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Abstract 

Law enforcement and intelligence agencies generally have access to a number of rich data sources, both struc-
tured and unstructured, and with the advent of high performing entity resolution it is now possible to fuse multiple 
heterogeneous datasets into an explicit generic data representation. But once this is achieved how should agencies 
go about attempting to exploit this data by proactively identifying criminal events and the actors responsible? The 
authors will outline an effective generic method that; computationally extracts minimally overlapping contextual sub-
graphs, then uses these subgraphs as the basis to construct a mesoscopic graph based on the intersections between 
the subgraphs, enabling knowledge discovery from these data representations for the purpose of maximally disrupt-
ing terrorism, organised crime and the broader criminal network.
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Background
Traditionally law enforcement and intelligence agencies 
have relied on reactive sources of crime detection, such 
as the receipt of suspicious transactions, ‘tip offs’ from a 
covert human intelligence source (CHIS), or some other 
significant event (e.g. border interaction, search war-
rant, etc.). These reactive sources of detecting crime rely 
on human intervention. But now law enforcement and 
intelligence agencies commonly have access to a range 
of relevant large disparate datasets, which when fused 
can be used to proactively detect fragments of crime 
[1]. For example, a financial crime intelligence capability 
would be expected to have access to criminal data, cor-
porate registers, asset registers, and reports of suspicious 
transactions. This results in fused data in the millions of 
records. Rather than using the data as a reference asset 
for simple querying law enforcement and intelligence 
agencies can now apply more proactive methods to infer 
and discover new knowledge from the data. This creates 

the opportunity to not only detect previously unobserved 
instances of crime, but also generate a contextual systems 
view of those crime instances.

In the specific area of crime detection law enforce-
ment and intelligence agencies generally deploy anomaly 
detection, supervised learning or unsupervised learn-
ing techniques that focus on narrow sub-types of crime 
that are well historically understood, have a large set of 
examples, and the quality of data is well appreciated. 
These approaches fundamentally rely on a closed world 
approach constraining the problem to a very specific 
concise conceptual level (e.g. prediction of a sub-popu-
lations involvement in a very specific financial crime) or 
rely on an entity to seed the problem (e.g. find all short-
est paths between the source entity and a target entity) 
[2, 3]. An alternative approach is using the entire context 
of the criminal complex system to support the detection 
of crime fragments, adopting the open world assump-
tion. The assumption that the data is only ever a partial 
‘dirty’ representation of the real-world is important for 
law enforcement and intelligence agencies. The domain 
includes significant misinformation such as fake enti-
ties, name variants, and multiple phone usage [4], and a 
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primary effort to obfuscate identity, in addition to signifi-
cant data incompleteness.

The term complex systems is used specifically as crimi-
nal actors naturally coalesce together into functional 
groups, exhibit different sets of capital and knowledge 
and influence one another [5–7], conduct criminal acts 
in concert with each actor fulfilling specific roles [8–11], 
within the broader context of a complex system [1].

This paper outlines a novel graph mining method—the 
“GraphExtract” algorithm—that detects overlapping sub-
graphs (i.e. a collection of nodes and edges) of entities 
involved in atomic criminal events and generates a con-
textual view of how these subgraphs are connected to one 
another.

At this point it is important to state that the detec-
tion of criminal subgraphs is on a prima facie basis as 
given the data and context we cannot possibly know for 
sure, at this early stage, whether the detected subgraph 
either represents anywhere near the complete subgraph, 
nor whether the subgraph represents an actual criminal 
event. This can only be known when sufficient evidence 
is collected and collated. The word atomic is used as it 
is clear that criminal acts, and particularly profit-driven 
criminal acts, are interdependent (e.g. the illicit drug 
supply chain) and form a complex system [1]. So, any 
attempt to identify a criminal event needs to be under-
taken within this broad context.

The value of utilising such a computational approach 
to ally traditional methods of crime detection is clear. 
Firstly, any well designed and implemented computa-
tional approach should bring with it the benefits of being 
repeatable, consistent, measurable, extensible, scalable, 
efficient, transparent, and with the opportunity for con-
tinuous improvement, in comparison to any manual or 
solely reactive approach. Secondly, coverage of the entire 
criminal spectrum becomes possible and not limited to 
the reach of particular reactive pathways each agency has 
at their disposal. For example, within English speaking 
countries the border domain CHIS approaches may be 
only reasonably successful with English speaking groups, 
but largely neglect groups that speak a foreign language. 
Thirdly, “GraphExtract” does not rely on training data 
and therefore is more widely applicable than supervised 
learning approaches. Fourthly, detecting a range of sub-
graphs creates the opportunity to understand how these 
subgraphs are connected within the broader context of 
the entire system. This enables better decision-making 
on what criminal instances to focus on and how to apply 
resource (e.g. surveillance, phone record requisition).

Next we will outline the core technology required to 
address the data challenges, cover related work and then 
within this literature context describe the “GraphExtract” 
algorithm.

Core technology required to address the data 
challenges
The data needs to be fundamentally represented in a flex-
ible way that enables framing the problem as a complex 
system. The solution to this is adopting a graph [12] rep-
resentation that enables a more expressive data model 
that can better capture the embedded contextual rela-
tionship features that is the signature of criminal activ-
ity. As mentioned earlier the reality is that the incomplete 
‘poor’ quality data represented in a disparate collection of 
datasets has to be addressed to reduce uncertainty to the 
point that graph mining generates value.

Entity resolution is the critical technology to fuse 
datasets that do not have unique identifiers that other-
wise can be easily “joined”. Entity resolution focuses on 
the identification of instances of where real-world enti-
ties (e.g. a person or company) are represented multiple 
times across the collection of datasets [13], and high per-
formance entity resolution is critical within this domain 
[14].

Link Discovery is a subset of link and node discovery, 
which is further defined as the inference and predic-
tion of unknown edges and nodes. Within the criminal 
domain this step is fundamental as graphs will not just be 
incomplete with missing nodes and edges, but the data 
will also include fake and spoof nodes. Fake nodes are 
nodes in the dataset but not in the real world, and spoof 
nodes are real world nodes that are represented as non-
identical nodes in the data [4]. Link Discovery in par-
ticular is a critical element to enhancing the quality and 
completeness of criminal data [15, 16].

Related work
The challenges are clear—there is a partial ‘dirty’ high 
uncertainty large disparate collection of datasets available 
to provide a window into the real world of crime. Utilisa-
tion of technology such as graph representations, entity 
resolution, and link prediction creates the opportunity 
to then use this data to proactively detect fragments of 
criminal activity. This goal is far from the discrete efforts 
to use supervised or unsupervised learning to iden-
tify specific well understood narrow instances of crime, 
which has a basis of data couched in a closed world. 
The “GraphExtract” algorithm is designed to operate 
very much at the start of the intelligence and investiga-
tive processes. This is when data is most sparse, variable, 
and low on detail, aiming to take a proactive approach to 
detecting atomic instances of crime.

There is no analogous method within the literature. 
So on what basis do we define related work of an algo-
rithm that has such a generic goal, where only a fraction 
of approaches are detailed in the literature and the resid-
ual are proprietary and therefore not open to academic 
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scrutiny? The scope of related work has been created 
by articulating the “GraphExtract” algorithm firmly as a 
graph mining approach. Having done this we will firstly 
cover generic graph mining approaches most analogous 
to the “GraphExtract” algorithm. Then subsequent to this 
we will cover a number of published graph based com-
putational solutions that focus on the criminal domain. 
The goal here is applying a repeatable computational 
approach on a relatively large set of fused non-curated 
datasets (e.g. 10  m + node graph), which is quite a dif-
ferent proposition than testing an approach on a rela-
tively small set of well curated data (e.g. 50–50,000 node 
graph). The two pathways, addressing graph mining and 
computational graph solutions in the criminal domain, 
in combination provide a strong contextual platform to 
contrast and understand how the “GraphExtract” algo-
rithm is novel, both in design and application, in terms 
of published literature. However, this must be couched in 
the context of the reality that law enforcement and intelli-
gence agencies traditionally do not publish methodology 
openly.

Graph mining can be defined as simply the detection 
of patterns in graphs. Here we are narrowing the term 
somewhat to describe the identification of subgraphs 
of interest from a graph. So, that each subgraph has to 
be relevant. Furthermore, in our case each subgraph 
is also likely to naturally have an overlap with adjacent 
subgraphs. A number of generic graph methods can be 
applied to achieve this, including frequent subgraph min-
ing and clustering, so let’s introduce these in turn.

Frequent subgraph mining (FSM) uses subgraph struc-
ture as the predominant feature from which pattern 
detection is based, either in the case of identifying sub-
graph isomorphisms [17] or inferring specific topological 
patterns [18].

Clustering is the task of placing nodes in the graph into 
specific classes ensuring that nodes that are similar are 
given the same class. Importantly, the relevant sub-type 
of clustering task here should allow singleton class nodes 
(i.e. no class attributed to a node) and allow overlapping 
classes [19]. Alternatively, structural and regular equiva-
lence form a specific set of clustering methods, usually 
deployed using blockmodelling or stochastic blockmod-
elling, which can conceptually detect graph structure and 
specifically classes of role [20].

FSM and clustering, although not considered super-
vised, suffer from the uncertainty and incompleteness 
present in the data, not to mention the scale of the data. 
FSM, clustering and specifically blockmodelling relies 
heavily on well curated data with explicit semantic edge 
labels within a constrained data context. Xu and Chen 
[21] successfully deployed blockmodelling, and a range of 
social network analysis (SNA) metrics, to criminal graphs 

of sizes 60 and 57 nodes. They demonstrated both the 
potential value of such approaches on small subgraphs 
and the computational limitations of such approaches 
with large graphs.

What graph mining computational approaches have 
been applied to the criminal domain, and how are they 
fundamentally different from “GraphExtract”?

The COPLINK software originally developed from 
research between Arizona State University, Tuscon Police 
Department, and Phoenix Police Department since 1997, 
has contributed a significant body of literature on using 
SNA and related technology to increase our understand-
ing of crime [22]. COPLINK does not focus on the detec-
tion of criminal subgraphs per se, but conducts a range 
of topological metrics on subgraphs after they have been 
identified [21, 23] including link analysis [3, 22], topology 
[15], and identification of significant facilitators in evolv-
ing criminal networks [16]. The examples provided by Xu 
and Chen [21] include two graphs of 57 and 60 nodes.

Another software product designed specifically for 
law enforcement and intelligence agencies is GANG 
[24]. Interestingly, GANG takes a known criminal group 
and partitions the group using the Louvain community 
detection algorithm [25] to then also give an ‘ecosystem’ 
view of how these sub-groups interconnect. Shakarian 
et  al. [24] evaluated GANG on a 1468 node graph. So, 
GANG takes a small criminal subgraph as an input and 
then provides SNA metrics, including community detec-
tion, on that criminal subgraph. This is quite distinct to 
“GraphExtract”. GANG does not detect criminal groups 
or subgraphs, it merely provides metrics on predefined 
criminal groups.

Graph mining approaches have been used to detect 
suspicious sets of transactions through graph isomor-
phism [26], detecting fraudulent behaviour using graph 
based anomaly detection (GBAD) [27, 28], and role based 
approaches have been used to detect terrorist groups 
[29]. These approaches are not applicable in the stated 
context due to the uncertainty and incompleteness pre-
sent in the data, not to mention the scale of the data, 
which is significant enough to preclude the use of such 
supervised learning approaches. In any case, these are 
specific approaches to detect specific criminal graph pat-
terns, whereas the goal here was to develop a conceptu-
ally broader generic approach that identifies subgraphs 
that represent fragments of generic criminal activity.

Ozgul et  al. [30] developed a ‘combined detection 
model for criminal network detection’ (ComDM)—a 
combination of previous models (GDM, OGDM, and 
SoDM) developed by the same researchers. This set 
of models are supervised learning based and ComDM 
depends on rich criminal offence data, including co-
offenders, crime location, temporal data, modus 
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operandi, geographical data, and offender name similar-
ity. Wang et al. [31] outline an interesting space clustering 
method to identify crime series committed by the same 
individual or group. However neither of these approaches 
are analogous to “GraphExtract” as both approaches are 
supervised learning approaches relying on ‘having a data-
base of crimes’ and focusing on clustering known crimi-
nal events.

In 2017 Li et al. [32] developed an interesting approach 
to detect groups of entities involved in money launder-
ing (ML). They used a temporal-directed version of the 
Louvain algorithm [25], implemented and optimised on 
Apache Spark using GraphX. The unsupervised approach 
is premised on building a multi-edge (i.e. dyads can share 
multiple edges) graph from transactional data, simplify-
ing this multi-edge graph into a weighted simple graph 
(i.e. dyads can share only a single edge). Then filter-
ing dyads out that only have a single transaction edge 
between source node and destination node. Maximal 
connected subgraphs are then identified, with each sub-
graph further partitioned using a temporal-directed ver-
sion of the Louvain algorithm, specifically tuned to the 
domain of ML. Each community derived through this 
approach is ranked based on a set of weighted rules that 
include community aggregations of: number of nodes, 
number of edges, sum of money, average node degree, 
and temporal entropy. Core assumptions noted include 
communities that are less complex are more likely ML 
gangs and that hub nodes indicate a higher possibility 
of ML. This solution may be scalable and performant on 
the specific case outlined however it is tightly coupled to 
the domain. The approach is not widely applicable out-
side the ML domain. Furthermore, community detec-
tion algorithms performance degrades with dense graphs 
[33]. This performance degradation exposes any sub-
graph detection solution that is dependent on commu-
nity detection to extreme performance variability across 
graphs of differing topology.

The remainder of the criminal focussed graph based 
literature focuses on hypothesising how specific SNA 
metrics can be useful in generating knowledge about a 
small criminal subgraph via case study. In these instances 
the criminal network under consideration is post-detec-
tion—i.e. it has already been detected and curated for 
knowledge discovery. For example, Carley et al. [34] work 
on destabilising terror networks notes scalability of their 
approach is limited to graphs of 1000’s of nodes, Krebs 
[35] focussed his SNA analysis on the 9/11 network (37 
nodes), in 2010 Morselli [36] conducted SNA on a range 
of criminal groups ranging in size from 25 nodes through 
to 174 nodes, Everton [37] provided a case study on 
the Noordin Top terrorist group (79 nodes), and Mor-
selli et  al. [38] studied network stability of a network 

generated through the co-offending of 113,000 nodes. 
The baseline assumption of this body of research is that 
there is small well defined discrete well curated criminal 
network to apply a range of SNA metrics too.

So, now having covered law enforcement and intel-
ligence agencies context, the data challenges, the poten-
tial value, and surveyed related approaches the challenge, 
purpose and novel value is clear. “GraphExtract” needs 
to:

  • identify relevant fragments of overlapping criminal 
subgraphs,

  • at the most atomic level,
  • from large fused data (i.e. applicable on graphs over 

10 million nodes) that represent non-criminal and 
criminal entities,

  • given the data will be a ‘dirty’ partial representation,
  • using a generic widely applicable method.

“GraphExtract” outline
So, with this context we will now outline the “GraphEx-
tract” algorithm—a novel graph-mining solution. The 
“GraphExtract” algorithm takes a multi-modal graph 
(a graph with multiple node types—e.g. Person, Bank 
Account, Organisation, Phone, Address), fused from 
multiple datasets that includes criminal and non-crim-
inal entities, as an input—let’s call this input graph the 
original fused graph. The algorithm takes this original 
fused graph and labels each node based on that nodes 
role in profit-driven criminal activity. For example, a 
node is labelled “Predicate offence” if that node has been 
involved or alleged to be involved in the generation of 
illicit proceeds (e.g. drug importation). Other labels 
types include primary—“Associated offence”, “Alleged 
money laundering offence”, “Potential non-transparent 
money laundering vehicle”—and secondary—“Potential 
money laundering vehicle” and “Realised asset”. Edges 
are labelled in terms of whether they satisfy the defini-
tion of trust or non-trust (see below for detail). The “enti-
ties of interest” set of nodes, made up of primary labelled 
nodes and relevant secondary labelled nodes, are parti-
tioned into non-overlapping subsets (groups) based on 
their pairwise graph distance and subsequent community 
detection (see below for detail).

Mediating nodes for each of these subsets of “entities of 
interest” nodes are identified and included. Each subset 
of nodes is then used as the seeds from which to extract 
induced subgraphs from the original fused graph. The 
method to determine which nodes are included within 
each extracted subgraph is an iterative based neighbour-
hood approach that iteratively subsumes neighbours 
(excluding supernodes) terminating after either four hops 
have been completed or the size of the graph exceeds 
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150 entities. The subgraph is then pruned. The set of 
subgraphs is then represented as a mesoscopic graph 
with each subgraph represented as a node and the edges 
derived from the amount of intersection between each 
pair of subgraphs. The output of the “GraphExtract” algo-
rithm includes a set of criminal subgraphs, referred to 
as the microscopic view, and a mesoscopic graph outlin-
ing how each criminal subgraph is connected across the 
entire criminal network.

The microscopic subgraphs and mesoscopic graph can 
then be targeted for knowledge discovery, creating fur-
ther contextual knowledge, before being visualised and 
presented to users (e.g. intelligence analysts, investiga-
tors, managers, etc.).

Now that we have established the context of what the 
“GraphExtract” algorithm is and the value that such an 
approach can generate, we will build on this in the fol-
lowing sections. We will do this by detailing the core 
underpinning assumptions enabling the “GraphExtract” 
algorithm, before detailing the detailed design of the 
algorithm. This will be followed by an evaluative case 
study outlining how this approach works in a real-world 
setting assessing the methods performance, and rounded 
off by a conclusion identifying future extensions.

Assumptions and design of the “GraphExtract” 
algorithm
The “GraphExtract” algorithm outlined above has been 
developed to work effectively in the applied settings 
that law enforcement and intelligence agencies encoun-
ter. These applied settings absolutely require scalability 
and the acknowledgement of the data incompleteness 
and open world assumption. Thus, performance of the 
“GraphExtract” approach is dependent on a number of 
underpinning assumptions having been met.

Applied assumptions
Firstly, the collection of datasets must represent the core 
conceptual aspects of the problem. So, for example in 
the profit-driven crime domain datasets may represent 
the concepts of corporate ownership, non-transparency, 
assets/liabilities, and risk, across two dimensions—edges 
and attributes. Edges refer to where there is some sort of 
relationship between a pair of entities (e.g. a person has 
a shareholding in a company). Attributes refers to where 
an entity or relationship has some characteristic of inter-
est (e.g. entity attribute—a person entity has the date of 
birth 01-01-1996; relationship attribute—the person 
has 100 shares in the company). So, the source datasets 
will hold relevant relational data about a range of rel-
evant node types such as persons, companies, property, 
phones, bank accounts, etc. Having a range of datasets 
that satisfy the core conceptual aspects of the criminal 

act establishes the ability to measure the degree to which 
differing criminal elements are represented within each 
subgraph. For example, a subgraph that includes organ-
ised crime entities, a domestic corporate structure, a 
non-transparent offshore corporate structure, a series 
of assets owned by related parties, and a series of suspi-
cious transaction reports can give an indication that a 
constellation of elements are present that represent the 
illicit generation, laundering, and realisation of proceeds. 
This is based on the premise that organised crime enti-
ties provide the access/means to generate illicit proceeds, 
corporate structures (particularly those non-transparent 
offshore structures) provide the means to launder pro-
ceeds, assets owned by related parties may have been 
realised illicitly, and suspicious transaction reports are 
indicators of money laundering.

As the data is a mere fragment of the real-world activ-
ity we can only hope to get partial views of this genera-
tion/launder/realisation process. The goal is to detect 
a kernel of criminal event sub-elements at the earli-
est instance enabling a contextual decision on where to 
focus resource (e.g. data collection, surveillance, etc.) and 
thereby reduce uncertainty allowing an informed deci-
sion on how to mitigate that criminal activity.

The second assumption is that the output of the entity 
resolution that fuses the disparate datasets together is 
represented as predicted relationships, with associated 
meta-data (e.g. a prediction [0–1]) on the quality of the 
prediction. This enables enhanced in  situ decision-mak-
ing on entity resolution. It is important to note that this 
class of edge is special in two key ways. Firstly, these pre-
dictions can be represented as contracted nodes or linked 
nodes, dependent on the context (they are represented 
as edges here). Secondly, entity resolution prediction is 
the cornerstone of accurate detection of these subgraph 
fragments and so retaining explicit visibility of the uncer-
tainty coupled to the prediction is fundamental from 
both a modelling and a consumer perspective. This is not 
to imply other edge types do not have quantified uncer-
tainty, however entity resolution predictions are of para-
mount significance.

The third assumption is that there is a graph data 
model and data quality that enables the identification of 
trust and non-trust relationships with accuracy. Non-
trust relationships, defined here, are characterised by 
asymmetric relationships that are formed for a non-
enduring transactional purpose, where there is no asso-
ciated transfer of social capital engendering reciprocity. 
For example, a person undertaking a transaction at the 
casino does not in itself infer a meaningful relationship 
between that person and casino. Non-trust edges do not 
denote any substantial enduring or meaningful relation-
ship, other than for the purpose of the single transaction, 
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and so these relationships should be represented appro-
priately within the data model. Clearly not all relation-
ships are the same and so failure to discern between trust 
and non-trust relationships will reduce the accuracy of 
defining the boundaries of subgraphs, as entities will be 
connected where in reality the relationship is trivial. So, it 
is critical to accurately identify and treat non-trust rela-
tionships appropriately, to reflect a more accurate repre-
sentation of the real-world.

The fourth assumption is that the consumers of the 
output of this approach have a wide variety of goals based 
in the context of their role. Therefore, the “GraphExtract” 
algorithm attempts to maintain the open world stance to 
the latest possible moment. To create a generic method 
that satisfies the diverse range of users requirements 
means that the method has to focus on the most atomic 
set of entities required to operate together to represent 
an instance of generating, laundering and realising crim-
inal proceeds. The key is to making decisions as late as 
possible with as much context as possible by those users 
with the right expertise and role.

Let’s now get into a detailed view of how the “GraphEx-
tract” algorithm is designed.

“GraphExtract”: identify entities of interest (step 1)
As the original fused graph represents criminal and non-
criminal entities the first step is identifying key nodes 
within the graph that are of interest. As outlined earlier 
this is done using the abstract dependent concepts of 
inferred or alleged predicate offences, money laundering 
offences, associated offences, proceeds realisation, and 
the vehicles used to perpetrate these acts (see Fig. 1).

So, an entity known, inferred or alleged to be involved 
in a criminal act is labelled “Predicate offence” (i.e. 
“PredO”)—based on previous convictions or allegations 
(e.g. a person with a conviction for drug trafficking). 

The second class of node is the class of node involved 
in offences directly associated to predicate offences (i.e. 
“AssocPredO”)—for example, a person with a convic-
tion for identity fraud. A third class of node are those 
nodes involved in an “Alleged money laundering offence” 
(i.e. “AMLO”), which is denoted as any entity that has 
been recorded as being directly involved in a suspi-
cious transaction. A fourth class of node are entities 
that either represent a transparent domestic corporate 
entity (e.g. a domestic company) or are associated to a 
domestic corporate entity (e.g. shareholder). These nodes 
are labelled”Potential money laundering vehicle” (i.e. 
“PMLV”). The fifth class is an entity that itself, or an asso-
ciate entity, demonstrates features of non-transparency 
(e.g. a corporate entity with shareholders based in a tax 
haven) is labelled as”Potential non-transparent money 
laundering vehicle” (i.e. “PNTMLV”). Lastly, an entity 
that represents an asset (e.g. property, motor vehicle), 
or an entity in relation to asset ownership, is labelled as 
a”Realised Asset” (i.e. “RA”). Using these classes of nodes 
we can then identify the set of “entities of interest”.

This “entities of interest” subset of nodes includes all 
nodes labelled “Predicate offence”, “Associated predicate 
offence”, “Alleged money laundering offence” or “Poten-
tial non-transparent money laundering vehicle”. Let’s call 
these primary nodes. Nodes of the remainder label types 
(“Potential money laundering vehicle” and “Realised 
asset”)—let’s call these secondary nodes—are included 
as “entities of interest” if they are also directly connected 
to a primary class of node. We are only interested in the 
secondary class of nodes when they present proximally 
to nodes of the primary class. The reason for this is that 
secondary nodes are not of interest in isolation as they 
simply represent transparent businesses and assets, a 
ubiquitous feature of everyday activity, and so they are 
only relevant when coupled to the primary class of nodes. 

Fig. 1 This figure depicts the first step of “GraphExtract”—identifying entities of interest
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For example, a secondary node may be a domestic corpo-
rate entity that has a convicted drug trafficker as a share-
holder. The mechanism to identify proximity between 
secondary and primary nodes is entity resolution. When 
an entity resolution prediction is made between a pair 
of entities that include a primary node (e.g. organised 
crime member John DOE, DoB 1st January 1900 sourced 
from a ‘criminal dataset’) and a secondary node (e.g. John 
DOE, DoB 1st January 1900, is the shareholder of an 
domestic company) then the secondary node is included 
as an”entity of interest”.

Generating the set of “entities of interest” in this fash-
ion creates the ability to extract subgraphs at the most 
atomic level using a pattern that is flexible enough to deal 
with missing elements as expected when applying the 
open world assumption. Furthermore, this approach pro-
vides the basis for a generic subgraph typology.

“GraphExtract”: partition the entities of interest 
and include mediating entities (step 2)
The second step is focused on partitioning all of the “enti-
ties of interest” across the entire graph, as identified in 
step one, leaving the residual nodes that are not “entities 
of interest” classless (i.e. “NA”), and then adding medi-
ating nodes to form a ragged array of entity seeds (see 
Fig. 2).

This is done in five parts. First, the pairwise distance 
(i.e. the number of relationships or ‘hops’ it takes to 
travel between a pair of nodes) is measured between 
the “entities of interest”. Second, this set of pairwise 
distances is then used to create a weighted graph. A 
key parameter here is the maximum graph distance 
allowable for consideration. The default used is 2, 
however a graph distance of 3 or 4 is reasonable and 
is totally dependent on the data and how it is mod-
elled. Third, community detection is undertaken on the 
weighted graph to partition the “entities of interest”. 

Communities are defined here as subsets of nodes that 
have a denser set of intra-connections relative to their 
inter-connections with nodes of other communities. 
Fourth, the partitioning is applied to the original fused 
graph (Fig. 2 illustrates this as the colouring of nodes, 
with classless nodes coloured grey). Fifth, local medi-
ating nodes are identified for each “entities of interest” 
partition and added to form a ragged array of entity 
seeds.

Due to the high level of uncertainty present the goal 
of step two is focused on identifying groups of actors 
that are proximal to one or more criminal events and 
yet distant from other criminal events. Criminal actors 
are dynamic and over time will generally form a range 
of functional criminally focussed relationships [39–41] 
so a range of functional groups exist—from simple 
through to multiple overlapping functional groups.

It is important to note here that each partition of 
“entities of interest” is non-overlapping, so we cannot 
have an entity of interest that exists in two different 
clusters. This helps ensuring that each extracted sub-
graph is at its most atomic level possible and reduces 
the possibility of extracting compound criminal activity 
which can create nested structures for step three where 
we identify overlapping subgraphs. The selection of the 
most appropriate community detection algorithm to 
use is dependent on a number of factors including net-
work topology, computational expense, scalability and 
granularity required. The InfoMap community detec-
tion algorithm [42] was implemented in this instance 
for reasons of computational speed and community 
membership accuracy and granularity. However a dif-
ferent application with differing circumstances may 
find more favourable results in a different community 
detection algorithm.

So now we have non-overlapping partitions or sub-
sets of “entities of interest” that each represent different 

Fig. 2 This figure depicts the second step of the process—identifying the seeds for subgraph extraction
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constellations of node classes. For example, three nodes 
may form a subset, a person entity that is a member of 
a gang that has previous conviction for trafficking drugs 
(i.e. “PredO”), a suspicious transaction (represented as a 
node) of $1 million (i.e. “AMLO”), and a domestic limited 
company (i.e. “PMLV”)—together forming a specific con-
stellation of elements (i.e. “PredO”, “AMLO”, “PMLV”).

As per the open-world assumption we assume that 
we have failed to identify all “entities of interest”. This is 
why “local mediating nodes” are identified and added to 
each partition of “entities of interest”. Local mediating 
nodes are identified by taking each “entities of interest” 
partition in turn and detecting all nodes that lie on the 
shortest path between each pair. Local mediating nodes 
are likely to be relevant, due to reasons of homoph-
ily and brokerage. Homophily referring to the tendency 
of people to associate with others similar to themselves 
[43], and brokerage referring to the role people play in 
introducing people and mediating relationships [44, 45]. 
For example, the entities that connect or mediate these 
entities of interest are likely to be relevant as they are 
either the vehicle of communication (e.g. phone, email) 
between these entities of interest, a vehicle to conduct 
a criminal role (e.g. business, company), a relevant geo-
graphical location (e.g. a home address), or a person 
entity that due to reasons of homophily and brokerage is 
themselves a potential person of interest but simply has 
not been identified as such.

At the end of step two we have the seeds required to 
locate the boundaries of each subgraph—the idea being 

that each set of seeds represents a fragment of the atomic 
core elements of a criminal event, and that the next steps 
purpose is to locate the boundaries of the subgraph 
within the context of the entire graph, understanding that 
the boundaries between of each subgraph will often over-
lap [1, 36]. The vectors of seed nodes are represented as a 
ragged array (see Fig. 3).

“GraphExtract”: locate boundaries of subgraphs 
and generate subgraphs (step 3)
Within the third step each vector from the ragged array 
is then used as the start seeds to generate each induced 
subgraph. This step is dependent on a range of elements 
including the data-model, breadth, quality, completeness, 
and variability of the data. A basic subgraph extraction 
approach would entail an ego-based approach where any 
nodes of distance n from the seed nodes are included. 
This approach is a useful starting position, however the 
subgraph extraction algorithm implemented takes a more 
nuanced approach. It must be noted at this point that the 
algorithm developed is optimised specifically for the pur-
poses of the case study data, and whilst fundamentally 
generic absolutely requires optimisation when applied to 
any new domain.

The algorithm takes the set of seed nodes as an input 
and identifies all neighbouring nodes, less supernodes 
(defined through domain knowledge (e.g. casinos) and 
graph metadata (e.g. a phone that has a high number of 
connections)), iteratively adding neighbour nodes to a 
maximum of four hops or when the subgraph exceeds a 

Fig. 3 This figure depicts the third step of the process to generate subgraphs—subgraph extraction
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size of one hundred and fifty nodes—the maximum sub-
graph size parameter.

Subsequent to the identification of this raw subgraph 
the Resource Allocation Index (RAI) [46] is then used to 
prune nodes assessed as not as relevant. The RAI works 
by measuring the product of the inverse normalised 
degree of all nodes along every shortest path between a 
pair. So low scores close to zero indicate a longer path 
marked by high degree mediating nodes and high scores 
close to one indicate shorter paths marked by low degree 
mediating nodes. RAI is applied to all pairs involving the 
seed nodes and is assigned to nodes on the basis of the 
highest RAI score for each target node. All nodes that 
score under a pre-defined parameter (default = 0.07) 
are then removed from the subgraph. The RAI is used 
because it algorithmically identifies those nodes that are 
most proximal to the seed nodes and unique in terms of 
their connections to the broader graph. In this way we 
avoid peripheral supernodes and focus on the more rel-
evant nodes.

The approximate subgraph ceiling of 150 nodes has 
been determined from the underpinning evidence that 
the ceiling of social groups is approximately 150 [47, 48], 
in conjunction with visualisation performance (e.g. a 
rendering time of 10 s may be too long) and human per-
formance (e.g. there may simply be too much overlaying 
detail for an intelligence analyst to easily consume and 
interpret).

This last point is critical as the goal is to generate 
meaningful subgraphs from the original fused graph, best 
representing the reality of the real-world (see Fig.  3). It 
is important to note that the quality and incompleteness 
of the data coupled with the specific intent and domain 
of the user, given the open world assumption, renders 
any more precise or specific mechanism to identify enti-
ties of interest or boundary location pointless. The goal 
is not necessarily to delineate the complete set of actors, 
who each had a role in a specific criminal act. But rather 
identifying the fragment necessary to make a contextual 
assessment of its importance. And then either dedicate 
intelligence/investigation resource, or not, to collect 
additional data in an iterative sense, constantly assessing 
this deployment of resource in the context of all visible 
criminal acts and the uncertainty bound to each instance. 
Thus locating the boundaries of each subgraph is a prag-
matic rather than a sociological endeavour.

The goal here is to present meaningful subgraphs that 
are intended as providing a fragment of the real-world 
enabling a high-level contextual view of all subgraphs in 
relation. This creates the opportunity to understand the 
whole domain in context and make contextual decisions 
about how to deploy intelligence/investigations resource 
in the best way. Then from a microscopic perspective 

subgraphs can be used as a starting point in the intelli-
gence/investigations process. Given the high uncertainty 
we often cannot hope to identify the ‘real’ boundaries of 
the functional group of actors—however this is defined—
and often could not justify the effort expended at this 
point in the intelligence process.

“GraphExtract”: construct a mesoscopic weighted graph 
using subgraph intersections (step 4)
The fourth step involves the construction of a mesoscopic 
perspective of the subgraphs by generating a weighted 
graph that represents how each subgraph’s nodes overlap 
with one another—the mesoscopic graph. Edge weights 
are determined by the proportion of intersecting nodes 
between subgraphs, using the subgraph within each dyad 
with the lowest number of nodes as the denominator. 
This mesoscopic perspective is critical to understand the 
role each criminal subgraph has across the entire com-
plex criminal network. It also gives the opportunity to go 
beyond simple aggregation based analysis on the entity 
and analyse emergent properties at the level of the group, 
in an attempt to understand group roles and how this 
influences prioritization (see Fig. 4) [1, 40]. Creating this 
contextual mesoscopic perspective produces the oppor-
tunity to utilise a range of knowledge discovery model-
ling approaches (see “Related work”) in conjunction with 
domain context from which to understand how these 
atomic criminal subgraphs inter-relate.

At this point users can exploit the three data repre-
sentations; the original fused graph, each subgraph (the 
microscopic view), and the mesoscopic graph (i.e. graph 
representing how criminal subgraphs are connected) to 

Fig. 4 This figure depicts the fourth step of the process—generate 
the mesoscopic graph
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better understand their domain through applying expert 
knowledge and knowledge discovery methods. Specifi-
cally the subgraphs can serve as a battery of intelligence 
or investigations leads, which can be presented to investi-
gations and intelligence functions for risk mitigation.

Knowledge generation is completely open to context, 
purpose and interpretation however the literature cov-
ered in “Related work” section and the case study below 
give a firm basis on understanding how to discover 
knowledge from a graph perspective within this domain. 
Of particular importance to law enforcement and intel-
ligence agencies, from a complex systems view, is the 
concept of topological vulnerability. Topological vulner-
ability (or attack vulnerability) refers to assessing each 
node for their importance in preserving network per-
formance when under threat of removal [49, 50]. Topo-
logical vulnerability is associated to notions of network 
resilience, robustness and redundancy. The criminal 
domain is a special case as there is a very real trade-off 
between maintaining a robust network that is resilient 
to attack and a network that is efficient and carries few 
topologically redundant nodes [1, 39–41, 51]. Each crimi-
nal network is exposed to risk from authorities (and 
sometimes competitors) and dependent on other factors 
such as experience, access to resource and trust between 
actors will form a topology that’s best fit for purpose. So, 
from law enforcement and intelligence agencies perspec-
tives measuring which nodes and subgraphs are most 
important to remove for maximal network disruption, at 
a microscopic and mesoscopic level, is a useful metric.

Using latent knowledge, such as topological vulnerabil-
ity, in combination with other knowledge such as broker-
age, supply chain role, and entity criminal history, can 
then be used in combination for better decision-making. 
Having said this let’s now look at an evaluation of the 
real-world application of “GraphExtract”.

Evaluation of “GraphExtract” through a case study
Evaluation of performance is always difficult to assess in 
applied settings, and particularly when not only is the 
data classified but the lag in getting objective feedback, 
via investigations and prosecutions, can be in the one to 
four year bracket. The evaluation scope is constrained 
to the success of the “GraphExtract” algorithm to derive 
meaningful contextual fragments of real-world criminal-
ity in an automated, scalable and generic fashion. The 
value of such an approach versus the reliance on a reac-
tive approach is well argued, so we feel the key criteria to 
assess is how scalable the algorithm is and whether the 
subgraphs, and resultant mesoscopic graph, are mean-
ingful. Scalability is relatively objective in measurement 
however measuring ‘meaningful’ requires a subjective 
assessment.

The data used to assess the performance of the 
“GraphExtract” algorithm contains open source and 
closed source. Data includes a national companies regis-
ter, national real estate register, criminal intelligence data, 
suspicious transactions, sanctions data, and Offshore 
Leaks database (see www.icij.org). The data has been 
transformed into a generic property graph and entity 
resolved (sampled f-measure 0.996) to form a fused graph 
of 10 million nodes and 50 million edges. The “GraphEx-
tract” algorithm was implemented in the R language. The 
input (the fused graph) is represented as an igraph [52] 
object, and the output is a list of igraph objects. In this 
case over 20,000 subgraphs were generated, plus the mes-
oscopic graph, in a little over 102 min runtime. Step one 
through to four took approximately 2, 20, 58 and 22 min 
respectively. The mean time to generate a subgraph in 
step three was 0.1738 s.

The algorithm was deployed in the R language on a 
Windows 10 environment with a CPU utilising Intel 
Xeon @ 2.20 GHz (8 sockets) and 64 Gb RAM. An out-
line of the computational expense of the current imple-
mentation of step three of “GraphExtract” is provided 
in Fig.  5. Figure  5 illustrates a random sample of 1000 
subgraphs, with the size of subgraph represented on the 
x (number of nodes) and y (number of edges) axes, the 
size of the dot representing the RAM expended, and the 
colour representing runtime (in seconds). Here we can 
see the variance of subgraph size as well as the increase 
in computational expense and runtime compared to the 
size of the subgraph. These performance metrics are not 
intended to reflect optimised production-ready software, 
but are only provided to give context to the scalability of 
the designed and implemented algorithm. The algorithm 
is designed to be implemented in a distributed context 
enabling future scalable implementations on big data.

Figure 6 depicts a pane of criminal subgraphs extracted 
from the original fused graph, highlighting what constel-
lation of criminal event elements is represented. We will 
use these six subgraphs to reinforce the explanation of 
“GraphExtract” algorithm. Subgraph A. displays a cluster 
of suspicious transactions (red nodes) flowing from the 
source node to the target node. The target node has asso-
ciations with organised crime entities (magenta nodes). 
Six of the organised crime entities adjacent to the target 
node have entity resolution predictions with entities in 
companies office data (grey nodes) and one of these crim-
inal entities also has an entity resolution prediction with 
an entity from ‘Offshore Leaks’ data (cyan nodes) who 
is connected to three corporate entities based in a tax 
haven. This pattern depicts a real-world scenario where 
approximately $1 million has been transferred domes-
tically to an entity that is a director of multiple domes-
tic companies, has organised crime associations, and 

http://www.icij.org
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is associated to offshore shell companies based in a tax 
haven. Subgraph A is characterised as a relevant approxi-
mately complete subgraph as it combines core elements 
(i.e. PredO|AMLO|PMLV|PNTMLV) of a criminal event.

Subgraph B. conveys a particular cyclic topol-
ogy that is characterised as a relevant approximately 
complete subgraph as it combines core elements (i.e. 
PredO|AMLO|PMLV) of a criminal event. Again we have 
organised crime entities predicted to have direct involve-
ment with corporate entities and suspicious transactions. 
This subgraph is a good example of the complexity of 
some atomic criminal events, demonstrating the non-
trivial process of accurately extracting relevant complete 
subgraphs.

Subgraphs C and D provide examples of differing con-
stellations but demonstrate incomplete subgraphs, either 
due to incomplete data, as in Subgraph C, or failure to 
traverse until the suspicious transaction is reached in 
Subgraph D.

Subgraphs E and F provide a simple demonstration of 
the importance of uncertainty. The entity resolution pre-
diction (the red line) predicts that the STR entity (the 
pink dot) is the “same as” the domestic corporate entity 
(the grey dot), however there is uncertainty derived 
from the accuracy of the entity resolution model used. 
Subgraph F is a similar type of subgraph as subgraph E 
but the uncertainty of the entity resolution prediction 
is buttressed by the having the context of two proximal 

predictions—a demonstration of making in  situ entity 
resolution predictions—reducing uncertainty.

Two subject matter experts (intelligence and investiga-
tions staff) were used to validate 100 of the 20,000 sub-
graphs in a screening exercise. The 100 subgraphs were 
randomly selected from a larger pool of subgraphs that 
contained entities involved in organised crime and signifi-
cant sums of suspicious transactions. This exercise mirrors 
the process undertaken by law enforcement and intelli-
gence agencies. Each expert was asked to independently 
rate the 100 subgraphs on their relevance, complete-
ness, and whether they were atomic enough. The follow-
ing assessments were made. 90% of the subgraphs were 
assessed as relevant (with 5% unsure and 5% irrelevant), 
86% of the subgraphs were complete (with 2% unsure and 
12% incomplete), and 88% of the subgraphs were assessed 
as suitably atomic (with 3% unsure and 9% too complex). 
The term “unsure” refers to when there was disagree-
ment between the two experts. Irrelevance was based on 
a combination of entity resolution error in prediction and 
subgraph incompleteness. Incompleteness was based on a 
combination of algorithm failure and data incompleteness. 
The 9% of subgraphs that were not atomic enough involved 
a combination of data error, incomplete data, real-world 
complexity, and algorithm failure. False negatives were not 
able to be assessed due to a lack of resource.

In terms of the “GraphExtract” algorithms generic 
value it is of interest that the two subject matter experts 

Fig. 5 This figure illustrates the computational expense of step 3 across a sample of 1000 subgraphs
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performed different roles in the law enforcement agency 
(Intelligence Analyst and Investigator) with two com-
pletely different perspectives—one on organised crime 
and the other on serious financial crime—and that of 
these 100 subgraphs 8 were assessed as being relevant to 
share with appropriate law enforcement and intelligence 
agencies. This hints at the generic possibilities of the 
algorithm. Of course this evaluation is limited to one law 
enforcement agency and therefore the algorithms wider 
applicability or portability remains untested.

Another important element to evaluate is the meso-
scopic graph and particularly the topology or struc-
ture of that graph, and real-world assessment of how 

the mesoscopic graph reflects reality. This is critical as 
if there was no identifiable structure or any identifiable 
features that reflect reality then there is little basis to 
assess the subgraphs as being accurate contextual rep-
resentations of atomic sets of criminal actors. Figure  7 
illustrates the giant component of the mesoscopic graph, 
with the colour of nodes representing subgraphs that 
contain domestic organised crime entities (magenta), 
transnational organised crime entities (orange), offshore 
suspicious transactions (yellow), domestic suspicious 
transactions (grey), and other (blue). Node size repre-
sents each subgraphs total dollar amount of suspicious 
transactions.

Fig. 6 This figure gives a range of visualised subgraph examples, indicating a number of different variants
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Blockmodelling, a well-established technique to assess 
structure [20] and specifically applied on criminal net-
works [21], was undertaken to test the structure of the 
mesoscopic graph. Blockmodelling detected a core/
peripheral structure within the giant component, with 
the core representing around 10% of the subgraph nodes 
within the giant component. Figure  8 illustrates the 
core of the giant component of the mesoscopic graph 
divided into six distinct blocks with a seventh periph-
eral block (not included). Each block is represented by 
a different node border colour, upper right (blue), lower 
right (lime green), lower left (light grey border), middle 
left—subgraph 20848—(black), upper left (yellow), and 
upper centre—subgraph 5164—(magenta). Edge colour 
represents the proportion of intersecting nodes between 
subgraphs, using the subgraph within each dyad with the 
lowest number of nodes as the denominator. Conveying 
the edge colour in this way enables the reader to visually 
assess how connected the subgraphs are. The light grey 

block (lower left), containing subgraphs that all have a 
domestic organised crime presence, has the most over-
lap, however across the mesoscopic graph the mean 
intersection proportion between subgraphs was 0.016. 
The results of blockmodelling clearly indicate how the six 
core blocks are associated to one another in the context 
of the peripheral block. There is a prominent pattern of 
brokerage [44] with subgraph nodes 21302, 20848 and 
5164 particularly prevalent, as indicated by node size. 
Targeting these subgraphs could potentially yield a more 
enduring impact impairing the efficient functioning of 
the entire complex system.

These findings indicate that across the entire crimi-
nal network, represented by the approximate 20,000 
subgraphs within the mesoscopic graph, there is an 
outer periphery of 18,000 subgraphs indicating crimi-
nal activity largely unconnected to organised crime 
entities. Then there is a periphery of the giant compo-
nent of around 1800 subgraphs which are tangentially 

Fig. 7 This figure gives an example of the giant component of the mesoscopic graph
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connected to an organised crime core of around 200 
subgraphs which are brokered by a number of core 
subgraphs that have a strong organised crime presence.

It would be remiss if we did not at this point under-
score these results with the generic caution that the 
data is an incomplete representation of the real-world. 
As such much work remains to be carried out in terms 
of validating and improving this approach. This does 
not detract from the value of the approach, but rather 
highlights the inherent limitations encouraging experi-
mental frameworks to field test the value of such 
analytically devised approaches. Having said this the 
cursory findings, at both the microscopic and meso-
scopic level, are enough to suggest that there is signifi-
cant value in the “GraphExtract” algorithm.

Conclusion
With the advent of increased access to relevant data-
sets, the ability to fuse these datasets, and represent this 
fused data in an expressive format (as a graph), the ques-
tion is then how to exploit this data asset maximally for 
the purpose of detecting profit-driven criminal events. 
As outlined earlier perspectives that view actors as sets 
of interconnected functional groups that act within an 
interconnected complex network provides an analyti-
cal position that has significant advantages over more 

rational actor based perspectives. Therefore, detecting 
criminal events and the actors that carry out these crimi-
nal events, in a contextual way that fundamentally rec-
ognises the importance of an actor’s local and broader 
network is most logical.

The generic approach outlined above adopts this com-
plex systems perspective generating empirically tested 
value at many levels, simply by attempting to understand 
actors in the context of their network. The first level is 
the detection of fragments of profit-driven criminal 
events, identifying functional groups of criminal actors 
on a prima facie basis that can be considered as proac-
tive ‘leads’ for intelligence and/or investigations follow 
up. This demonstrates the detection dimension, with the 
generation of latent knowledge on each functional group 
providing the ability to better prioritize. The second level 
is the ability to view these functional groups in the con-
text of the entire criminal system. This enables the gen-
eration of latent knowledge from a unique contextual 
perspective—demonstrating the ability to uncover latent 
knowledge to support higher level decision-making. The 
third level is the creation of expressive data representa-
tions that can be used as the basis to not only increase 
domain understanding but crucially create the opportu-
nity for better evidence-based decision-making. Impor-
tantly any solution that ties decision-making at the micro 

Fig. 8 This figure illustrates the six blocks (or classes) of the core of the mesoscopic graph
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level through to the macro level creates a connected 
chain of evidence base ensuring coherent aligned col-
lective decision-making. Decision-making from strategy 
and strategic statements (e.g. such as maximally impair-
ing criminal networks in a sustainable fashion) right 
through to how an agency decides to deploy resource 
(e.g. data collection on certain groups, and investigation 
on vulnerable but influential groups), and how interven-
tion is operationally conducted (e.g. focus on the actors 
that possess unique skill sets and conduct core roles such 
as brokers or accountants).

Testing this approach to date has been conducted 
within one law enforcement agency on a fused graph of 
10 million nodes and 50 million edges generating 20,000 
subgraphs and a mesoscopic graph. The micro level was 
tested with two subject matter experts from the intel-
ligence and investigations functions conveying a high 
degree of favourability over 100 sampled subgraphs with 
90% of subgraphs presented deemed as relevant. How-
ever we will need to wait at least a year or two before 
we can empirically validate this anecdotal success due 
to the pace of the investigations and judicial system. At 
the meso level clear core-periphery structure was identi-
fied with key brokering subgraphs identified, successfully 
reflecting the expectations of subject matter experts. So 
whilst we have early indications of success broader multi-
domain real-world testing of this approach needs to be 
carried out before we can comprehensively evaluate the 
value derived for law enforcement and intelligence agen-
cies. Testing also hints at the computational efficiency 
and potential scalability of the algorithm, with a total run 
time of 102 min to generate 20,000 subgraphs and a mes-
oscopic graph.

A number of possible extensions have been identified. 
These include adoption of a node classification approach 
to buttress the current approach and improve the identi-
fication of “entities of interest” (step one of the “GraphEx-
tract” algorithm), improving the subgraph extraction 
process (step four of the “GraphExtract” algorithm) to 
extract subgraphs so it is more nuanced (e.g. use topol-
ogy and temporality metrics), and undertaking testing on 
varying datasets and contexts with differing user require-
ments (e.g. a national intelligence perspective) to ensure 
wide applicability.
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