107. The smoothing parameter was
set to give the same level of smoothness, measured “by eye,” in the components as in the
top view experiment. The tolerances τ were as in the top view case.

In this case, the computing time of the full solver would be excessively large, so we do not
estimate the error by comparison to the full solution, instead taking the solution with r =
1000 as the reference solution W
 = W1000. The computing times and the errors are shown
in Fig. 6. Here, the benefits by using the GPU implementation for solving (10) were more

Kürschner et al. Journal of Mathematical Neuroscience (2019) 9:9 Page 16 of 22

Figure 6 Computing times and errors for the flatmap data. The errors are computed with reference to the
rank-1000 solutionW
 =W1000

significant than for the top view case. We obtained the rank 500 solution in approximately
1.5 hours, which is significantly less than with the pure CPU implementation, which took
6.4 hours. Comparing Figs. 3 and 6, the computation times for the flatmap problem with
r = 500 and 1000 are roughly twice as large as for the top view problem. On the other hand,
for r = 125 and 250, the compute times are about three times as long for flatmap versus
top view. The observed scaling in compute time appears to be slightly slower than O(n)
in these tests. The growth rate of the computing time on the GPU is better than that of
the CPU version since the matrix multiplications, which dominate the CPU cost for large
ranks, are calculated in nearly constant time, mainly due to communication overhead, on
the GPU. The RMS error between rank 500 and 1000 is again less than 10–6, so we believe
rank 500 is probably a very good approximation to the full solution. Figure 4 (right) shows
the costs versus the approximation rank. Again, we see that r = 500 is reasonable and the
distance from W
 is smaller than 10%.

The four dominant singular vectors of the flatmap solution are shown in Fig. 7, oriented
as in Fig. 5, with the anterior–posterior axis from top–bottom and the medial-lateral axis
from left–right. The first two factors are directly comparable between the two problem
outputs, although we see more structure in the flatmap components. This could be due
to employing a projection which more accurately represents these 3-D data in 2-D, or
due to the choice of smoothing parameter λ̄. The third and fourth components, on the
other hand, are comparable to the fourth and third components in the top view problem,
respectively. Again, these patterns are reasonable and expected. The raw 3-D data that
were fed into the top view and flatmap projections were the same, but the greedy algorithm
is run using different projected datasets. It is reassuring that we can interpret the first few
factors and directly compare them against those in the top view.

3.4 Dropping the nonnegativity constraint does not strongly affect the solutions
In order to apply linear methods, we relaxed the nonnegativity constraint when formulat-
ing the unconstrained problem (4), as opposed to the original problem with nonnegativity
constraint (1). We now show that the resulting solutions are not significantly different be-
tween the two problems. This justifies the major simplification that we have made.

In all of our experiments with the test problem (Sect. 3.1), the resulting matrices were
nearly nonnegative. The solution W40 has 48 out of 40,000 negative entries. These negative

Kürschner et al. Journal of Mathematical Neuroscience (2019) 9:9 Page 17 of 22

Figure 7 Top four singular vectors of the flatmap connectivity with r = 500. Left: scaled target vectors ÛΣ .
Right: source vectors V̂

entries were all greater than –0.0023 in the lower-left corner of the matrix (see Fig. 2),
where the truth is approximately zero.

We were able to solve the top view problem with the nonnegative constraint using L-
BFGS-B by initializing with Wfull projected onto the nonnegative orthant. Let Wproj be
the matrix with entries (Wproj)ij = max(0, (Wfull)ij), and let Wnonneg denote the solution to
the constrained problem obtained in this way. Comparing the nonnegative versus uncon-
strained solutions, we found that E(Wfull, Wnonneg) = 3.99e–04. Projecting Wfull onto the
nonnegative orthant leads to E(Wproj, Wnonneg) = 3.67e–04. In either case the ∞-norm dif-
ference is 0.009. These results show that the solution to the unconstrained problem is close
to the solution of the constrained problem, and that the projection of the solution to the

Kürschner et al. Journal of Mathematical Neuroscience (2019) 9:9 Page 18 of 22

unconstrained problem is also close to the constrained solution. Algorithm 1 thus offers
an efficient way to approximate the solution to the more difficult nonnegative problem,
while retaining low rank.

4 Discussion
We have studied a numerical method specifically tailored for the important neuroscience
problem of connectome regression from mesoscopic tract tracing experiments. This con-
nectome inference problem was formulated as the regression problem (4). The optimality
conditions for this problem turn out to be a linear matrix equation in the unknown con-
nectivity W , which we propose to solve with Algorithm 1. Our numerical results show
that the low-rank greedy algorithm, as proposed by Kressner and Sirković [26], is a viable
choice for acquiring low-rank factors of W with a computation cost that was significantly
smaller compared to other approaches (Harris et al. [19]; Benner and Breiten [3]; Kressner
and Tobler [27]). This allows us to infer the flatmap matrix, with approximately 140× more
entries than previously obtained for the visual system, while taking significantly less time:
computing the flatmap solution took hours versus days for the smaller low-rank visual net-
work (Harris et al. [19]). The first few singular vector components of these cortical con-
nectivities are interpretable and reasonable from a neuroanatomy standpoint, although a
full anatomical study of this inferred connectivity is outside the scope of the current paper.

The main ingredients of Algorithm 1 are solving the large, sparse linear systems of equa-
tions at each ALS iteration and solving the dense but small projected version of the original
linear matrix equation for the Galerkin step. We had to carefully choose the solvers for
each of these phases of the algorithm. The Galerkin step forms the principal bottleneck
due to the absence of direct numerical methods to handle dense linear matrix equations
of moderate size. We employed a matrix-valued CG iteration to approximately solve (10),
implementing it on the GPU for speed. This lead to cubic complexity in r at this step. One
could argue that equipping this CG iteration with a preconditioner could speed up its con-
vergence, but so far we were not successful in finding a preconditioner that both reduced
the number of CG steps and the computational time. A future research direction could
be to derive an adequate preconditioning strategy for the problem structure in (7), which
would increase the efficiency of any Krylov method.

Matrix-valued Krylov subspace methods (Damm [13]; Kressner and Tobler [27]; Ben-
ner and Breiten [3]; Palitta and Kürschner [36]) offer an alternative class of possible algo-
rithms to solving the overall linear matrix equation (7). However, for rapid convergence
of these methods we typically need a preconditioner. In our tests on (7), these approaches
performed poorly, because rank truncations (e.g. via thin QR or SVD) are required after
major subcalculations which occur at every iteration. Computing these decompositions
quickly became expensive because of the sheer amount of necessary rank truncations in
the Krylov method. If a suitable preconditioner for our problem would be found, it would
make sense to give low-rank matrix-valued Krylov methods another try.

The original regression problem proposed by Harris et al. [19] (1) demands that the
solution W be nonnegative. So far, this constraint is not considered by the employed algo-
rithm. However, for the test problem and data we have tried, the computed matrix turns
out to be majority nonnegative. We find typically small negative entries that can be safely
neglected without sacrificing accuracy. Although a mostly nonnegative solution is not gen-
erally expected when solving the unconstrained problem (4), it appears that such behavior
is typical for nonnegative data matrices X and Y .

Kürschner et al. Journal of Mathematical Neuroscience (2019) 9:9 Page 19 of 22

Working directly with nonnegative factors U ≥ 0 and V ≥ 0 was originally proposed by
Harris et al. [19], where they applied a projected gradient method to find such an approx-
imation for connectome of mouse visual areas albeit very slowly. Such a formulation is
preferred, since it leads to a nonnegative W , and it allows interpreting the leading factors
as the most important neural pathways in the brain. Modifying Algorithm 1 to compute
nonnegative low-rank factors or enforcing that the low-rank approximation UV ᵀ ≈ W is
nonnegative—a nonlinear constraint—is a much harder goal to achieve. For instance, even
if one generated nonnegative factor matrices U and V , e.g. by changing the ALS step to
nonnegative ALS, the orthogonalization and Galerkin update each destroy this nonnega-
tivity. New methods of NMF which incorporate regularizations similar to our Laplacian
terms (Cichocki et al. [12]; Cai et al. [9]) are an area of ongoing research, and the optimiza-
tion techniques developed there could accelerate the nonnegative low-rank formulation of
(1). These include other techniques developed with neuroscience in mind, such as neuron
segmentation and calcium deconvolution (Pnevmatikakis et al. [38]) as well as sequence
identification (Mackevicius et al. [29]). The greedy method we have presented is an excel-
lent way to initialize the nonnegative version of the problem, similar to how SVD is used
to initialize NMF. We hope to improve upon nonnegative low-rank methods in the future.

Model (1) is certainly not the only approach to solving the connectome inference prob-
lem. The loss term ‖PΩ (WX – Y)‖2

F is standard and arises from Gaussian noise assump-
tions combined with missing data and is standard loss in matrix completion problems with
noisy observations (e.g. Mazumder et al. [31]; Candes and Plan [10]). The regularization
term is a thin plate spline penalty (Wahba [48]). This is one of many possible choices for
smoothing, among them penalties such as ‖grad(W)‖2 or the total variation semi-norm
(Rudin et al. [42]; Chambolle and Pock [11]), which favors piecewise-constant solutions.
While we recognize that there are many possible choices for the regularizer, the thin plate
penalty is reasonable, linear and thus convenient to work with. Previous work (Harris et al.
[19]) has shown that it is useful for the connectome problem. Testing other forms of reg-
ularization is a worthy goal but not straightforward to implement at scale. This is outside
the scope of the current paper.

Finally, the most exciting prospects for this class of algorithms is what can be learned
when we apply them to next-generation tract tracing datasets. Such techniques can be
used to resolve differences between the rat (Bota et al. [6]) brain and mouse (Oh et al.
[34]), or uncover unknown topographies (see Reimann et al. [40]) in these and other ani-
mals (like the marmoset, Majka et al. [30]). The mesoscale is also naturally the same res-
olution as obtained by wide-field calcium imaging. Spatial connectome modeling could
elucidate the largely mysterious interactions different sensory modalities, proprioception,
and motor areas, hopefully leading to better understanding of integrative functions.

5 Data and code
We tested our algorithm on two datasets (top view and flatmap) generated from Allen
Institute for Brain Science Mouse Connectivity Atlas data http://connectivity.brain
-map.org. These data were obtained with the Python SDK allensdk version 0.13.1
available from http://alleninstitute.github.io/AllenSDK/. Our data pulling and processing
scripts are available from https://github.com/kharris/allen-voxel-network.

We used the allensdk to retrieve 10 μm injection and projection density volumetric
data for 126 wildtype experiments in cortex. These data were projected from 3-D to 2-D

http://connectivity.brain-map.org
http://connectivity.brain-map.org
http://alleninstitute.github.io/AllenSDK/
https://github.com/kharris/allen-voxel-network

Kürschner et al. Journal of Mathematical Neuroscience (2019) 9:9 Page 20 of 22

using either the top view or flatmap paths and saved as 2-D arrays. Next, the projected co-
ordinates were split into left and right hemispheres. Since wildtype injections were always
delivered into the right hemisphere, this becomes our source space S whereas the union
of left and right are the target space T . We constructed 2-D 5-point Laplacian matrices
on these grids with “free” Neumann boundary conditions on the cortical edge. Finally, the
2-D projected data were downsampled 4 times along each dimension to obtain 40 μm
resolution. The injection and projection data were then stacked into the matrices X and
Y , respectively. The mask Ω was set via Ωij = 1{Xij≤0.4}.

MATLAB code which implements our greedy low-rank algorithm (1) is included in the
repository: https://gitlab.mpi-magdeburg.mpg.de/kuerschner/lowrank_connectome. We
also include the problem inputs X, Y , Lx, Ly, Ω for our three example problems (test, top
view, and flatmap) as MATLAB files. Note that Ω is stored as 1 – Ω in these files, as this
matches the convention of (Harris et al. [19]).

Acknowledgements
We would like to thank Lydia Ng, Nathan Gouwens, Stefan Mihalas, Nile Graddis and others at the Allen Institute for the
top view and flatmap paths and general help accessing the data. Thank you to Braden Brinkman for discussions of the
continuous problem, to Stefan Mihalas and Eric Shea-Brown for general discussions. This work was primarily generated
while PK was affiliated with the Max Planck Institute for Dynamics of Complex Technical Systems.

Funding
KDH was supported by the Big Data for Genomics and Neuroscience NIH training grant and a Washington Research
Foundation Postdoctoral Fellowship. SD is thankful to the Engineering and Physical Sciences Research Council (UK) for
supporting his postdoctoral position at the University of Bath through Fellowship EP/M019004/1, and the kind hospitality
of the Erwin Schrödinger International Institute for Mathematics and Physics (ESI), where this manuscript was finalized
during the Thematic Programme Numerical Analysis of Complex PDEModels in the Sciences.

Abbreviations
MOp, primary motor cortex; L-BFGS, Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm; L-BFGS-B, L-BFGS
with Box constraints; d-D, d-dimensional; ALS, Alternating Linear Scheme; Eq., Equation; CG, Conjugate Gradient
(method); CP, Canonical Polyadic (decomposition); GPU, Graphics Processing Unit; RMS, Root Mean Square (error); SVD,
Singular Value Decomposition; NMF, Nonnegative Matrix Factorization.

Availability of data and materials
Links to data and code are provided in Sect. 5.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Authors’ contributions
PK, SD and PB developed the greedy algorithm and performed numerical experiments. KDH prepared the viral tracing
data, implemented the L-BFGS algorithm and performed comparisons, plotting and analysis of results. All authors
planned the project and wrote, read and approved the final manuscript.

Author details
1Department of Electrical Engineering ESAT/STADIUS, KU Leuven, Leuven, Belgium. 2Department of Mathematical
Sciences, University of Bath, Bath, UK. 3Paul G. Allen School of Computer Science & Engineering, Biology, University of
Washington, Seattle, USA. 4Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of
Complex Technical Systems, Magdeburg, Germany.

Endnotes
a In this paper, we take a different convention for Ω (the complement) as in Harris et al. [19].
b KD Harris, personal communication, 2017. Note that these times are for the much smaller visual areas dataset.
c Wildtype injections can cover 30–500 voxels, approximately 240 on average, at 100 μm resolution (Oh et al. [34]).
d One may consider rescaling λ as before, but subtle differences arise. In the continuous versus discrete cases the

units of the equations are different, since the functions Xi(x) and Yi(y) are now viewed as densities. Furthermore,
there is a mismatch in units between (1) and (2), because the graph Laplacian is unitless whereas the Laplace

https://gitlab.mpi-magdeburg.mpg.de/kuerschner/lowrank_connectome

Kürschner et al. Journal of Mathematical Neuroscience (2019) 9:9 Page 21 of 22

operator is not. This explains the lack of any dependence on the grid size in the scaling of the discrete problem.
Regardless, choosing the exact scaling to make the continuous and discrete cases match is not necessary for the
more qualitative argument we are making.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 18 April 2019 Accepted: 30 October 2019

References
1. Altas I, Dym J, Gupta M, Manohar R. Multigrid solution of automatically generated high-order discretizations for the

biharmonic equation. SIAM J Sci Comput. 1998;19(5):1575–85. https://doi.org/10.1137/S1464827596296970.
2. Benner P. Solving large-scale control problems. IEEE Control Syst Mag. 2004;14(1):44–59.
3. Benner P, Breiten T. Low rank methods for a class of generalized Lyapunov equations and related issues. Numer Math.

2013;124(3):441–70. https://doi.org/10.1007/s00211-013-0521-0.
4. Benner P, Li R-C, Truhar N. On the ADI method for Sylvester equations. J Comput Appl Math. 2009;233(4):1035–45.
5. Benner P, Saak J. Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov

equations: a state of the art survey. GAMM-Mitt. 2013;36(1):32–52. https://doi.org/10.1002/gamm.201310003.
6. Bota M, Dong H-W, Swanson LW. From gene networks to brain networks. Nat Neurosci. 2003;6(8):795–9.

https://doi.org/10.1038/nn1096.
7. Buckner RL, Margulies DS. Macroscale cortical organization and a default-like apex transmodal network in the

marmoset monkey. Nat Commun. 2019;10(1):1976. https://doi.org/10.1038/s41467-019-09812-8.
8. Byrd R, Lu P, Nocedal J, Zhu C. A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput.

1995;16(5):1190–208. https://doi.org/10.1137/0916069.
9. Cai D, He X, Han J, Huang TS. Graph regularized nonnegative matrix factorization for data representation. IEEE Trans

Pattern Anal Mach Intell. 2011;33(8):1548–60. https://doi.org/10.1109/TPAMI.2010.231.
10. Candes EJ, Plan Y. Matrix completion with noise. Proc IEEE. 2010;98(6):925–36.

https://doi.org/10.1109/JPROC.2009.2035722.
11. Chambolle A, Pock T. An introduction to continuous optimization for imaging. Acta Numer. 2016;25:161–319.

https://doi.org/10.1017/S096249291600009X.
12. Cichocki A, Zdunek R, Huy Phan A, Amari S. Nonnegative matrix and tensor factorizations: applications to exploratory

multi-way data analysis and blind source separation. New York: Wiley; 2009.
13. Damm T. Direct methods and ADI-preconditioned Krylov subspace methods for generalized Lyapunov equations.

Numer Linear Algebra Appl. 2008;15(9):853–71.
14. Gămănuţ R, Kennedy H, Toroczkai Z, Ercsey-Ravasz M, Van Essen DC, Knoblauch K, Burkhalter A. The mouse cortical

connectome, characterized by an ultra-dense cortical graph, maintains specificity by distinct connectivity profiles.
Neuron. 2018;97(3):698–715.e10. https://doi.org/10.1016/j.neuron.2017.12.037.

15. Golub GH, Van Loan CF. Matrix computations. 4th ed. Baltimore: Johns Hopkins University Press; 2013.
16. Grasedyck L. Existence of a low rank or H-matrix approximant to the solution of a Sylvester equation. Numer Linear

Algebra Appl. 2004;11:371–89.
17. Grillner S, Ip N, Koch C, Koroshetz W, Okano H, Polachek M, Poo M, Sejnowski TJ. Worldwide initiatives to advance

brain research. Nat Neurosci. 2016. https://doi.org/10.1038/nn.4371.
18. Hardt M, Wootters M. Fast matrix completion without the condition number. In: Proceedings of the 27th conference

on learning theory, COLT 2014. Barcelona, Spain, June 13–15, 2014. 2014. p. 638–78.
19. Harris KD, Mihalas S, Shea-Brown E. High resolution neural connectivity from incomplete tracing data using

nonnegative spline regression. In: Neural information processing systems. 2016.
20. Harshman R. Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multi-modal factor

analysis. UCLA Working Papers in Phonetics. 1970;16.
21. Jarlebring E, Mele G, Palitta D, Ringh E. Krylov methods for low-rank commuting generalized Sylvester equations.

Numer Linear Algebra Appl. 2018.
22. Jenett A, Rubin GM, Ngo T-TB, Shepherd D, Murphy C, Dionne H, Pfeiffer BD, Cavallaro A, Hall D, Jeter J, Iyer N, Fetter D,

Hausenfluck JH, Peng H, Trautman ET, Svirskas RR, Myers EW, Iwinski ZR, Aso Y, DePasquale GM, Enos A, Hulamm P,
Chun Benny Lam S, Li H-H, Laverty TR, Long Lei Qu F, Murphy SD, Rokicki K, Safford T, Shaw K, Simpson JH, Sowell A,
Tae S, Yu Y, Zugates CT. A GAL4-driver line resource for drosophila neurobiology. Cell Reports. 2012;2(4):991–1001.
https://doi.org/10.1016/j.celrep.2012.09.011.

23. Kasthuri N, Hayworth KJ, Berger DR, Lee Schalek R, Conchello JA, Knowles-Barley S, Lee D, Vázquez-Reina A, Kaynig V,
Jones TR, Roberts M, Lyskowski Morgan J, Carlos Tapia J, Sebastian Seung H, Gray Roncal W, Tzvi Vogelstein J, Burns R,
Lewis Sussman D, Priebe CE, Pfister H, Lichtman JW. Saturated reconstruction of a volume of neocortex. Cell.
2015;162(3):648–61. https://doi.org/10.1016/j.cell.2015.06.054.

24. Kennedy H, Van Essen DC, Christen Y, editors. Micro-, meso- and macro-connectomics of the brain. Research and
perspectives in neurosciences. Berlin: Springer; 2016.

25. Knox JE, Decker Harris K, Graddis N, Whitesell JD, Zeng H, Harris JA, Shea-Brown E, Mihalas S. High Resolution
Data-Driven Model of the Mouse Connectome. bioRxiv 2018. p. 293019. https://doi.org/10.1101/293019.

26. Kressner D, Sirković P. Truncated low-rank methods for solving general linear matrix equations. Numer Linear Algebra
Appl. 2015;22(3):564–83. https://doi.org/10.1002/nla.1973.

27. Kressner D, Tobler C. Krylov subspace methods for linear systems with tensor product structure. SIAM J Matrix Anal
Appl. 2010;31(4):1688–714.

28. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L,
Chen L, Chen T-M, Chi Chin M, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E,
Dolbeare TA, Donelan MJ, Dong H-W, Dougherty JG, Ben Duncan J, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA,
Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP,

https://doi.org/10.1137/S1464827596296970
https://doi.org/10.1007/s00211-013-0521-0
https://doi.org/10.1002/gamm.201310003
https://doi.org/10.1038/nn1096
https://doi.org/10.1038/s41467-019-09812-8
https://doi.org/10.1137/0916069
https://doi.org/10.1109/TPAMI.2010.231
https://doi.org/10.1109/JPROC.2009.2035722
https://doi.org/10.1017/S096249291600009X
https://doi.org/10.1016/j.neuron.2017.12.037
https://doi.org/10.1038/nn.4371
https://doi.org/10.1016/j.celrep.2012.09.011
https://doi.org/10.1016/j.cell.2015.06.054
https://doi.org/10.1101/293019
https://doi.org/10.1002/nla.1973

Kürschner et al. Journal of Mathematical Neuroscience (2019) 9:9 Page 22 of 22

Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C,
Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta
GJ, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall JJ, Ruiz
MJ, Sarno NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BI, Sodt AJ, Stewart
NN, Stumpf K-R, Sunkin SM, Sutram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM,
Wohnoutka PE, Wolkey CK, Wong VY, Wood M, Yaylaoglu MB, Young RC, Youngstrom BL, Feng Yuan X, Zhang B,
Zwingman TA, Jones AR. Genome-wide atlas of gene expression in the adult mouse brain. Nature.
2007;445(7124):168–76. https://doi.org/10.1038/nature05453.

29. Mackevicius EL, Bahle AH, Williams AH, Gu S, Denissenko NI, Goldman MS, Fee MS. Unsupervised Discovery of
Temporal Sequences in High-Dimensional Datasets, with Applications to Neuroscience. bioRxiv 2018. p. 273128.
https://doi.org/10.1101/273128.

30. Majka P, Chaplin TA, Yu H-H, Tolpygo A, Mitra PP, Wójcik DK, Rosa MGP. Towards a comprehensive atlas of cortical
connections in a primate brain: mapping tracer injection studies of the common marmoset into a reference digital
template. J Comp Neurol. 2016;524(11):2161–81. https://doi.org/10.1002/cne.24023.

31. Mazumder R, Hastie T, Tibshirani R. Spectral regularization algorithms for learning large incomplete matrices. J Mach
Learn Res. 2010;11:2287–322.

32. Mitra PP. The circuit architecture of whole brains at the mesoscopic scale. Neuron. 2014;83(6):1273–83.
https://doi.org/10.1016/j.neuron.2014.08.055.

33. Nouy A. Proper generalized decompositions and separated representations for the numerical solution of high
dimensional stochastic problems. Arch Comput Methods Eng. 2010;17(4):403–34.
https://doi.org/10.1007/s11831-010-9054-1.

34. Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nghi
Nguyen T, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines
KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR,
Zeng H. A mesoscale connectome of the mouse brain. Nature. 2014;508(7495):207–14.
https://doi.org/10.1038/nature13186.

35. Ortega JM, Rheinboldt WC. Iterative solution of nonlinear equations in several variables. Philadelphia: SIAM; 2000.
36. Palitta D, Kürschner P. On the convergence of krylov methods with low-rank truncations. e-print arXiv:1909.01226

math.NA, 2019.
37. Pati YC, Rezaiifar R, Krishnaprasad PS. Orthogonal matching pursuit: recursive function approximation with

applications to wavelet decomposition. In: Proceedings of 27th asilomar conference on signals, systems and
computers. vol. 1. 1993. p. 40–4. https://doi.org/10.1109/ACSSC.1993.342465.

38. Pnevmatikakis EA, Soudry D, Gao Y, Machado TA, Merel J, Pfau D, Reardon T, Mu Y, Lacefield C, Yang W, Ahrens M,
Bruno R, Jessell TM, Peterka DS, Yuste R, Paninski L. Simultaneous denoising, deconvolution, and demixing of calcium
imaging data. Neuron. 2016;89(2):285–99. https://doi.org/10.1016/j.neuron.2015.11.037.

39. Powell CE, Silvester D, Simoncini V. An efficient reduced basis solver for stochastic Galerkin matrix equations. SIAM J
Sci Comput. 2017;39(1):A141–63. https://doi.org/10.1137/15M1032399.

40. Reimann MW, Gevaert M, Shi Y, Lu H, Markram H, Muller E. A null model of the mouse whole-neocortex
micro-connectome. Nat Commun. 2019;10(1):1–16. https://doi.org/10.1038/s41467-019-11630-x.

41. Ringh E, Mele G, Karlsson J, Jarlebring E. Sylvester-based preconditioning for the waveguide eigenvalue problem.
Linear Algebra Appl. 2018;542:441–63.

42. Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Phys D: Nonlinear Phenom.
1992;60(1):259–68. https://doi.org/10.1016/0167-2789(92)90242-F.

43. Shank SD, Simoncini V, Szyld DB. Efficient low-rank solution of generalized Lyapunov equations. Numer Math.
2015;134:327–42.

44. Simoncini V. Computational methods for linear matrix equations. SIAM Rev. 2016;38(3):377–441.
45. Sorber L, Van Barel M, De Lathauwer L. Optimization-based algorithms for tensor decompositions: canonical polyadic

decomposition, decomposition in rank-(Lr , Lr , 1) terms, and a new generalization. SIAM J Optim. 2013;23(2):695–720.
https://doi.org/10.1137/120868323.

46. Sporns O. Networks of the brain. 1st ed. Cambridge: MIT Press. 2010.
47. Van Essen DC. Cartography and connectomes. Neuron. 2013;80(3):775–90.

https://doi.org/10.1016/j.neuron.2013.10.027.
48. Wahba G. Spline models for observational data. Philadelphia: SIAM; 1990.
49. Ypma RJF, Bullmore ET. Statistical analysis of tract-tracing experiments demonstrates a dense, complex cortical

network in the mouse. PLoS Comput Biol. 2016;12(9):e1005104. https://doi.org/10.1371/journal.pcbi.1005104.

https://doi.org/10.1038/nature05453
https://doi.org/10.1101/273128
https://doi.org/10.1002/cne.24023
https://doi.org/10.1016/j.neuron.2014.08.055
https://doi.org/10.1007/s11831-010-9054-1
https://doi.org/10.1038/nature13186
http://arxiv.org/abs/arXiv:1909.01226
https://doi.org/10.1109/ACSSC.1993.342465
https://doi.org/10.1016/j.neuron.2015.11.037
https://doi.org/10.1137/15M1032399
https://doi.org/10.1038/s41467-019-11630-x
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1137/120868323
https://doi.org/10.1016/j.neuron.2013.10.027
https://doi.org/10.1371/journal.pcbi.1005104

	Greedy low-rank algorithm for spatial connectome regression
	Abstract
	Keywords

	Introduction
	Mathematical formulation of a spatial connectome regression problem
	Previous methods of mesoscale connectome regression
	Continuous formulation motivates the need for sophisticated solvers
	Outline of the paper

	Greedy low-rank method
	Linear matrix equation for the unknown connectivity
	Numerical low-rank methods for linear matrix equations
	Description and application of the greedy low-rank solver

	Performance of the greedy low-rank solver on three problems
	Test problem: a toy brain
	Mouse cortex: top view connectivity
	Mouse cortex: ﬂatmap connectivity
	Dropping the nonnegativity constraint does not strongly affect the solutions

	Discussion
	Data and code
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Consent for publication
	Authors' contributions
	Author details
	Endnotes
	Publisher's Note
	References

