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Abstract Neural networks generate a variety of rhythmic activity patterns, often in-
volving different timescales. One example arises in the respiratory network in the
pre-Bötzinger complex of the mammalian brainstem, which can generate the eupneic
rhythm associated with normal respiration as well as recurrent low-frequency, large-
amplitude bursts associated with sighing. Two competing hypotheses have been pro-
posed to explain sigh generation: the recruitment of a neuronal population distinct
from the eupneic rhythm-generating subpopulation or the reconfiguration of activ-
ity within a single population. Here, we consider two recent computational models,
one of which represents each of the hypotheses. We use methods of dynamical sys-
tems theory, such as fast-slow decomposition, averaging, and bifurcation analysis,
to understand the multiple-timescale mechanisms underlying sigh generation in each
model. In the course of our analysis, we discover that a third timescale is required
to generate sighs in both models. Furthermore, we identify the similarities of the
underlying mechanisms in the two models and the aspects in which they differ.
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1 Introduction

Many years of experimental work have elucidated a range of properties of the
neuronal circuits involved in breathing. While there is clear evidence that one or
more neuronal populations in the mammalian brain stem, including the well-studied
pre-Bötzinger complex (pre-BötC) [1], are capable of generating respiratory-related
rhythms, there is a lack of consensus about the transfer from rhythm generation to
patterned motor output. While some have presented evidence that modulations of the
interactions within a common rhythmogenic core can account for a variety of pat-
terns of activity observed in recordings from respiratory pathways [2], others have
argued that rhythm generation and pattern generation are distinct, with one or more
pattern-generating respiratory populations shaping stereotyped baseline rhythms into
different outputs [3, 4]. Recent computational work has shown, for example, that a
distinct pattern generator is not necessary to explain the observation of mixed-mode
oscillations composed of intermingled bursts and burstlets in respiratory neuron pop-
ulation readout nerves [5]. Nonetheless, further study is needed to help distinguish
between these competing views.

One familiar example of a non-standard respiratory output pattern is the sigh.
Sighs can be distinguished in neuronal activity; indeed, recordings of population ac-
tivity from the ventral respiratory group (VRG) identified two distinct patterns of
inspiratory activity under conditions of normal oxygenation: fictive eupnea (typical
respiration) and low-frequency fictive sighs. As described by [6], fictive sighs occur
periodically in the in vitro transverse medullary slice preparation from mice contain-
ing the pre-BötC within the VRG. Each fictive sigh consists of a biphasic activity
burst that is larger in amplitude, longer in duration, and occurs at a lower frequency
than eupneic bursts. Despite the experimental accessibility of sighs, the rhythmogenic
mechanisms underlying sigh generation remain largely unknown [6, 7]. The biphasic
aspect of the sigh, with an initial phase that is identical to a normal eupneic burst
and a later high-amplitude phase, could result from the recruitment of a neuronal
population distinct from the eupneic rhythm-generating circuit, or it could simply
emerge due to the complex interplay of multiple-timescale processes within the core
rhythm-generating circuit itself. The main goal of this paper is to use mathematical
tools to elucidate the multiple-timescale mechanisms underlying sigh generation in
two recent computational models [8, 9], one of which represents each of the com-
peting hypotheses about pattern generation. In doing so, we will highlight the ways
in which the dynamic mechanisms in the two models are in fact similar as well as
ways that they can be distinguished in future experimental studies, to help determine
whether or not separate pattern generating components complement rhythm genera-
tors in producing respiratory outputs.

Example sigh patterns produced by the two models appear in Fig. 1. The model
yielding the solution shown in Fig. 1A includes fast-spiking currents in addition to
rhythmic burst generation, while the one associated with Fig. 1B does not, leading
to the significant quantitative differences between their outputs. For convenience, we
refer to such solutions as sigh-like bursting (SB, Fig. 1A) and sigh-like spiking (SS,
Fig. 1B), respectively. Of course, the meaning of a ‘spike’ is quite different across the
two models, representing a single action potential in the SB case and an entire active
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Fig. 1 Sigh-like bursting and spiking solutions. Sigh-like bursting solution (A) and sigh-like spiking
solution (B) from the models presented in [8] and [9], respectively. Patterns repeat periodically. In (B),
we only plot a few of the many eupneic cycles occurring between sighs, to obtain better resolution in
displaying the sigh

period in the SS model. Nonetheless, both feature high-amplitude, low-frequency,
long-duration events emerging periodically on the top of higher-frequency baseline
patterns. Indeed, a comparison of the patterns in Fig. 1 suggests that the fundamental
dynamic mechanisms underlying both may be similar, analogously to the comparison
between square-wave (or fold-homoclinic) bursting with spikes and relaxation oscil-
lations without them. One of the contributions of our analysis will be to determine
the extent to which this analogy holds, which will clarify the relation of these models
for subsequent studies.

Experimental studies in rodent medullary slices containing the pre-BötC have
identified two biophysical mechanisms that could potentially contribute to the gen-
eration of rhythmic bursting, one based on the persistent Na+ current (INaP), and
the other involving the voltage-gated Ca2+ current (ICa) and the Ca2+-activated
nonspecific cation current (ICAN), activated by intracellular Ca2+, which may be
accumulated from a variety of sources [10, 11]. Past computational work showed
that the interactions of these burst mechanisms could yield a form of mixed burst-
ing (MB) output with significant qualitative similarity to the SB pattern shown in
Fig. 1A [12–14]. By applying methods of dynamical systems theory to a single-
compartment model of a pre-BötC inspiratory neuron in [15], we explained in full
detail how the MB solution results from these currents. In this paper, we generalize
the analysis and methods for studying MB solutions in [15] to the more complicated
model SB and SS models presented in Sect. 2 in order to uncover the mechanisms
underlying the these patterns. Our approach is geometric and is based on studying
reduced subsystems of an original model that evolve on particular timescales. It is
not rigorous, in that we assume that there are abrupt transitions between timescales
and we do not prove any results; moreover, we will sometimes make approxima-
tions, such as treating a nullcline that only weakly depends on a parameter as fixed
under variations of that parameter. Nonetheless, this approach has a long history of
providing powerful insights, for example, in work ensuing from the classical dis-
section of minimal bursting models by [16] and in the study of coupled neuronal
oscillators and bursters (e.g, [17–20] and many others since). An important aspect
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of this dynamical systems approach is that it can decompose a solution pattern into
a sequence of dynamic epochs evolving on different timescales and bifurcations of
subsystems that underlie transitions between these epochs [21]. Thus, the approach
distills out a set of key features that can be used to classify solutions and to ob-
jectively compare solutions that differ quantitatively and come from models that
are superficially quite different, as in the famous classification of neuronal bursters
[16, 22].

While the MB solution appears to involve at least three timescales based on its
time course, we obtained a non-intuitive result in [15] that the core mechanism un-
derlying the robust production of the MB pattern is in fact an interaction of only
two timescales. In this paper, after presenting the SB and SS models in Sect. 2, we
similarly analyze the timescale-interaction mechanisms that support SB solutions (in
Sect. 3) and SS solutions (in Sect. 4). In both cases, we determine that timescales
must remain separated into three distinct classes for the solutions of interest to arise.
In Sect. 5, we compare these two sighing solutions to highlight the similarities and
differences in the mechanisms and timescale interactions involved in producing them,
and we conclude with a discussion in Sect. 6.

2 Computational Models for Sighing

2.1 Sigh-Like Bursting Model

We consider two recent models for neurons in the pre-BötC. Jasinski et al. [8] pre-
sented a relatively detailed model in the Hodgkin-Huxley framework for pre-BötC
neurons and showed that a synaptically coupled population of these neurons, with
heterogeneous parameter values, can generate SB solutions (Fig. 1A), whereas a sin-
gle model pre-BötC neuron without synaptic inputs cannot produce a sighing rhythm.
Beyond issues of synaptic coupling, the model by Jasinski et al. [8] is more compli-
cated than the MB model [15] in two important ways. First, in addition to INaP and
ICAN, the Na+/K+ pump plays an important role in the generation of activity pat-
terns in this model. Furthermore, we have considered only one-directional coupling,
from calcium concentration to the voltage dynamics, in [15], such that the MB model
can be thought of as one oscillator forcing another (see also [23]). In the model devel-
oped by Jasinski et al., however, the membrane potential and the cytoplasmic Ca2+
concentration can each influence the evolution of the other.

To facilitate the identification of the essential mechanisms underlying the SB be-
havior and the assessment of how to group the timescales involved, we consider a
synaptically self-coupled single-compartment model neuron based on the model pre-
sented in [8], which we refer to as the Jasinski model:

C
dV

dt
= −INa − INaP − IK − ICa − ICAN − IPump − IL − ISynE, (1a)

dy

dt
= (

y∞(V ) − y
)
/τy(V ),

y = {mNa, hNa,mNaP, hNaP,mCa, hCa,mK}, (1b)
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Table 1 Ionic currents and channel reversal potentials for system (1a)–(1g)

Currents (pA) Reversal potentials (mV)

INa = ḡNam
3
NahNa(V − ENa) ENa = (RT/F) ln(Nao/Nai)

INaP = ḡNaPmNaPhNaP(V − ENa)

IK = ḡKm4
K(V − EK) EK = (RT/F) ln(Ko/Ki)

ICa = ḡCamCahCa(V − ECa) ECa = (RT/2F) ln(Cao/Cai)

ICAN = ḡCANmCAN(V − ECAN) ECAN = 0

IPump = RPump(ϕ(Nai) − ϕ(Naieq )), where ϕ(x) = x3/(x3 + K3
P)

IL = gL(V − EL) EL = −68

ISynE = (gSynEs + gtonic)(V − ESynE) ESynE = −10

dCatot

dt
= −αCaICa − Cai/τCa, (1c)

dCai

dt
= −αCaICa − Cai/τCa + KCa(JERIN − JEROUT), (1d)

dl

dt
= AKd(1 − l) − ACail, (1e)

dNai

dt
= −αNa(INa + INaP + ICAN + 3IPump), (1f)

ds

dt
= (

(1 − s)s∞(V ) − s
)
/τs(V ). (1g)

The neuronal membrane potential (V ) is governed by a set of membrane ionic cur-
rents, as shown in (1a). C is neuronal membrane capacitance, which we set to 36 pF,
and t is time. The ionic currents in the model include fast Na+ current (INa), per-
sistent Na+ current (INaP), delayed rectifier K+ current (IK), high-voltage-activated
Ca2+ current (ICa), Ca2+-activated nonspecific cation current (ICAN), Na+/K+ pump
current (IPump), leak current (IL) and excitatory synaptic current (ISynE), which com-
bines self-coupling with tonic drive from respiratory feedback regions; see Table 1.

Activation (m) and inactivation (h) variables for most ionic channels are governed
by Eq. (1b), where steady-state activation (m∞) and inactivation (h∞) functions and
time constants are described as in Table 2. Notice from the bottom row in Table 2
that unlike the other currents, ICAN activates instantaneously. This activation (mCAN)
depends on the intracellular calcium concentration (Cai) and is voltage-independent.
The parameters for these currents are specified in Table 3.

The dynamics of the total intracellular Ca2+ concentration within the cell (Catot)
and intracellular concentration of free Ca2+ (Cai) are described by (1c) and (1d),
respectively, and these are intimately linked with l, the fraction of IP3 receptors that
are not inactivated by calcium, which is governed by (1e). Calcium dynamics is in-
fluenced by voltage through the first term in the right-hand sides of (1c) and (1d),
−αCaICa, which represents Ca2+ influx from the extracellular space through voltage-
gated Ca2+ channels. In (1d), JERin represents the flux of Ca2+ per unit volume from
the endoplasmic reticulum (ER) into the cytoplasm, which depends on l, and JERout
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Table 2 Functions associated with activation and inactivation variables for system (1a)–(1g). We use the
variable y when an expression corresponds to a set of variables

Gating
variables

Steady-state activation and inactivation Time constants

mNa y∞(V ) = 1/(1 + exp(−(V − Vy1/2)/ky)) τy(V ) = τy max/ cosh(−(V − Vτy1/2)/kτy)

hNa

mNaP

hNa

mCa τmCa = 0.5 ms

hCa τhCa = 18 ms

mK mK∞ = α∞/(α∞ + β∞) τmK = 1/(α∞ + β∞)

α∞ = Aα · (V + Bα)/(1 − exp(−(V + Bα)/kα)), β∞ = Aβ · exp(−(V + Bβ)/kβ)

mCAN mCAN = 1/(1 + (KCAN/Cai)
n)

Table 3 Parameter values for system (1a)–(1g)

Current Parameters

Fast Na+ (INa) ḡNa = 150 nS, RT/F = 26.54 mV, Nao = 120 mM

Vm1/2 = −43.8 mV, km = 6 mV, τmmax = 0.25 ms,
Vτm1/2 = −43.8 mV, kτm = 14 mV

Vh1/2 = −67.5 mV, kh = −10.8 mV, τhmax = 8.46 ms,
Vτh1/2 = −67.5 mV, kτh = 12.8 mV

Persistent Na+ (INaP) ḡNaP = 0 nS

Vm1/2 = −47.1 mV, km = 3.1 mV, τmmax = 1 ms,
Vτm1/2 = −47.1 mV, kτm = 6.2 mV

Vh1/2 = −60 mV, kh = −9 mV, τhmax = 5,000 ms,
Vτh1/2 = −60 mV, kτh = 9 mV

In the case of non-inactivating INaP, h = constant = 0.4

K+ delayed rectifier (IK) ḡK = 160 nS, Ko = 4 mM, Ki = 140 mM

Aα = 0.01, Bα = 44 mV, kα = 5 mV, Aβ = 0.17,
Bβ = 49 mV, kβ = 40 mV

Ca2+ (ICa) ḡCa = 0.00065 nS, Cao = 4 mM

Vm1/2 = −27.5 mV, km = 5.7 mV

Vh1/2 = −52.4 mV, kh = −5.2 mV

Ca2+-activated nonspecific (ICAN) ḡCAN = 3 nS, KCAN = 0.00074 mM, n = 0.97

Na+/K+pump(IPump) RPump = 200 pA, Naieq = 15 mM, Kp = 15 mM

Leakage (IL) gL = 2.5 nS

Excitatory synaptic (ISynE) gSynE = 20 nS, gtonic = 0.78 nS
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represents the flux of Ca2+ per unit volume from the cytoplasm into the ER. These
two fluxes are modeled by (2a)–(2c):

JERIN =
(

LIP3 + PIP3

[ [IP3]Cail

([IP3] + KI )(Cai + Ka)

]3)
(CaER − Cai), (2a)

JEROUT = VSERCA
Ca2

i

K2
SERCA + Ca2

i

, (2b)

CaER = Catot − Cai

σ
. (2c)

The values of parameters associated with the equations for Catot, Cai and l are
given by αCa = 2.5 × 10−5 mM/fC, τCa = 500 ms, KCa = 2.5 × 10−5, LIP3R =
0.37/ms, PIP3 = 31,000/ms, [IP3] = 1.5 × 10−3 mM, KI = 10−3 mM, Ka =
0.4 × 10−3 mM, VSERCA = 0.4 mM/ms, KSERCA = 0.2 × 10−3 mM, σ = 0.185,
A = 0.1 mM/ms and Kd = 0.4 × 10−3 mM [13]. Additional description of model
components has been given previously [13, 14]. For convenience, we henceforth omit
units from the model parameters and variables.

2.2 Sigh-Like Spiking Model

Toporikova et al. [9] recently designed a computational model for inspiratory pre-
BötC neurons, based on an earlier model [13] that includes two different bursting
mechanisms depending on INaP and intracellular Ca2+, respectively. In contrast to
the Jasinski model, this model does not include fast-spiking components (i.e., INa
and IK) such that instead of generating SB solutions, it produces SS patterns. Under
different parameter choices emphasizing distinct burst-generating mechanisms, this
model generates oscillations following mainly the kinetics of INaP or an even lower-
frequency sigh-like rhythm resulting mainly from slow Ca2+ oscillations. Following
the terminology used in [9], we can instantiate two copies of the model, one with
each type of parameter set, and refer to the model equipped with parameters that
support fictive sigh activity as the sigh compartment and the model with parameters
that support eupneic activity as the eupnea compartment.

With an inhibitory synapse from the eupnea compartment to the sigh compartment
and an excitatory synapse from sigh to eupnea, the output of the coupled model is the
SS pattern (see Fig. 1B) composed of a large spike emerging periodically on the top
of regular spikes, analogous to the long bursts separated by short bursts in the SB
solution, which is consistent with experimental data obtained in vitro [6, 7, 24]. In
fact, the role of the coupling between compartments is simply to coordinate the timing
of the eupneic and sigh-like spikes. For example, the oscillation pattern occurring
after removal of the coupling from the eupnea compartment to the sigh compartment
appears in Fig. 2A, while the spike of the sigh compartment alone, without input, is
shown on a different timescale in Fig. 2B. Furthermore, the generation of eupneic
spikes can be understood in the same way as the regular bursts in the SB solution,
which we consider in Sect. 3.1.1. Hence we focus entirely on the sigh compartment
on its own in our analysis in Sect. 4.
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Fig. 2 Fictive eupnea and sighs. The model in [9] generates both fictive eupnea (lower amplitude, higher
frequency) and fictive sighs (lower frequency, higher amplitude). (A) Voltage trace (Ve) for the eupnea
compartment with unidirectional input from the sigh compartment. (B) Voltage trace for the isolated sigh
compartment, as specified in Eqs. (3a)–(3e) and (4a)–(4j); here we use Vs in place of V to contrast with
the voltage Ve in (A). Note the difference in timescales between the two panels

For simplicity, we will still denote the solution shown in Fig. 2B as the SS solution
and we refer to the sigh compartment model as the Toporikova model, described by
the following equations:

Cm

dV

dt
= −INaP − Ileak − ICAN − ICa − Ih, (3a)

dh

dt
= (

h∞(V ) − h
)
/τh(V ), (3b)

dCatot

dt
= KCa

λ
(JPMIN − JPMOUT), (3c)

dCai

dt
= KCa

λ
(JPMIN − JPMOUT) + KCa(JERIN − JEROUT), (3d)

dl

dt
= AKd(1 − l) − ACail, (3e)

with

INaP = gNaPm∞h(V − VNaP), (4a)

Ileak = gK(V − VK), (4b)

ICAN = gCANCAN∞(V − VNaP), (4c)

CAN∞ = 1/(1 + KCAN/Cai), (4d)

ICa = gCam∞(V − VCa), (4e)

Ih = ghn∞(V − VH ), (4f)

x∞(V ) = 1/
(
1 + exp

(
(V − Vx)/Sx

))
, x ∈ {m,n,h}, (4g)

τh(V ) = τ̄h/cosh
(
(V − Vh)/2Sh

)
, (4h)
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Table 4 The values of the parameters in the sigh compartment model given by Eqs. (3a)–(3e) and (4a)–
(4j)

Current Parameters

INaP gNaP = 1.3 nS, Vh = −48 mV, Vm = −40 mV, Sh = 5 mV, Sm = −6 mV, τ̄h = 10,000 ms,
VNaP = 50 mV

Ileak gK = 2.7 nS, VK = −60 mV

ICa gCa = 0.02 nS, VCa = 150 mV, αCa = 0.055, VPMCA = 2, KPMCA = 0.3

ICAN gCAN = 1.5 nS, KCAN = 0.00074 mM

Ih gh = 2 nS, Sn = 8 mV, Vn = −70 mV, VH = 30 mV

JPMIN = −αCaICa, (4i)

JPMOUT = VPMCACa2
i /

(
K2

PMCA − Ca2
i

)
. (4j)

In this system, the terms JERIN and JEROUT appearing in the Cai Eq. (3d) are the
same as those used in the Jasinski model as given by Eqs. (2a)–(2c). Parameters
related to them have been specified in Sect. 2.1, except [IP3] = 1 μM. In Eqs. (3c)–
(3d), λ is the ratio of ER to plasma membrane surfaces, which we set to 0.1. Cm, the
neuronal membrane capacitance, is 21 pF. Other parameter values related to currents
and corresponding units for the Toporikova model are given in Table 4.

3 Sigh-Like Bursting in a Self-Coupled Pre-BötC Neuron

At the single-neuron level, with the self-coupling removed by setting gSynE = 0,
model (1a)–(1g) can produce different intrinsic bursting patterns, depending on cho-
sen parameter values. One type of bursting is based on the slow voltage-dependent
inactivation of INaP (as represented by the hNaP variable in the equation for INaP in
Table 1), whereas another type relies on intracellular Ca2+ and depends on ICAN.
There are several distinct burst-terminating mechanisms that can contribute, based,
respectively, on the slow inactivation of INaP, the activity-dependent accumulation of
Na+ followed by the action of the [Na+]in-activated IPump, and the Ca2+-dependent
inactivation of IP3 receptors.

With synaptic coupling between two or more neurons (i.e., gSynE > 0), the coupled
cells are able to generate SB solutions. We consider the special case of a single self-
coupled cell, given by model (1a)–(1g), as a reduction of a coupled network. Similarly
to findings in [8], numerical simulations of (1a)–(1g) indicate that assigning ḡCa = 0
or ḡCAN = 0 does not affect regular bursting, but fully removes the sigh-like oscilla-
tions and hence the SB pattern. These effects suggest that the generation of sigh-like
bursts in this model is ICa/ICAN-dependent, while regular bursting is independent of
ICAN. Furthermore, setting IPump = 0 eliminates both regular bursting and sigh-like
oscillations, implying that the Na+/K+ pump is also critically involved. On the other
hand, simulations with ḡNaP = 0 show that the full SB solution survives intact without
the need for INaP.
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Fig. 3 Simulation of rhythmic sigh-like bursting in the Jasinski model. Simulation of rhythmic sigh–
like bursting in the Jasinski model (1a)–(1g). From top to bottom: Time courses of membrane potential,
calcium, sodium, total intracellular calcium concentration within the cell (Catot) and IP3 channel gating
variable l. This SB pattern repeats periodically. The right panel provides a zoomed view showing the de-
tails of a regular small burst, where the dashed green and blue lines denote the end of a burst active phase
and the beginning of the next such phase, respectively. Note the difference in time labels between the left
and right panels

The left panel of Fig. 3 demonstrates the evolution of several variables, Cai, Nai,
Catot and l, during an SB cycle. Note that there exist low-amplitude Cai and Nai tran-
sients during regular bursts, eventually followed by an abrupt increase of intracellular
Ca2+, which Nai appears to follow more slowly. Meanwhile, Catot and l, which only
interact directly with each other and Cai, both accumulate until Cai jumps up and
then start decreasing. The right panel of Fig. 3 shows in a magnified view of a regular
burst that Cai, Nai and Catot engage in small oscillations during the spiking phase,
consistent with the fact that these variables receive input from V ; they tend to increase
throughout this phase and to decrease while V is not spiking.

We aim to understand the mechanisms underlying this SB solution and to elu-
cidate the timescales that are needed to produce it. The bidirectional coupling be-
tween membrane potential and cytoplasmic Ca2+ concentration, as well as the high-
dimensionality of model (1a)–(1g), are complications not present in previous related
analyses [15, 23]. To achieve these goals, we will nondimensionalize Eqs. (1a)–(1g)
to reveal the presence of different timescales; determine how to group timescales that
are present; implement geometric singular perturbation theory (GSPT) to set up re-
duced systems based on separation of timescales; and use the reduced systems to
explain the mechanisms underlying the dynamics of the SB solutions. In contrast to
the related MB model [15], it will turn out that use of the averaging method will play
a role in the analysis. By uncovering the mechanisms underlying the SB solution in
the Jasinski model, we will conclude that, unlike the case with the MB solution stud-
ied previously, a third timescale actually is required to generate SB solutions in this
model.

3.1 Analysis of Sigh-Like Bursting

Since the SB solution dynamics in the Jasinski model persists without INaP, we can
reduce (1a)–(1g) to an 11-dimensional system by removing mNaP and hNaP and set-
ting INaP = 0 in Eq. (1a). Henceforth, we still refer to the new lower-dimensional
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model as the Jasinski model. The fact that regular bursting depends on IPump but not
ICAN and ICa suggests that we can decouple the IPump-based burster from the cal-
cium dynamics during the regular bursting phase of the SB solution. Hence, we can
think of the Jasinski model as consisting of two subsystems: (V , y,Nai, s) (denoted
as the voltage compartment) as a potentially bursting subsystem based on IPump, and
(Cai,Catot, l) (denoted as the calcium compartment) as a potentially oscillating sub-
system. We first investigate the IPump-based mechanism underlying the regular burst
generated by the voltage compartment through a bifurcation analysis and then study
the effect of the calcium compartment on the resulting bifurcation structures to un-
derstand how the transition from regular bursts to the long burst happens. Of course,
we will have to take into account the coupling from the voltage compartment to the
calcium compartment to complete the analysis.

Our methods for analyzing the model will depend heavily on exploiting the pres-
ence of different time scales. As a first step, it is helpful to rescale the variables so
that the important timescales can be explicitly identified and used to group variables
into timescale classes that are different from the voltage and calcium compartment
groupings, which are based on coupling structure and biology. To this end, we define
new dimensionless variables (v, cai, ctot, nai, τ ), and voltage, calcium, sodium and
timescales Qv , Qc , Qna , and Qt , respectively, such that

V = Qv · v, Cai = Qc · cai, Catot = Qc · ctot,

Nai = Qna · nai, t = Qt · τ.
Note that y, s and l are already dimensionless in (1a)–(1g).

Details of the nondimensionalization procedure, including the determination of
appropriate values for Qv , Qc, Qna and Qt , are given in Appendix 1. From this
process, we obtain a dimensionless system of the form

Rv

dv

dt
= f (v, y, s, cai, nai), (5a)

Ry

dy

dτ
= H(v,y), (5b)

Rctot

dctot

dτ
= h1(v, cai), (5c)

Rcai

dcai

dτ
= g1(v, cai, ctot, l), (5d)

Rl

dl

dτ
= h2(cai, l), (5e)

Rnai

dnai

dτ
= g2(v,nai, cai), (5f)

Rs

ds

dτ
= S(v, s), (5g)

with coefficients of derivatives on the left-hand sides as well as functions on the
right-hand sides specified in Eqs. (14a)-(14g), and timescales for all variables shown
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Fig. 4 Basic structures of subsystems for the Jasinski model. Basic structures of subsystems for the Jasin-
ski model (5a)–(5g). (A) Projection onto (nai , v)-space of the bifurcation diagram for the fast subsystem
of the voltage compartment with nai as a bifurcation parameter, along with the nai -nullcline shown in
cyan. The black curve represents the critical manifold S of the fast subsystem (solid for stable fixed
points, dashed for unstable), and the blue curve shows the maximum of v along the family of period-
ics P . (B) Nullsurfaces of cai for the calcium compartment with v at its minimum (upper surface) and
maximum (lower surface), in (cai , ctot, l)-space. The black curve denotes the SB solution trajectory of the
nondimensionalized Jasinski model. The right branches of these two nullsurfaces lie close to each other.
(C) A zoomed-in and enlarged view of (B)

in Table 5, both of which appear in Appendix 1. While v, gating variables mNa, hNa,
mCa, hCa, mK, and s do not operate on exactly the same timescale quantitatively, it
is clear that they are all relatively faster than the other variables. Hence we choose to
group all of them as fast variables, to consider nai and cai as slow, and to classify
l and ctot as evolving on a superslow timescale. For simplicity, we abuse notation to
now let y ∈ R

6 denote all the fast gating variables along with s. For each group of
variables we can define a corresponding subsystem of equations with slower variables
kept as parameters, as we have done in [23] and many others have done previously.
We can also define a fast-slow subsystem of fast and slow variables together, and we
can define separate fast and slow subsystems for the voltage compartment, since it
includes slow nai .

The bifurcation diagram for the fast subsystem of the voltage compartment, com-
prising variables (v, y, s) and decoupled from cai by setting ḡCa = ḡCAN = 0, with
the slow variable nai treated as a bifurcation parameter, is shown in Fig. 4A. It in-
cludes an S-shaped curve of equilibria (S) and a family of stable periodic orbits (P )
that initiates in a supercritical Andronov–Hopf (AH) bifurcation and terminates in a
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homoclinic (HC) bifurcation involving the middle branch of S as nai is increased.
Hence, in the absence of calcium dynamics, this subsystem is capable of generating
a square-wave bursting solution, which terminates via the accumulation of nai and
subsequent activation of the Na+/K+ pump. As part of our analysis of SB dynamics,
we will in Sect. 3.1.1 consider what happens to this bursting, corresponding to the
small bursts in the SB solution, once coupling from the calcium compartment to the
voltage compartment is restored.

In the calcium compartment, the dynamics of cai depends on the neuronal mem-
brane potential v. We can represent this v-dependence by considering a family of
cai nullsurfaces, each defined for v fixed. While cai is low, the projection of the
trajectory to (cai, ctot, l)-space exhibits small oscillations during each regular burst
(see Fig. 4C and the calcium trace in Fig. 3). These oscillations correspond to the
projected trajectory trying to move back and forth between the left branches of two
extreme nullsurfaces as v oscillates between its minimum and maximum during the
spiking phase of each burst (Fig. 4B and C); the trajectory cannot make it all the way
to the vmax surface because the dynamcs of cai is slower than that of v. As for the
right branches of these two extreme surfaces, Fig. 4B shows that they lie close to-
gether, which results because ICa depends only weakly on v for calcium large. As a
result, if cai is elevated, then the projected trajectory is constrained quite tightly be-
tween the two right branches of these nullsurfaces. We can observe that at the end of
a cycle of the SB solution, the sigh-like burst is completed as the trajectory passes the
curve of lower folds of the family of calcium nullsurfaces and jumps back to the left.
What remains unclear about this loop is what bifurcation induces the jump-up of cal-
cium, the understanding of which is crucial in illustrating the transition from regular
bursts to the high-amplitude sigh-like burst. We consider this issue in Sect. 3.1.2, after
first completing some additional analysis of the regular bursting phase with coupling
from the calcium compartment to the voltage compartment restored.

3.1.1 Mechanisms Underlying Regular Bursting

Setting ḡCa = 0.00065 and ḡCAN = 3 as given in Table 3 restores the coupling from
calcium to voltage and yields an SB solution. An example of the coupling effect
on the voltage compartment can be seen in Fig. 5A: an increase of cai shifts the
nai -dependent fast subsystem equilibria S to the right. In Fig. 5B, we project the
first regular burst solution and the bifurcation diagram of the fast subsystem for cai

fixed at 8e−3, corresponding to its value at the beginning of this first small burst,
onto (nai, v)-space. Also shown is the green (resp. blue) dashed line representing
the nai values at which the homoclinic (resp. lower fold of equilibria) bifurcation
occurs. Starting from the yellow star, the trajectory moves on the slow timescale
associated with nai along the stable lower branch of S until it reaches the lower
fold. After that, the trajectory jumps up to the stable periodic orbit branch and then
moves to the right, since the trajectory stays above the nai -nullcline. Sometime after
it crosses the homoclinic bifurcation at the nai value indicated by the green dashed
line, the trajectory will jump down to the lower branch of equilibria, completing
a small burst. This is essentially a square-wave burst, but notice that several more
spikes occur after the green dashed line is passed. These spikes arise because during
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Fig. 5 Bifurcation diagrams of the fast subsystem. Bifurcation diagrams of the fast subsystem with the
slow variables nai and cai taken as static parameters. The yellow star marks the start point of the SB solu-
tion. (A) The effect of cai on the bifurcation diagram for the fast subsystem, projected into (nai , v)-space,
along with the nai -nullcline (cyan). Increasing cai from 8e−3 to 3e−2 to 5e−2 results in a shift of the
bifurcation diagram to the right (black to blue to green). (B) Projection of the first small burst in the SB
solution of (5a)–(5g) onto the bifurcation diagram (with cai = 8e−3) in (nai , v)-space, along with the
nai -nullcline (cyan). The blue and green dashed lines indicate the nai values where the lower fold and
homoclinic bifurcations occur, respectively. (C) The curve of saddle-node bifurcations corresponding to
the lower fold of the bifurcation diagram (blue), homoclinic bifurcation curve (green) and part of the tra-
jectory (black) generated by (5a)–(5g) in (nai , cai )-space. The HC curve splits the (nai , cai )-space into
two regions labeled as ‘Active’ and ‘Silent’, respectively. The part of the trajectory corresponding to the
first burst, as shown in (B), is magenta. (D) A zoomed-in and enlarged view of (C)

the first regular burst period, cai progressively increases on a slow timescale; as a
result, the bifurcation diagram also moves rightward on a slow timescale associated
with the increase of cai (Fig. 5A). Hence at the end of the burst, the homoclinic
bifurcation actually occurs at some larger nai value to the right of the green dashed
line in Fig. 5B, yielding several more spikes after the green dashed line. Such square-
wave bursting solutions will repeat roughly until cai starts to jump up to larger values
as indicated in Figs. 3, 4.

Understanding the persistence of the regular bursts and the mechanism by which a
transition to the sigh-like burst occurs requires us to consider the effect of cai on the
voltage compartment. To do so, we use cai as the second bifurcation parameter and
allow both cai and nai to vary in order to find the two-parameter bifurcation curves
of the fast subsystem (v, y) in the (nai, cai) parameter plane that unify the results
in Fig. 5A, as illustrated in Fig. 5C. The blue (resp. green) curve in this plane is the
curve of lower fold (LF) (resp. homoclinic (HC)) bifurcations, which initiates (resp.
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terminates) each burst, as noted previously. Since the increase of cai moves the bi-
furcation diagram to the direction of increasing nai , both the LF and the HC curves
are positively sloped in (nai, cai)-space. Within the same projection, the trajectory
evolves leftward from the yellow star and it starts oscillating as it passes the LF curve
(see Fig. 5C). These oscillations terminate when the trajectory reaches the HC bifur-
cation curve, which completes the first regular burst. Similarly, a sequence of subse-
quent regular bursts occurs, with the local maximum of nai progressively increasing
due to the rightward drift of LF as cai accumulates. The fact that the trajectory in
(nai, cai)-space crosses the LF and HC 15 times corresponds to the existence of 15
regular bursts between sighs (see Fig. 3). After these, bursting solutions give way to
continuous spiking.

Based on the fast voltage compartment bifurcation structures in this section, we
have seen that regular bursts occur as the slow variables cai and nai traverse the
phase space back and forth between the LF and HC curves. The reason why regular
bursts switch to the sigh-like burst, however, has not been addressed. To figure this
out, we notice that after multiple crossings of the HC curve and returns to quiescence
in Fig. 5C, the trajectory projected to (nai, cai) space starts oscillating near the HC
curve, instead of going back again to the quiescent state (see Fig. 5D for an enlarged
view of oscillations near the HC curve). Moreover, this transition happens before cai

jumps up. Hence, the switch from regular bursts to the long sigh-like burst in the full
system seems to correspond to the transition from bursting to tonic spiking in the
fast-slow subsystem (v, y,nai, cai), rather than the jumping up of cai in the calcium
compartment as in the MB model [15]. We next consider the mechanism responsible
for this transition.

3.1.2 Mechanisms Underlying the Transition from Regular Bursts to the Sigh-Like
Burst

In the analysis up to this point, the superslow variables ctot and l have not yet been
considered. It is natural to expect that the superslow evolution of these two variables
may contribute to the switch from bursting to tonic spiking. A numerical simulation
of the fast-slow subsystem over a range of ctot and l values (Fig. 6A–C) suggests that
superslow variables do play an important role in inducing a transition from bursting to
tonic spiking in the fast-slow subsystem. In Fig. 6A–C, representative time traces for

Fig. 6 Effect of ctot on the fast-slow subsystem. Effect of variations in ctot on the trajectories of the
fast-slow subsystem (v, y, cai , nai ) for l = 0.94. In (A) ctot = 0.6 (bursting), (B) ctot = 0.7 (tonic spiking
at low cai and nai : cai ≈ 2.5 × 10−2, nai ≈ 0.6) and (C) ctot = 0.74 (tonic spiking at high cai and nai :
cai ≈ 0.57 and nai ≈ 0.85)
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Fig. 7 Bifurcation diagram of
the fast-slow subsystem. The
bifurcation diagram for the
fast-slow subsystem with
respect to the ctot summarizes
all possible behaviors as ctot
varies; diamonds mark ctot
values used in Fig. 6A–C

bursting and tonic spiking solutions are shown for a fixed value of l. For small ctot, the
fast-slow system is in a bursting state (Fig. 6A). When ctot is increased, tonic spiking
solutions arise (Fig. 6B). A further increase in ctot accelerates the tonic spiking in v

(Fig. 6C), and both cai and nai oscillate at higher values than in (A) and (B).
A graphical summary of the effect of ctot variations on the trajectories is provided

in Fig. 7, where the bifurcation structure of the fast-slow subsystem with respect to
ctot for l = 0.94 is displayed. We plot the standard L2 norm of the solution against
ctot. The fast-slow system exhibits tristability between bursting (red solid) and two
tonic spiking solutions (blue solid) for small ctot values. As ctot is increased, first the
bursting branch becomes unstable at a saddle-node bifurcation and then one spiking
branch does the same. At the start of an SB cycle, the trajectory is attracted by the
stable bursting branch with ctot ≈ 0.6 (red diamond). Solution behavior switches to
tonic spiking if ctot is increased. Note that the lower L2 norm corresponds to larger
cai and nai values; hence, as the trajectory gets attracted by the lower branch of
spiking after the saddle-node bifurcation of the upper one, the tonic spiking solution
occurs at larger cai , nai values.

Although Fig. 7 is suggestive, it remains to study more carefully the slow and su-
perslow dynamics in order to understand the mechanisms underlying the switch from
bursting to tonic spiking. To do so, we will average over the fast subsystem oscilla-
tions. For convenience, we refer to the two regions of (nai, cai) space separated by
the curve of HC bifurcations that terminates each regular burst as the silent and active
regions, respectively (Fig. 5C).

During each interburst interval within the regular bursting epoch, the full model
dynamically collapses to a lower-order system governed by the slow variables cai and
nai restricted to S, the manifold of equilibrium points of the fast subsystem. Each in-
terburst interval occurs when the trajectory projected to (nai, cai) space lies in the
silent region. During the spiking phase of each regular burst, the solution trajectory
is still largely determined by the slow variables cai and nai , but these variables are
perturbed by the voltage spike and the Ca2+-influx associated with each action po-
tential. This spiking phase corresponds to the active region of (nai, cai) space. In this
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region we employ the method of averaging by numerically averaging the derivatives
of the slow variables over one cycle of the action potential, while the superslow vari-
ables ctot and l are treated as static parameters. By doing so, we reduce the fast-slow
subsystem to two equations for just the slow variables. For g1 and g2 defined as the
right-hand sides of (5d) and (5f), respectively, the reduced system can be written as

Rcai
〈 ˙cai〉 = 1

T (cai, nai)

∫ T (cai ,nai )

0
g1

(
v(cai, nai; t), cai, ctot, l

)
dt, (6a)

Rnai
〈 ˙nai〉 = 1

T (cai, nai)

∫ T (cai ,nai )

0
g2

(
v(cai, nai; t), nai, cai

)
dt. (6b)

We refer to the reduced problem (6a)–(6b) as the averaged slow system. The null-
clines of the averaged slow system are curves of (nai, cai) values along which there
exist periodic solutions (with period T (cai, nai)) of the fast-slow subsystem that sat-
isfy the additional constraint of either 〈 ˙cai〉 = 0 or 〈 ˙nai〉 = 0. In future discussions
of the dynamics of the averaged slow system, we will refer to the cai and nai aver-
age nullclines as caav and naav, respectively. Each intersection of caav and naav is a
fixed point of system (6a)–(6b) representing a tonic spiking solution of the fast-slow
subsystem, which we will refer to as FPavi for some index i.

Figure 8 illustrates phase planes of the average slow system (6a)–(6b) for l = 0.94
and ctot = 0.6,0.7,0.74 as in Fig. 6. In each panel of Fig. 8, the green curve represents
the HC bifurcation of the fast subsystem that forms the boundary of the oscillation
region. Above HC, where the fast subsystem oscillates (Fig. 5C), the averaged null-
clines caav (blue curve) and naav (green curve) are shown. As noted before, fixed
points of (6a)–(6b), FPavi (yellow diamonds), are given by the intersections of these
nullclines, and one can usually determine the stability of the fixed points by consid-
ering the nullcline configuration.

In Fig. 8A with ctot = 0.6, the two average nullclines intersect at a stable fixed
point FPav1 (yellow diamond), which corresponds to the upper spiking branch in
Fig. 6D. Despite the existence of this stable fixed point (corresponding to stable tonic
spiking), the fast-slow subsystem exhibits bursting since our chosen initial values
lie in the basin of attraction of the bursting branch. Correspondingly, in Fig. 8A,
the projected trajectory moves clockwise, exhibiting small loops corresponding to
spikes within a regular burst, until it crosses HC, at which point the regular burst
terminates and the loops are lost while the trajectory transits along a stable branch of
the equilibrium curve S (not shown here).

At ctot = 0.7, the stable bursting branch has been lost (Fig. 7) and hence the tra-
jectory is now attracted by the stable fixed point FPav1 (Fig. 8B, yellow diamond).
There are also a saddle equilibrium FPav2, visible in the figure, and a third fixed
point of (6a)–(6b) that lies at larger cai and nai values, not shown here. As a result,
the fast-slow subsystem converges to the lower stable fixed point FPav1 and exhibits
tonic spiking.

As ctot increases further to 0.74, the lower two fixed points FPav1 and FPav2 collide
and annihilate through a saddle-node bifurcation (SN2 in Fig. 7; note their absence
in Fig. 8C) and only the upper stable fixed point FPav3 remains (Fig. 8D, yellow dia-
mond), corresponding to the lower spiking branch in Fig. 7. Therefore, the trajectory
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Fig. 8 Averaged phase planes. Averaged phase planes, corresponding to system (6a)–(6b), with super-
imposed trajectories of the fast-slow system, for l = 0.94 and three different values of ctot as in Fig. 6.
Throughout this figure, the curve of HC bifurcations is green, the nullclines caav, naav are blue and red,
respectively, and the yellow symbols mark the fixed points of (6a)–(6b). The oscillatory trajectories (black)
from Fig. 6A–C are projected to (nai , cai )-space in (A), (B), and the lower two panels in this figure, re-
spectively. For (A) ctot = 0.6 and (B) ctot = 0.7, there are three fixed points of (6a)–(6b) above HC where
the average nullclines intersect, namely, FPav1, FPav3, which are stable, and FPav2, which is unstable. Not
all fixed points are visible since some of them lie at larger (nai , cai ) values than those shown. (C) and (D)
Enlarged views of the phase plane for ctot = 0.74 showing that both FPav1 and FPav2 vanish and the only
average fixed point left (FPav3, with high nai and cai ) is stable. Specifically, panel (C) (resp. (D)) shows
the enlarged lower left (resp. upper right) region of the phase plane; note differences in values on the axes

jumps up to large cai values on the slow timescale until it reaches a small neighbor-
hood of the average cai nullcline (blue curve in Fig. 8D). Once there, the trajectory
approaches the fixed point FPav3 since 〈 ˙nai〉 remains positive. As the trajectory con-
verges toward FPav3, tonic spiking dynamics at large cai and nai values results.

Using slow averaged dynamics, we have elucidated how the transition from burst-
ing to tonic spiking occurs and why cai jumps to larger values as ctot increases for l

fixed. Similarly, we summarize the effects of ctot on the average slow system by using
bifurcation analysis as shown in Fig. 9. Again, the upper (resp. lower) branch of the
bifurcation diagram in L2 norm corresponds to lower (resp. upper) values of cai as
well as nai and hence solutions on this branch denote FPav1 (resp. FPav3). The mid-
dle branch represents the unstable saddle FPav2 (see Fig. 8B). Notice that Fig. 9 looks
qualitatively the same as the tonic spiking curves shown in blue in Fig. 7, hence either
can be used to illustrate the influence of ctot on the oscillatory trajectories for a fixed
value of l. As ctot is increased, calcium jumps up at a saddle-node (SN) seen both in
the tonic spiking branch in Fig. 7 and in the curve of average system fixed points in
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Fig. 9 Bifurcation diagram of
the average slow system.
Bifurcation diagram of the
average slow system (6a)–(6b)
with respect to ctot with l fixed
at 0.94. The ctot values for the
blue diamond marker points are
ctot = 0.7 (upper; as in Fig. 8B)
and 0.74 (lower; as in
Fig. 8C, D)

Fig. 9. On the other hand, the onset of spiking happens at a SN of the bursting branch
(Fig. 7, red). Next we extend this bifurcation analysis and examine the dependence
of the solution patterns of the fast-slow subsystem on both superslow variables ctot
and l. To do this, we compute two-parameter bifurcation diagrams in (ctot, l)-space.

In Fig. 10C, the fast-slow subsystem spiking/bursting boundary (solid red, SN1)
was calculated by following in the two superslow variables (ctot, l) the SN point
where the bursting branch loses stability (Fig. 7, red curve). Also shown is the bound-
ary (solid blue, SN2) demarcating where cai jumps up, computed by following the
upper fold point of the tonic spiking branch in Fig. 7. We can also use direct simu-
lation of the fast-slow subsystem (e.g., fixing ctot, varying l systematically, and then
repeating for a different ctot), to estimate the bursting/spiking boundary curve and
the onset of the jump-up in calcium (shown in dashed red and blue). The dashed
curves approach the solid ones as we exaggerate the timescale separation between
the fast-slow subsystem and the superslow variables (data not shown).

Combining these results with the fast subsystem bifurcation analysis as illustrated
in Fig. 5C, and reproduced in Fig. 10B, we are now able to fully understand the SB
solution shown in Fig. 10A. Starting from the yellow star at low ctot and l (Fig. 10),
a sequence of small bursts is produced as the trajectory in (cai, nai)-space oscillates
between the LF and HC curves multiple times (Fig. 10B). A key step toward ter-
mination of this process occurs when the increases of ctot and l push the trajectory
in (ctot, l)-space across the SN1, such that the fast-slow subsystem enters the tonic
spiking regime. In fact, several more small bursts actually occur after the crossing
of SN1 and are followed by the start of tonic spiking at the triangle. In the singu-
lar limit, however, this additional bursting will be lost and the tonic spiking occurs
when the trajectory reaches SN1. Within the same projection, the trajectory evolves
rightward from the triangle and eventually passes the SN2 curve at some point close
to the yellow circle, which initiates the jump-up of cai . The increase in cai as well
as in nai from the yellow circle, which occur on the slow timescale, can be seen
in the projection shown in Fig. 10B. Note that this jump corresponds in the projec-
tion into (cai, ctot, l)-space to the convergence of the trajectory to the right branches
of the cai -nullsurface family (Fig. 4B). For cai large, the trajectory in (cai, ctot, l)-
space lies above the l-nullsurface (not shown here); consequently, l next decreases
(corresponding also to the decrease in l in Fig. 10C), leading to the reduction of cai .
Therefore, the trajectory in (nai, cai)-space falls back from the peak in cai direction
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Fig. 10 Mechnisms underlying sigh-like bursting solutions. Simulation of the SB solution generated by
(5a)–(5g), together with the bifurcation diagrams. (A) Temporal evolution of v. Yellow symbols mark
key points along the solution (star: start of the SB solution as in Fig. 5; triangle: start of the sigh-like
burst; circle: start of jumping up of cai ; square: termination of the sigh-like burst). (B) Two-parameter
bifurcation diagrams showing LF (blue) and HC (green) curves together with the trajectory from panel (A)
in (nai , cai )-space, the enlarged view of the lower left part of which is given by Fig. 5C. (C) The curves of
saddle-node bifurcations corresponding to the upper folds of the bursting branch and the spiking branch in
Fig. 7, denoted as SN1 and SN2, respectively. We use SN1 (solid red) to approximate the bursting/spiking
boundary for the fast-slow subsystem (dashed red) and use SN2 (solid blue) to approximate the onset of
jumping up of cai (dashed blue), respectively

and moves towards HC (Fig. 10B). Once it crosses the HC bifurcation curve at the
yellow square, the long burst ends and the trajectory enters the silent phase. As the
solution finally returns to its starting point (yellow star), one cycle of the SB solution
is completed.

Remark 1 Some time after cai jumps up at the yellow circle, the amplitude of the
v spikes exhibits a sudden decrease followed by a gradual increase (Fig. 10A). This
behavior arises because periodic orbits of the voltage compartment in the Jasinski
model initiate in an AH bifurcation with zero amplitude, while orbit amplitudes in-
crease closer to the HC bifurcation (Fig. 4A). Therefore, the sudden decrease of the
amplitude of v spikes results from the fact that the jump-up of cai pushes the trajec-
tory away from the HC curve and closer to the AH. The subsequent decrease in cai
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yields a return toward the HC, leading to the gradual increase in the amplitude. This
mechanism is the same as observed in MB solutions in [15].

3.2 Identifying Timescales

MB solutions, studied previously [15], involve gradual transitions between two dif-
ferent types of bursts, like the SB solutions that we are now considering but with dif-
ferent underlying biological mechanisms. Surprisingly, we obtained the non-intuitive
result that the existence of robust MB solutions does not require a third timescale.
Thus, a natural question is: how many timescales are fundamentally important for
generating SB solutions? To address this question, we adopt the approach used in
[23] of transforming our original system into certain two-timescale systems by ad-
justing system parameters (see Table 5 in Appendix 1). Then we consider whether
SB solutions can persist under these adjustments.

The Jasinski model has 7 fast, 2 slow, and 2 superslow (7F, 2S, 2SS) variables. In
theory, the timescale separation between some of these groups might not be necessary
to generate SB dynamics. Thus, we will consider what happens if we group together
the fast and slow variables to form a (9F, 2SS) system and what happens if we group
together the slow and superslow variables to form a (7F, 4SS) system. To do so, we
first choose A = 1, so that l evolves on a comparable timescale to the other superslow
variable, ctot. Since parameters that control the timescale for cai will also affect the
timescale for ctot, we introduce a new parameter, β , with default value 1, as a scaling
factor specifically for the right-hand side of the cai Eq. (1d). To change the timescale
for nai , we vary αNa. We will form our (9F, 2SS) system by increasing both β and
αNa by a factor of 100, and we will form our (7F, 4SS) system by reducing both β

and αNa by a factor of 10.
With its original scaling, system (5a)–(5g) generates a SB solution, as shown in

Fig. 10A. Increasing A to 1 does not change this solution qualitatively, except that
the number of small bursts decreases. That is, as l becomes faster, the trajectory

Fig. 11 Simulations of the Jasinski model with two-time-scale reduction. Rescaled version of (5a)–(5g):
(9F, 2SS) case, with β = 100, αNa = 5 × 10−3. (A) Time series of v and cai . (B) The bifurcation diagram
for the 9-dimensional layer problem of the (9F, 2SS) system, with bifurcation parameter ctot and l = 0.94
fixed. Solid curves denote stable tonic spiking solutions while the dashed curve denotes unstable solutions.
At least one such solution is present for all ctot; in fact, the stable branches overlap over a small interval in
ctot, yielding bistability
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projected into (ctot, l)-space will reach the spiking/bursting boundary curve (SN1)
earlier and hence small bursts give way to a long burst earlier (Fig. 10C). We next
compare this SB solution to solutions from the (9F, 2SS) version of the system (5a)–
(5g) described above (compare Fig. 10A with Fig. 11A). The fast/slow decomposition
method (between (v, y) and (nai, cai) for understanding the mechanisms underlying
the regular bursts within the SB solution no longer applies to the (9F, 2SS) case,
because cai and nai now evolve on the fast timescale. In contrast to the original (7F,
2S, 2SS) case where the (7F, 2S)-subsystem generates bursting solutions for relatively
small ctot and l values (see Figs. 6 and 7), the new 9-dimensional fast subsystem for
the (9F, 2SS) case exhibits tonic spiking for all ctot and l values within a complete
bursting cycle. The effect of ctot on the fast subsystem trajectories can be determined
from Fig. 11B, where the bifurcation diagram of the fast subsystem (9F) with respect
to ctot for l = 0.94 is displayed. Two branches of stable solutions are present, both
corresponding to tonic spiking, and one or more stable tonic spiking solutions exist
for all ctot values, while the bursting branch that was found in the original system
no longer exists in this case. The stable branches persist in two-parameter (ctot, l)-
space for all relevant l (data not shown); therefore, as ctot, l evolve on the superslow
timescale, the trajectory remains on these spiking branches and spiking persists for
all time, and the system cannot sustain a SB solution.

Under the alternative rescaling to a (7F, 4SS) system, one cycle of the bursting so-
lution is as shown in Fig. 12A. Only long sigh-like bursts now occur, without regular
bursts. Note that the (7F, 2S, 2SS) and (7F, 4SS) systems have the same fast subsys-
tem, with the same LF and HC curves in (nai, cai)-space (Figs. 10, 12B). Within the
projection into the (nai, cai)-space, a burst of activity begins as the trajectory evolves
clockwise in the direction of increasing cai and nai from the LF curve in the lower
left part of the figure. Eventually, ctot, l change enough to cause a rise in the target
value of cai ; the details differ from the (7F, 2S, 2SS) case because the slow averaged
dynamics and fast-slow subsystem are no longer relevant, but the outcome is similar.
With the (7F, 4SS) rescaling, cai , nai evolve on the same superslow time scale as ctot,
l. Hence, the drift of the trajectory before this transition is too slow for the solution to
reach the curve of HC bifurcations and fall silent. As a result, the single burst contin-
ues all the way up until the transition; that is, regular bursting never occurs. While the
burst continues, all four superslow variables increase until the trajectory projected to
(cai, l, ctot)-space goes above the l-nullsurface (not shown here). After that, l starts
decreasing, which eventually leads to the decrease in cai (Fig. 12B,C). Again sim-
ilarly as before, this reduction in cai is fundamental in terminating the burst as it
brings the trajectory across the curve of HC bifurcations (Fig. 12B). Afterwards, the
solution enters the silent phase and goes back to the starting point, completing one
period consisting simply of one single long burst.

In summary, neither of these two-timescale systems, despite the fact that they are
the ones with the most similarity to the full three-timescale system, captures the full
features of the SB solution shown in Fig. 10A. It is critical that cai , nai are distinctly
slower than the fast voltage and other variables and faster than ctot, l for regular
bursts between sighs to occur. We thus conclude that presence of three timescales is
necessary for the emergence of the type of the SB solution we have studied, which
differs from what was obtained in the pre-BötC MB model [15].
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Fig. 12 Simulations of the Jasinski model with two-time-scale reduction. Rescaled version of (5a)–(5g):
(7F, 4SS) case, with β = 0.1, αNa = 5 × 10−6. (A) Time series of v and cai . (B) The projection of the
trajectory from (A) onto a two-parameter bifurcation diagram for the 7-dimensional layer problem of the
(7F, 4SS) system. (C) Projections to (cai , l, ctot)-space of the cai -nullsurfaces and (7F, 2S, 2SS) trajectory
(black) as illustrated in Fig. 4B and C, together with the (7F, 4SS) trajectory (magenta) from (A), (B)

4 Sigh-Like Spiking in a Single Pre-BötC Neuron

In Sect. 3, we have used the fast-slow decomposition method, bifurcation analysis
and the averaging method to understand the mechanisms underlying the SB solution
pattern, from which we discover that the short, eupneic bursts are of the well-known
square-wave or fold-homoclinic type [16]. A square-wave burster is a kind of relax-
ation oscillator except that its active state comprises a fast oscillation rather than a
quasi-steady plateau. For a square-wave burster, we can convert the upper active or
spiking state to a quasi-steady state by removing specifically the fast-spiking compo-
nents from the model. Following this logic, since the SS solution is composed of a
large spike emerging periodically from a pattern of ongoing regular spikes, we may
think of the SS solution as a simplification of the SB solution in which fast-spiking
components are removed from all active states.

In fact, the discussion in Sect. 2.2 suggests that instead of working with the full
SS pattern containing eupneic spikes (Fig. 2A), we can focus entirely on the activity
of the sigh compartment (Fig. 2B). Thus, we simply need to analyze what happens
during the prolonged silent phase and how the transition to the large, sigh-like spike
occurs, paralleling the analysis in Sect. 3. We will first analyze what timescales are
present in the model in the regime that supports the SS solutions of Fig. 2B and
how they should be grouped to apply geometric singular perturbation theory. After
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applying these methods, we will investigate how many timescales are truly required
in (3a)–(3e) in order to obtain these SS solutions.

We begin with nondimensionalization, defining new dimensionless variables
(v, cai, ctot, τ ) and voltage, calcium and time scales Qv , Qc and Qt :

V = Qv · v, Cai = Qc · cai, Catot = Qc · ctot, t = Qt · ts;
note that h and l are already dimensionless in (3a)–(3e). Details of the nondimen-
sionalization procedure, including the determination of appropriate values for Qv ,
Qc and Qt , are given in Appendix 2. From this process, we obtain a dimensionless
system of the form

ε
dv

dts
= f̂1(v,h, cai), (7a)

dh

dts
= ĥ1(v,h), (7b)

dctot

dts
= δĝ1(v) + dδĝ2(cai) := ĝ(v, cai), (7c)

ε
dcai

dts
= f̂2(v, cai, ctot, l), (7d)

dl

dts
= ĝ3(cai, l), (7e)

where f̂1, ĥ1, ĝ1, ĝ2, f̂2, ĝ3 are O(1) functions and ε, δ are small parameters. d has
size O(1) for c small (during the silent phase) and approximately 1/δ for c large
(during the active phase). From this nondimensionalization result, we conclude that
v and cai evolve on a fast timescale, and h and l evolve on a slow timescale. ctot,
however, has different evolution rates at different times: it evolves on a slow timescale
for c large because ĝ ≈ δĝ1 + ĝ2 is an O(1) function, and it evolves on a superslow
timescale for c small since ĝ ≈ δ(ĝ1 + ĝ2) is approximately an O(δ) function.

The SS system features bidirectional coupling between v and cai , which is similar
to that in the Jasinski model; therefore, we may also be able to explain the mecha-
nisms underlying SS dynamics from the perspective of how the (v,h) system is driven
by the (cai, ctot, l) system in analogy to our approach for SB solutions in Sect. 3. In
the absence of coupling, the (v,h) system has a unique stable equilibrium and no sta-
ble oscillatory solution (see Fig. 13A). When the coupling is restored by making gCa
and gCAN nonzero as given in Table 4, the increase of cai moves the v-nullcline to the
upper left (Fig. 13B, red). Meanwhile, the two folds of the nullcline meet and disap-
pear as cai is made larger than roughly 0.0376. As a result, the unique fixed point of
the (v,h) system remains stable for cai → ∞. That is, there is no value at which cai

can be fixed to yield stable oscillations in (v,h). However, although the fixed point in
(v,h) remains stable for all cai , the SS trajectory projected into (v,h)-space jumps
away from the family of fixed points, to larger v, after staying nearby for a finite time.
Therefore, we see that the onset of v-spike does not result from the variation of cai

pushing the (v,h) system through any bifurcation at which oscillations are born. To
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Fig. 13 Impact of cai on (v,h) system. Impact of cai on the nullclines and fixed points of the (v,h)

system. (A) v-nullcline (red) and h-nullcline (cyan) of the layer system (8a)–(8b) intersect at a single
stable fixed point denoted by the circle. (B) Increasing cai moves the v-nullcline to the upper left and
eventually induces a cusp bifurcation but a unique fixed point remains for all cai . A solution trajectory of
(7a)–(7e) projected into (v,h)-space (black) stays near the stable fixed point location for a transient period
and then jumps away

understand how the increase of cai triggers the fast jump in v, we notice that cai can
be considered to be as fast as v, rather than a slow variable, when it is not near its
nullsurface and thus slaved to the slower variables l and ctot. This analysis confirms
that since cai jumps up on a fast timescale, the bifurcation diagram with cai treated
as a static parameter as shown in Fig. 13 no longer plays a role. Hence, a different
subsystem classification is needed to explain the SS dynamics.

We use GSPT to define an array of subsystems for system (7a)–(7e), follow-
ing [23]. Introducing a fast time tf = ts/ε and letting ε → 0, we can derive a 2-
dimensional fast layer problem that describes the dynamics of the fast variables v

and cai , for fixed values of the other variables:

dv

dtf
= f̂1(v,h, cai), (8a)

dcai

dtf
= f̂2(v, cai, ctot, l). (8b)

We define the critical manifold Ms to be the manifold of equilibrium points of the
fast layer problem, i.e.,

Ms := {
(v,h, cai, ctot, l) : f̂1 = f̂2 = 0

}
.

Obtaining slow reduced problems is trickier here since ctot has different scalings at
different times. During the silent phase where cai is relatively small, taking singular
limits ε, δ → 0 in (7a)–(7e) yields a system that describes the dynamics of the slow
variables h and l for fixed values of ctot, with all variables restricted to the surface of
Ms ,

dh

dts
= ĥ1(v,h), (9a)

dl

dts
= ĝ3(cai, l), (9b)
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subject to the constraint f̂1 = f̂2 = 0. Following the terminology used in [23], we call
this system the slow reduced layer problem and we define the superslow manifold
Mss to be the manifold of its equilibrium points, i.e.,

Mss := {
(v,h, cai, ctot, l) : f̂1 = f̂2 = ĥ1 = ĝ3 = 0

} ⊂ Ms .

To describe the dynamics of ctot restricted to Mss , we define a superslow time
tss = δts and rewrite (7a)–(7e) as a rescaled system with respect to tss . Taking the
singular limits ε, δ → 0 in the rescaled system yields the superslow reduced problem:

dctot

dtss
= ĝ1(v) + dĝ2(cai). (10)

On the other hand, during the active phase when cai is relatively large, we have
ĝ(v, cai) = O(1). In other words, ctot evolves on a slow timescale. In this case, taking
the limits ε, δ → 0 in (7a)–(7e) gives a system that describes the dynamics of all three
slow variables h, ctot and l,

dh

dts
= ĥ1(v,h), (11a)

dctot

dts
= ĝ2(cai), (11b)

dl

dts
= ĝ3(cai, l), (11c)

subject to the constraint f̂1 = f̂2 = 0. We call system (11a)–(11c) the slow reduced
problem.

Finally, we can also define a fast-slow subsystem of fast and slow variables to-
gether, as we did in Sect. 3.1. With these timescale groupings and subsystems defined,
we can proceed to analyze the mechanisms underlying the SS solutions.

4.1 Analysis of the SS Solutions

The GSPT approach starts with a bifurcation analysis of the layer problem (8a)–
(8b), which requires a visualization of the set of equilibria of the layer problem,
Ms , given by f̂1(v,h, cai) = f̂2(v, cai, ctot, l) = 0. Since the phase space for the
full nondimensionalized system (7a)–(7e) is 5-dimensional, Ms is a 3-dimensional
manifold. Since f̂2 does not depend on h, the projection of Ms onto (v,h, cai)-
space is simply given by f̂1(v,h, cai) = 0; that is, for all relevant (v,h, cai), we
can solve f̂2 = 0 for an appropriate choice of (ctot, l). We can solve f̂1 = 0 for h as a
function of v and cai and can therefore represent Ms projected onto (v,h, cai)-space
as h = F1(v, cai) for a function F1 (Fig. 14A). For each fixed cai value, f̂1 = 0 is
represented by a single curve, as shown in Fig. 13B.

Remark 2 For the purpose of nondimensionalization in Appendix 2, we require that
ctot ∈ [0,1]. However, technically, the value of ctot needed to make f̂2(v, cai, ctot, l) =
0 for some relevant (v,h, cai) can be greater than 1, but only as large as 1.5. Since
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Fig. 14 Mechanisms underlying the sigh-like spiking solution. A sigh-like spiking solution of (7a)–(7e)
(black curve), projected to (A) (v,h, cai )-space and (B) (c, ctot, l)-space. Also shown are projections of
Ms (colored surface) and Mss (red curves, solid where attracting, dashed otherwise). The yellow star and
circle indicate points where the trajectory approximately reaches Ms and Mss , respectively. The yellow
diamond in Mss represents the subcritical AH bifurcation of the fast-slow subsystem (v,h, cai , l)

this number is just marginally larger than 1, adjusting our nondimensionalization in
Appendix 2 accordingly would not change the scales of any variables, and hence this
is just a technicality that can be ignored for practical purposes.

Further insight into the dynamics of calcium comes from viewing the trajectory
and Ms in (cai, ctot, l)-space. To visualize this projection, we notice that during the
long silent phase of the SS solution, v restricted to the surface f̂1 = 0 is approximately
a constant denoted by v̄ ≈ −0.5 (see Figs. 2C, 13B and 14A). f̂2 does not depend on
h, so we can substitute v̄ ≈ −0.5 and solve f̂2(v̄, c, ctot, l) = 0 for ctot as a function
of c and l and can therefore readily visualize the projection of Ms onto (c, ctot, l)-
space (Fig. 14B). Also shown in Fig. 14A and B are the projections of the solution
trajectory (black) and Mss (red). As v jumps up to a larger range of values during
the v-spike, the critical manifold Ms should no longer be represented in (cai, ctot, l)-
space by the cai -nullsurface fixed at v̄. However, reasons similar to those discussed
in Sect. 3, the calcium equation only depends weakly on v during the active phase;
that is, as the trajectory enters the spiking phase, the cai -nullsurfaces for v = v̄ and
for v = vmax lie extremely close to each other. Therefore, it suffices to consider the
single cai -nullsurface for v = −0.5 to qualitatively understand the projection of the
full SS dynamics shown in Fig. 14B.

By having visualizations of Ms and Mss projected onto both (v,h, cai)-space and
(cai, ctot, l)-space, we can now understand the evolution of the SS solution in terms
of the shapes and relative positions of Ms and Mss . Starting from the yellow star in
Fig. 14, the trajectory is in the silent phase and evolves on the slow timescale under
the slow reduced layer problem (9a)–(9b), until it approaches sufficiently close to the
superslow manifold Mss (near the yellow circle). From there, the trajectory evolves
on the superslow timescale under (10). It follows Mss to a subcritical AH bifurcation
(yellow diamond) of the fast-slow subsystem with respect to bifurcation parameter
ctot, where a branch of unstable small amplitude periodic orbits is born (not shown
here) and Mss becomes unstable (yellow diamond). From there, the trajectory makes
a fast jump to large v and cai , governed by (8a)–(8b); this jump corresponds to the
onset of a spike in v in the SS solution. After the trajectory reaches Ms after the fast
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Fig. 15 Simulation of the
sigh-like spiking solution.
Sigh-like spiking solution of
(7a)–(7e). The yellow symbol
indicates the transition point
between slow and superslow
flow

jump, the active phase begins. As we can see from Fig. 14B, cai is relatively large
near the right branch of the cai -nullsurface and therefore, as discussed previously,
ctot is no longer a superslow variable. Thus, during the spiking phase, the flow is
governed by the slow reduced problem (11a)–(11c). Since there are no branches of
Mss on Ms for cai large, the trajectory moves on the slow timescale along Ms under
(11a)–(11c) until it meets the lower fold of the cai -nullsurface (Fig. 14B), from which
it jumps back to its starting point (yellow star) on the fast timescale under (8a)–(8b),
completing a full cycle.

Based on the above analysis, we summarize the different timescales on which v

evolves in Fig. 15, where the yellow circle indicates the transition point between the
slow and superslow timescales that occurs as the trajectory reaches a small neighbor-
hood of Mss as it evolves along the lower-v surface of Ms .

4.2 Identifying Timescales

Next, we seek to identify whether the SS solution discussed above is truly a three-
timescale phenomenon. In our original scaling, the Toporikova model has 2 fast, 2
slow and 1 superslow (2F, 2S, 1SS) variables. Similarly to Sect. 3.2, we assess the
importance of having three timescales in two natural ways, by adjusting the two slow
variables to be either fast or superslow. That is, we first speed up h and l by decreasing
τ̄h and increasing A by a factor of 100, respectively, so that they evolve on the same
timescale as v and cai , resulting in a 4 fast, 1 superslow (4F, 1SS) system. Second,
we slow down h and l by adjusting τ̄h and A in the opposite way to produce a system
with 2 fast and 3 superslow (2F, 3SS) variables. Then we consider whether or not
these two-timescale systems can generate solutions that are similar to the SS solution.

In the (4F, 1SS) rescaling, a different type of trajectory lacking large v and cai

spikes is observed (see Fig. 16A and B for different projections of the solution). For
the fast layer dynamics of the (4F, 1SS) system, the critical manifold is our former
superslow manifold, Mss , which lies within Ms . The outer branches of Mss are sta-
ble while the middle branch is unstable with respect to the layer system. The stable
trajectory of the (4F, 1SS) system is attracted to a stable branch of Mss . Eventually,
the trajectory passes the fold of Mss (blue triangle) where Mss destabilizes, a transi-
tion to the fast layer problem occurs, and hence the solution of the (4F, 1SS) system
follows the fast layer flow to another stable branch of Mss . The subsequent motion
is governed by the superslow flow until v and cai jump down from another fold of
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Fig. 16 Simulations of the Toporikova model with two-time-scale reductions. Projections of solutions
for the (4F, 1SS) system (top: A, B) and the (2F, 3SS) system (bottom: C, D) onto (cai , ctot, l)-space
(left column) and (v,h, cai )-space (right column). The surfaces represent different projections of Ms , as
shown in Fig. 14. The red curve denotes Mss and blue and yellow triangles in (A), (B) mark two folds of
Mss . Note that Ms is not relevant for the trajectory in (A), (B), nor is Mss for the trajectory in (C), (D)

Mss (yellow triangle). As seen in Fig. 16, in the (4F, 1SS) scaling, v, cai stay small
throughout the oscillation between branches of Mss , and hence the large spikes are
lost in the v and cai time series.

Under the alternative rescaling to a (2F, 3SS) system, the projections of the so-
lution trajectory are as shown in Fig. 16C and D. This system has the same criti-
cal manifold Ms as the original system. In contrast to the (4F, 1SS) system, Mss ,
although shown for comparison, is no longer meaningful in the (2F, 3SS) system.
Hence, the trajectory simply follows Ms , and a standard two-timescale relaxation
oscillation results.

In summary, neither of these two-timescale systems captures the full features of
the oscillating solution shown in Fig. 2C. Since a two-timescale system will lose ei-
ther the large spikes in the v and cai time series or the two-scale aspect of the recov-
ery of v between spikes, we classify the SS solution as an intrinsically three-timescale
phenomenon. We note, however, that the qualitative difference between the SS solu-
tion for the (2F, 2S, 1SS) and (2F, 3SS) scalings are not nearly as significant as the dif-
ferences arising in the three- and two-timescale scalings for the SB model (1a)–(1g).

5 Comparison of Results for SB and SS Solutions

We are now in a position to compare mechanisms underlying SB and SS solutions
and how various timescales are manifested in the two solutions. At a general initial
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condition within the equilibrium set of the relevant fast subsystem (denoted by S in
the Jasinski model and Ms in the Toporikova model, respectively), both SB and SS
solutions evolve on a slow timescale. From such an initial condition, the solutions
will converge to different dynamic regimes. Specifically, the SB solution is attracted
by a stable bursting state for the fast-slow subsystem (as shown in Fig. 7), yielding
multiple regular bursting cycles. In contrast, the SS solution converges to Mss and
hence enters the quiescent state, where a plateau of v results. Although constrained to
different fast-slow subsystem attractors, both solution trajectories are governed by the
dynamics of the superslow variables, variations of which will then push the fast-slow
subsystem, which consists of all the fast and slow variables with superslow variables
as static parameters, through some bifurcations at which either a sigh-like burst or a
sigh-like spike can occur.

Despite this commonality, the mechanisms underlying the transitions from regu-
lar bursts to the sigh-like burst and from the quiescent plateau to the sigh-like spike
differ in the two models. Specifically, for the SB solution, the sigh-like burst arises
as the increase of superslow variables, ctot and l, switches the behavior of the fast-
slow subsystem from bursting to tonic spiking as the bursting branch loses stability
at a SN bifurcation of periodic orbits (SN1 in Figs. 7 and 10C). In contrast, the sigh-
like spike in the SS solution occurs as the trajectory crosses an AH bifurcation of
the fast-slow subsystem of (7a)–(7e), where Mss becomes unstable. Different bifur-
cations associated with the generation of sighs in the two models induce different
requirements on the timescale of calcium to produce sighing activity. As discussed
in Sect. 3.2, cai cannot be grouped together with v as a fast variable to generate SB
solutions. There is no such constraint on cai in producing SS solutions, however. If
an experimental manipulation could accelerate calcium dynamics, then the loss of
sighing dynamics would support the SB model, which involves a unified mechanism
for eupneic and sigh-like burst generation, whereas little change in sighing dynamics
would support the SS model, which is based on separate eupneic and sigh-like burst
generation mechanisms.

Another difference between SB and SS solutions lies in the transition of cai to
large values. In the SS solution, cai jumps up after the AH bifurcation on Mss , which
is the same bifurcation inducing the sigh-like spike. The jump-up of cai in the SB
solution, however, happens at a different bifurcation than that for the onset of a sigh-
like burst. After an additional drift on the superslow timescale, the transition occurs
at a SN bifurcation of a spiking branch of the fast-slow subsystem of the Jasinski
model (SN2 in Figs. 7 and 10). In other words, the observation that a surge in calcium
coincides with the onset of sighing would support the SS model, whereas a finding
that the surge in calcium occurs after sighing is already under way would support the
SB model.

After the rapid increase of cai , the trajectory enters the active phase, during which
the SB model generates continuous spiking constituting the sigh-like burst, which
is still governed by the dynamics of superslow variables (i.e., ctot and l). In the SS
model, during the active phase when the big spike occurs, the evolution of the solution
along the right branch of the calcium nullsurface is governed by the slow reduced
problem and hence occurs on a slow timescale, such that the SS sigh event has a
shorter duration than the sigh event in the SB solution.
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Finally, termination mechanisms for both SB and SS solutions involve cai -
dependent inactivation of [IP3] (regulated by l), resulting in the reduction of cai and
deactivation of ICAN [13]. In both SB and SS solutions, regular oscillations (burst-
ing/spiking) persist when ICAN is removed, whereas the sigh-like oscillations are
eliminated under the supression of ICAN or ICa, confirming that the sigh-like activi-
ties in both models critically depend on both ICAN and ICa.

6 Discussion

To understand the mechanisms underlying the generation of sighs, we considered two
distinct single-compartment models for respiratory neurons in the pre-BötC that have
the ability to generate sigh-like activity. For both models, we performed nondimen-
sionalization to identify possible groupings of variables into classes corresponding
to they timescales on which they evolve. After establishing such groupings, in some
cases with class membership changing depending on the location of the trajectory in
phase space, we used a non-rigorous GSPT approach to elucidate the roles of various
timescale-based subsystems and their bifurcation structures in producing sigh-like
dynamics. We identified commonalities and differences between the mechanisms in-
volved for the two models and argued that for both models, the sigh-like dynamics
involves three timescales in an essential way. This work adds to the growing litera-
ture of dynamical systems analyses of three-timescale systems [15, 23, 25–30] and in
particular to recent efforts to identify how many timescales are really needed to pro-
duce particular dynamic patterns [15, 23]. It also provides information about model
parameter relationships needed to support sigh-like activity, which may be useful for
future efforts to model the repertoire of pre-BötC dynamics and their variations under
normal conditions, environmental and metabolic challenges, and pathologies [2].

The first model that we considered is a self-coupled neuron model featuring INaP,
ICAN and the Na+/K+-pump current. An aspect of this model that is more biologi-
cally realistic than previous models studied in [15] and [23] is the inclusion of bidirec-
tional coupling between voltage and calcium dynamics. In Sect. 3, we extended and
applied analysis methods from [15] to the Jasinski model (1a)–(1g) and explained the
mechanisms underlying its SB solutions. While the bidirectional coupling between
V and Cai as well as more detailed Ca2+ dynamics make the implementation of the
decomposition method more difficult than in past work on similar models, fast-slow
averaging allowed us to complete the analysis. Besides describing specific details
of the SB solution features, we have also investigated whether this solution funda-
mentally involves three timescales. Unlike the MB solution in [13–15], our analysis
shows that SB solution features are lost under the natural groupings to two timescales,
supporting the preliminary conclusion that SB dynamics in system (1a)–(1g) requires
at least three timescales. A more rigorous demonstration of this requirement is still
an open matter, and indeed rigorous proofs that particular solution types can only
occur when three (or more) timescales are present have not, to our knowledge, been
provided in the literature to date.

Several conditions that support the existence of the SB solutions can also be de-
duced from our analysis. To obtain SB solutions, we require relatively small gCa,
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whereas large gCa will eliminate SB patterns in the Jasinski model. That is, the in-
crease of gCa will speed up Cai and Catot (see Table 5) such that the time available for
the regular bursting phase becomes shorter and as a result, the number of small bursts
decreases. With further increases in gCa, the regular bursts will completely disappear
and the SB solution will be lost. Second, the regular bursting phase also necessitates
a long enough time before Cai jumps up to allow the solution trajectory to undergo
multiple crossings between the LF and HC curves in the slow (Nai,Cai)-space. As
suggested by the (9F, 2SS) case shown in Fig. 11, each crossing between the LF and
HC curves should also be slow enough for the full system to generate a burst, rather
than simply a spike. On the other hand, if the evolution of Nai and Cai are too slow
for the solution to complete a single square-wave burst before the fast subsystem tran-
sitions to tonic spiking due to the evolution of Catot and l, as shown in Fig. 12, the SB
solution no longer exists. This suggests that the existence of the SB solution requires
the timescale for Cai, Nai to be faster than Catot, l. These types of arguments could
be useful for deriving a minimal biological model for SB dynamics, although we do
not complete this step here since we do not have a particular application in mind for
such a model. Similar analysis can also been used to adjust parameters in order to
enhance the robustness of SB solutions with respect to other parameter variations, as
has been done for another multiple-timescale respiratory neuron model [15].

Another possible direction for future work is to explain why the self-excitation in
system (1a)–(1g) appears to be required for the SB solution to exist. In our setting,
we have chosen gSynE = 20 to obtain the SB solutions and a sufficient decrease of
gSynE will eliminate the SB dynamics, which agrees with the findings from [8] that
SB behavior requires excitatory synaptic inputs. A preliminary numerical simulation
shows that a decrease of gSynE can result in a transition from bursting to spiking in
the voltage compartment, preventing the regular square-wave bursting phase from
occurring at low Cai as needed for SB dynamics.

In addition to the Jasinski model, we have also considered a second model for
inspiratory pre-BötC neurons (3a)–(3e), which can yield SS solutions [9]. Similarly
as for the Jasinski model, we applied GPST to understand the dynamics of the SS
solution. By doing so, we discovered that the SS solution is not just a simple reduc-
tion of the SB solution in the same way that a relaxation oscillator can be viewed as
a simplification of a square-wave burster. Instead, the models differ in terms of the
mechanisms underlying their high-amplitude sigh-like activities as well as in the de-
tails of which timescales control particular solution features, as discussed in Sect. 5.
Nonetheless, sigh-like activities in both models depend critically on calcium oscil-
lations, consistent with the previous experimental data showing that ICa blocker and
ICAN blocker [6, 7, 24] could terminate sighs generated in medullary slices containing
the pre-BötC without suppressing regular bursting activity.

As with the SB solution, we also demonstrate that SS dynamics appears to be
a three-timescale behavior. In addition, an interesting mathematical problem arising
from the analysis of the SS solution is the development of systematic methods to
treat equations that evolve on different timescales in different parts of phase space
(cf. [31]). In Sect. 4, we have illustrated in a non-rigorous way how the GPST ap-
proach can be extended to a multiple-timescale model where the timescale of one
variable, Catot, changes with respect to the location of a trajectory in phase space.
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Moreover, according to the nondimensionalization results in Appendix 2, we find that
the calcium derivative, denoted by f2, can also be represented as a combination of
functions with different relative sizes. Therefore, in different parts of phase space, Cai
can evolve on the fast, slow or superslow timescale. We repeated our GSPT analysis
in a way that takes this observation into consideration, but no qualitatively additional
information was gained from doing so. Hence, Cai is simply treated as a fast variable
in our analysis of SS dynamics in this paper. Development of a more systematic and
rigorous approach for assessing when phase-dependent scalings are important would
be a helpful step for future analyses.
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Appendix 1: Nondimensionalization of the Jasinski Model

Numerical simulations of system (1a)–(1g) show that the membrane potential V lies
between −60 mV and 20 mV (Fig. 3). Ty is defined to be max(1/τy(V )) over the
range V ∈ [−60,20] and hence we obtain TmNa ≈ 190.64 ms−1, ThNa ≈ 55 ms−1,
TmCa ≈ 2 ms−1, ThCa ≈ 0.056 ms−1, TmK ≈ 0.67 ms−1 and Ts ≈ 0.2 ms−1, respec-
tively. gmax, the maximum of all conductances, is 160 nS. Substituting these expres-
sions into system (1a)–(1g) and rearranging, we obtain the dimensionless version of
the 11-dimensional neuron model:

C

Qt · gmax

dv

dτ
= −ĪNa − ĪNaP − ĪK − ĪCa − ĪCAN

− ĪPump − ĪL − ĪSynE, (12a)

1

Qt · Ty

dy

dτ
= (

y∞(v) − y
)
/ty(v), (12b)

Qc

Qt · αCa · gCa · Qv

dctot

dτ
= − ICa

gCaQv

− cai

K ′
ctot

, (12c)

Qc

Qt · αCa · gCa · Qv

dcai

dτ
= − ICa

gCaQv

− cai

K ′
ctot

+ K ′
c(J̄ERIN − J̄EROUT), (12d)
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1

Qt · Qc · A
dl

dτ
= K̄d(1 − l) − cai l, (12e)

Qna

Qt · αNa · gmax · Qv

dnai

dτ
= −(ĪNa + ĪNaP + ĪCAN + 3ĪPump), (12f)

1

Qt · Ts

ds

dτ
= (

(1 − s)s∞(V ) − s
)
/ts(V ), (12g)

where y = {mNa, hNa,mCa, hCa,mK}.
The dimensionless currents Īx appearing in (12a) and (12f) are given by Ix

gmaxQv
.

Dimensionless calcium fluxes are given by J̄ERIN = JERINσ/Pmax and J̄EROUT =
JEROUTσ/Pmax, where Pmax takes the value 1,148 according to numerical results.
In Eqs. (12c) and (12d), K ′

ctot
= τCa · αCa · gCa · Qv/Qc and K ′

c = KCa ·Pmax
αCa·σ ·gCa·Qv

.
Since we expect V ∈ [−60,20], a suitable choice for the voltage scale is Qv =

100 mV. Similarly, we choose Qna = 30 mM since Nai ∈ [16,21]. Qc , the scale
for Cai and Catot, should be determined by magnitudes of both variables. Numerical
simulations show that Cai varies from O(10−5) to O(10−3), while Catot is roughly
O(10−3) (Fig. 4B and C). Therefore, we choose Qc = 10−3 mM. Using these scales,
we see that all terms in the right-hand sides of Eqs. (12a)–(12g) are bounded (in
absolute value) by one except that the last term in (12d) is roughly O(10). To resolve
this issue, we divide both sides of (12d) by 10 and obtain the following:

Qc

10Qt · αCa · gCa · Qv

dcai

dτ

= − ICa

10gCaQv

− cai

10Kctot

+ Kc

10
(J̄ERIN − J̄EROUT), (13)

the right-hand side of which is now O(1), as we desire for our nondimensionalization.
The coefficients of the derivatives in the left-hand sides of Eqs. (12a)–(12g) with

(12d) replaced by (13) now reveal the relative speeds of evolution of the variables.
We summarize the timescales for variables of the Jasinski model in Table 5.

Comparing the values of these coefficients indicates how fast each corresponding
variable is; the larger the value, the slower the corresponding variable. According
to our nondimensionalization results summarized in Table 5, we choose to group
together V , the gating variables mNa, hNa, mCa, hCa, mK, and s as the variables
evolving on a fast timescale. We group (Cai,Nai) as evolving on a slow timescale
and (Catot, l) as evolving on a superslow timescale. We choose the slow timescale
as our reference time, i.e., pick Qt = 100 ms and let Rx denote coefficients of dx

dt
in

equations (12a)–(12b), (13) and (12e)–(12g), the dimensionless system then becomes
the system (5a)–(5g) given in Sect. 3.1, namely,

Rv

dv

dτ
= −ĪNa − ĪNaP − ĪK − ĪCa − ĪCAN − ĪPump − ĪL − ĪSynE

:= f (v, y, s, cai, nai), (14a)

Ry

dy

dτ
= (

y∞(v) − y
)
/ty(v) := H(v,y), (14b)
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Table 5 The timescales for the
Jasinski model (1a)–(1g) Variable Coefficient of the derivative

V C/gmax ≈ 0.225 ms

mNa
1
Ty

≈ 0.0053 ms

hNa
1
Ty

≈ 0.0182 ms

mCa
1
Ty

≈ 0.5 ms

hCa
1
Ty

≈ 18 ms

mK
1
Ty

≈ 1.4925 ms

s 1
Ty

≈ 5 ms

Cai Qc/(10αCa · gCa · Qv) ≈ 61.5 ms

Nai Qna/(αNa · gmax · Qv) ≈ 37.5 ms

Catot Qc/(αCa · gCa · Qv) ≈ 615.3846 ms

l 1/(Qc · A) ≈ 10,000 ms

Rctot

dctot

dτ
= − ICa

gCaQv

− cai

K ′
ctot

:= h1(v, cai), (14c)

Rcai

dcai

dτ
= − ICa

gCaQv

− cai

K ′
ctot

+ K ′
c(J̄ERIN − J̄EROUT)

:= g1(v, cai, ctot, l), (14d)

Rl

dl

dτ
= K̄d(1 − l) − cai l := h2(cai, l), (14e)

Rnai

dnai

dτ
= −(ĪNa + ĪNaP + ĪCAN + 3ĪPump) := g2(v,nai, cai), (14f)

Rs

ds

dτ
= (

(1 − s)s∞(V ) − s
)
/ts(V ) := S(v, s). (14g)

Appendix 2: Nondimensionalization of the Toporikova Model

From numerical simulations of system (3a)–(3e), we find that the membrane po-
tential V typically lies between −60 mV and 20 mV. Correspondingly, we define
Th = max(1/τh(V )) over the range V ∈ [−60,−20] and then define th(V ), a rescaled
version of τh(V ), by th(V ) = Thτh(V ). We also define gmax to be the maximum
of the five conductances gNaP, gK, gCa, gCAN, gh. Furthermore, we let G(Cai) :=

[IP3]Cai
([IP3+KI ])(Cai+Ka)

, gSERCA(Cai) := VSERCACai

K2
SERCA+Ca2

i
and φ(Cai) := VPMCACai

K2
PMCA+Ca2

i
. Then we

have JERIN = (LIP3 + PIP3G
3(Cai)l

3)(CaER − Cai) and JEROUT = gSERCA(Cai)Cai,
respectively. Substituting these expressions into Eqs. (3a)–(3e) and rearranging, we
obtain the following system:

Cm

Qt · gmax

dv

dτ
= −ĪNaP + Īleak − ĪCa − ĪCAN − Īh, (15a)
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1

Qt · Th

dh

dτ
= (

h∞(v) − h
)
/th(v), (15b)

dCatot

dt
= KCa

λ

(−αCaICa − φ(Cai)Cai
)
, (15c)

d[Ca]
dt

= KCa(JERIN − JEROUT) + KCa

λ

(−αCaICa − φ(Cai)Cai
)
, (15d)

dl

dt
= AKd(1 − l) − A[Ca]l, (15e)

with dimensionless currents Īx = Ix

gmaxQv
. We have now nondimensionalized the

equations for V and h, and next we deal with equations for the calcium compartment
(15c)–(15e). From numerical simulations, Cai and Catot typically lie between 0 μM
and 1 μM. Therefore, we define Gc = max(G3(Cai)), GS = max(gSERCA(Cai)) and
Φ = max(φ(Cai)) over the range Cai ∈ [0,1] and define Pmax to be the maximum of
{LIP3,PIP3Gc,GS}. From system (15a)–(15e), we obtain the following dimension-
less system:

Cm

Qt · gmax

dv

dτ
= −ĪNaP + Īleak − ĪCa − ĪCAN − Īh, (16a)

1

Qt · Th

dh

dτ
= (

h∞(v) − h
)
/th(v), (16b)

Qc · λ
Qt · KCa · αCa · gCa · Qv

dctot

dτ
=

(
−ĨCa − Kctot φ̄(cai)

Cai

Qc

)
, (16c)

λ

Qt · KCa · αCa · gCa · Qv

dcai

dτ
= Kc(J̄ERIN − J̄EROUT)

+
(

−ĨCa − Kctot φ̄(cai)
Cai

Qc

)
, (16d)

1

Qt · QcA

dl

dτ
= K̄d(1 − l) − cai l, (16e)

where ĨCa = ICa
gCaQv

, Kctot = Qc·Φ
αCa·gCa·Qv

, φ̄(cai) = φ(Qc·cai )
Φ

, Kc = λPmax
αCa·σ ·gCa·Qv

,

J̄ERIN = JERINσ/Pmax, J̄EROUT = JEROUTσ/Pmax and K̄d = Kd/Qc .
Since we expect V ∈ [−60,−20] and Catot,Cai ∈ [0,1], suitable choices for the

voltage and calcium scales are Qv = 100 mV and Qc = 1 μM, respectively. We also
see that values of h∞, h and l all lie in the range [0,1]. For the choice of parameters
specified in Table 4, the maximum conductance is gK, so we have gmax = gK. Numer-
ical evaluation of 1/τh(V ) for V ∈ [−60,−20] shows that Th ≈ 8 × 10−4 ms−1 =
O(10−3) ms−1. We also obtain Gc ≈ 0.0456 and GS ≈ 1,000 pL · ms−1, so we
have Pmax ≈ 1412 pL · ms−1 and hence Kc ≈ 7 × 103 = O(104). Similarly, we have
Kctot ≈ 30. Using these values, we see that all terms on the right-hand sides of (16a)–
(16e) are bounded (in absolute value) by one except Kctot and Kc . To resolve these
issues, we divide both sides of (16c) and (16d) by Kctot and Kc, respectively, and keep
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other equations unchanged from (16a)–(16e):

Cm

Qt · gmax

dv

dτ
= −ĪNaP + Īleak − ĪCa − ĪCAN − Īh, (17a)

1

Qt · Th

dh

dτ
= (

h∞(v) − h
)
/th(v), (17b)

Qc · λ
Qt · KCa · αCa · gCa · Qv · Kctot

dctot

dτ
=

(
− 1

Kctot

ĨCa − φ̄(cai)
Cai

Qc

)
, (17c)

λ

Qt · KCa · αCa · gCa · Qv · Kc

dcai

dτ
= (J̄ERIN − J̄EROUT)

+
(

−ÎCa − K̄ctot φ̄(cai)
Cai

Qc

)
, (17d)

1

Qt · Qc · A
dl

dτ
= K̄d(1 − l) − cai l, (17e)

where ÎCa = ĨCa/Kc and K̄ctot = Kctot/Kc . Now all terms on the right-hand side of
(17a)–(17e) are also bounded by 1. Since Kc 
 1 appears in the denominator of both
subtracted terms in (−ÎCa − K̄ctot φ̄(cai)

Cai

Qc
), this expression can be treated as neg-

ligible compared with the other terms on the right-hand side of (17d). Therefore the
coefficients of the derivatives on the left-hand sides of (17a)–(17e) now reveal the rel-
ative rates of evolution of the variables. We find that Cm/gmax = O(10) ms, 1/Th =
O(103) ms, Qcλ/(KCaαCagCaQvKctot) = O(103) ms, Qcλ/(KCaαCagCaQvKc) =
O(10) ms, and 1/(QcA) = O(103) ms, from which we conclude that v and cai

evolve on a relatively fast timescale, while h, ctot and l evolve on a relatively
slow timescale. We choose the slow timescale as our reference time, i.e., pick
Qt = 1,000 ms, and set

ε := Cm

Qt · gmax
≈ Qt · KCa · αCa · gCa · Qv · Kc

Qcλ
� 1, Rh := QtTh, (18a)

Rctot := Qt · KCa · αCa · gCa · Qv · Kctot

Qcλ
, Rl := QtQcA. (18b)

Substituting expressions in (18a)–(18b) into (17a)–(17e) and rearranging, we ob-
tain the following:

ε
dv

dτ
= −ĪNaP + Īleak − ĪCa − ĪCAN − Īh := f̂1(v,h, cai), (19a)

dh

dτ
= Rh

(
h∞(v) − h

)
/th(v) := ĥ1(v,h), (19b)

dctot

dτ
= Rctot

(
− 1

Kctot

ĨCa − φ̄(cai)
Cai

Qc

)
:= ĝ(v, cai), (19c)

ε
dcai

dτ
= (J̄ERIN − J̄EROUT) +

(
−ÎCa − K̄ctot φ̄(cai)

Cai

Qc

)
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:= f̂2(v, cai, ctot, l), (19d)

dl

dτ
= Rl

(
K̄d(1 − l) − cai l

) := ĝ3(cai, l), (19e)

with small parameter ε, where Rh, Rctot , and Rl are dimensionless parameters
bounded by one. This is not yet the system (7a)–(7e) given in Sect. 4. To obtain
that, we notice that Cai values vary significantly across different phases of the solu-
tion, which will affect the timescale of ctot. Specifically, by numerical simulations,
we have Cai = O(0.01) μM (i.e., Cai

Qc
= O(0.01)) during the silent phase of the

SS solution and Cai = 1 μM (i.e., Cai
Qc

= O(1)) during the active phase. We have
1/Kctot = O(0.01) in (19c). Set

δ := 1/Kctot , −Rctot ĨCa := ĝ1(v), (20a)

d := Kctot

Cai

QC

, −Rctot φ̄(cai) := ĝ2(cai), (20b)

such that we can write

ĝ(v, cai) = δĝ1(v) + dδĝ2(cai), (21)

with small parameter δ, where ĝ1 and ĝ2 are bounded by one. The value d is de-
termined by Cai

Qc
, which has an O(1) size during the silent phase and a size that is

approximately 1/δ during the active phase. Recall that we have picked the slow time
ts as our reference time, hence τ = ts in the above system. As a result, the dimension-
less system (19a)–(19e) with g(v, cai) given in (21) becomes the system (7a)–(7e) in
Sect. 4, which features three distinct timescales during the silent phase and, due to
the larger size of d , two timescales during the active phase.
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27. Krupa M, Popović N, Kopell N. Mixed-mode oscillations in three time-scale systems: a prototypical

example. SIAM J Appl Dyn Syst. 2008;7(2):361–420.
28. Perryman C, Wieczorek S. Adapting to a changing environment: non-obvious thresholds in multi-

scale systems. Proc R Soc A, Math Phys Eng Sci. 2014;470(2170):20140226.
29. Vo T, Bertram R, Wechselberger M. Multiple geometric viewpoints of mixed mode dynamics associ-

ated with pseudo-plateau bursting. SIAM J Appl Dyn Syst. 2013;12(2):789–830.
30. Letson BG, Rubin JE, Vo T. Analysis of interacting local oscillation mechanisms in three-timescale

systems. SIAM J Appl Math. 2016. doi:10.1137/16M1088429.
31. Clewley R, Rotstein HG, Kopell N. A computational tool for the reduction of nonlinear ode systems

possessing multiple scales. Multiscale Model Simul. 2005;4:732–59.

http://dx.doi.org/10.1137/16M1088429

	Timescales and Mechanisms of Sigh-Like Bursting and Spiking in Models of Rhythmic Respiratory Neurons
	Abstract
	Introduction
	Computational Models for Sighing
	Sigh-Like Bursting Model
	Sigh-Like Spiking Model

	Sigh-Like Bursting in a Self-Coupled Pre-BötC Neuron
	Analysis of Sigh-Like Bursting
	Mechanisms Underlying Regular Bursting
	Mechanisms Underlying the Transition from Regular Bursts to the Sigh-Like Burst

	Identifying Timescales

	Sigh-Like Spiking in a Single Pre-BötC Neuron
	Analysis of the SS Solutions
	Identifying Timescales

	Comparison of Results for SB and SS Solutions
	Discussion
	Competing Interests
	Authors' Contributions
	Acknowledgements
	Appendix 1: Nondimensionalization of the Jasinski Model
	Appendix 2: Nondimensionalization of the Toporikova Model
	Publisher's Note
	References


