
Pulch Journal of Mathematics in Industry            (2019) 9:10 
https://doi.org/10.1186/s13362-019-0067-6

R E S E A R C H Open Access

Stability-preserving model order reduction
for linear stochastic Galerkin systems
Roland Pulch1*

*Correspondence:
pulchr@uni-greifswald.de
1Institute of Mathematics and
Computer Science, University of
Greifswald, Greifswald, Germany

Abstract
Mathematical modeling often yields linear dynamical systems in science and
engineering. We change physical parameters of the system into random variables to
perform an uncertainty quantification. The stochastic Galerkin method yields a larger
linear dynamical system, whose solution represents an approximation of random
processes. A model order reduction (MOR) of the Galerkin system is advantageous
due to the high dimensionality. However, asymptotic stability may be lost in some
MOR techniques. In Galerkin-type MOR methods, the stability can be guaranteed by a
transformation to a dissipative form. Either the original dynamical system or the
stochastic Galerkin system can be transformed. We investigate the two variants of this
stability-preserving approach. Both techniques are feasible, while featuring different
properties in numerical methods. Results of numerical computations are
demonstrated for two test examples modeling a mechanical application and an
electric circuit, respectively.
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1 Introduction
Numerical simulation of mathematical models represents the main issue in scientific com-
puting. We consider linear dynamical systems, which play an important role in mechanics
and electrical engineering, for example. Furthermore, uncertainty quantification becomes
more and more relevant in many fields of applications, see [37], for instance. A common
approach is to replace uncertain parameters by random variables, see [36, 39]. Statistics of
the stochastic model can be computed by sampling methods or quadrature rules. Alterna-
tively, the stochastic Galerkin method changes the random-dependent linear dynamical
system into a larger deterministic linear dynamical system.

The dimension of the stochastic Galerkin system becomes huge in the case of large num-
bers of random variables. Methods of model order reduction (MOR) are able to decrease
the complexity. Transient solutions of a reduced system allow for an efficient numerical
simulation. Several MOR methods are available for general linear dynamical systems, see
[1, 3, 4, 32]. MOR of linear stochastic Galerkin systems was also examined in several pre-
vious works [9, 18, 25, 26, 31, 40]. MOR of nonlinear stochastic Galerkin systems was
considered in [28].

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13362-019-0067-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13362-019-0067-6&domain=pdf
http://orcid.org/0000-0002-6503-3300
mailto:pulchr@uni-greifswald.de


Pulch Journal of Mathematics in Industry            (2019) 9:10 Page 2 of 24

However, even though the linear stochastic Galerkin system is asymptotically stable, the
reduced Galerkin system often looses this stability in some MOR techniques. We inves-
tigate stability-preserving strategies in the case of Galerkin-type projection-based MOR
like the Arnoldi method or proper orthogonal decomposition, for example. Galerkin-type
MOR can be applied to any linear dynamical system (not only stochastic Galerkin sys-
tems). A dissipativity property guarantees the preservation of stability. If a general linear
dynamical system does not satisfy the dissipativity property, then it can be transformed
into a dissipative structure, see [7, 23, 27]. The crucial part to identify a transformation
consists in the solution of a Lyapunov equation. Direct methods, see [11], or approximate
methods, see [21, 22, 34, 38], yield the numerical solutions of Lyapunov equations.

We examine the stability-preserving approach in the case of linear stochastic Galerkin
systems consisting of ordinary differential equations. Several variants are feasible. The
high-dimensional Galerkin-projected system is transformed or, vice versa, the original
systems are transformed followed by a Galerkin projection. We analyze the two strate-
gies and another variant.

In addition, network approaches produce models consisting of differential-algebraic
equations in industrial applications. Thus we extend the stability-preserving techniques
to this class of problems. The Lyapunov equations have no solution now. Therefore, we
use a regularization technique, which was also employed in [19].

We apply the analyzed techniques to mathematical models of two test examples: a mass-
spring-damper system and an electric circuit of a band-pass filter.

2 Stability preservation in reduction
We review a concept for stability preservation in Galerkin-type projection-based MOR
for general linear dynamical systems.

2.1 Linear dynamical systems
We consider linear dynamical systems in the form

Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t)
(1)

with constant matrices A, E ∈ R
n×n, B ∈ R

n×nin , and C ∈ R
nout×n. The state variables or

inner variables are x : [0, tend] → R
n. Inputs u : [0, tend] → R

nin are supplied to the system.
The outputs y : [0, tend] → R

nout are defined as quantities of interest (QoI). Initial value
problems are given by x(0) = x0.

If the mass matrix E is non-singular, then the system (1) consists of ordinary differ-
ential equations (ODEs). If the mass matrix E is singular, then the system (1) represents
differential-algebraic equations (DAEs). Furthermore, we assume that the system satisfies
the following stability condition.

We specify some common notions.

Definition 1 Given a matrix pencil (E, A) with E, A ∈ R
n×n, the set of eigenvalues is Λ =

{λ ∈ C : det(λE – A) = 0} and the spectral abscissa reads as α(E, A) = max{Re(λ) : λ ∈ Λ}.
The spectral abscissa of a single matrix A is the spectral abscissa of the matrix pencil (I, A)
with the identity matrix I ∈R

n×n.
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Definition 2 A matrix pencil (E, A) with E, A ∈ R
n×n is called regular, if there is (at least

one) λ ∈C such that det(λE – A) �= 0.

Definition 3 A linear dynamical system (1) is called asymptotically stable, if the involved
matrix pencil (E, A) has a spectral abscissa satisfying α(E, A) < 0.

The asymptotic stability implies that the generalized eigenvalue problem has only a finite
number of eigenvalues, which all exhibit a negative real part. We assume that the system
(1) satisfies this stability condition. In the case of ODEs, the matrix pencil is always regular,
even if the system is unstable. In the case of DAEs, the asymptotic stability implies that
the matrix pencil (E, A) is regular.

2.2 Transfer functions and Hardy norms
The input-output behavior of a linear dynamical system (1) can be described in the fre-
quency domain, see [1] for ODEs and [6] for DAEs.

Definition 4 The transfer function of a linear dynamical system (1) is the mapping H :
C \ Λ →C

nout×nin with

H(s) = C(sE – A)–1B, (2)

where Λ represents the set of eigenvalues from Definition 1.

The transfer function is always a rational function, whose poles are the eigenvalues. The
regularity of the matrix pencil guarantees a finite set of poles. The magnitude of a transfer
function can be measured by Hardy norms, see [1].

Definition 5 The H2-norm of a transfer function reads as

‖H‖H2 =

√
1

2π

∫ +∞

–∞

∥∥H(iω)
∥∥2

F dω (3)

including the Frobenius matrix norm ‖ · ‖F, the angular frequency ω, and i =
√

–1.

Since we assume asymptotically stable linear dynamical systems (1), the transfer func-
tion is defined on the complete imaginary axis. In the case of ODEs, theH2-norm is always
finite. In the case of DAEs, the existence of the H2-norm is not guaranteed. Nevertheless,
the H2-norm is quite often finite for DAEs of index 1 or 2. The norm (3) may also exist for
unstable systems, if there is no pole on the imaginary axis.

2.3 Projection-based model order reduction
Projection matrices V , W ∈ R

n×r of full rank are specified with r � n. Concerning the
full-order model (FOM) in (1), the reduced-order model (ROM) reads as

Ē ˙̄x(t) = Āx̄(t) + B̄u(t),

ȳ(t) = C̄x̄(t)
(4)
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with state variables or inner variables x̄ : [0, tend] → R
r . Initial values x̄(0) = x̄0 are sup-

posed. We obtain the matrices via

Ā = W 	AV , B̄ = W 	B, C̄ = CV , Ē = W 	EV , (5)

which is also called a Petrov–Galerkin-type MOR. A Galerkin-type projection-based
MOR is characterized by W = V , where just one projection matrix has to be determined.
Important examples are the one-sided Arnoldi method and the proper orthogonal decom-
position (POD), see [1].

Each linear dynamical system is described by a transfer function (2) in the frequency
domain. The difference between the transfer functions H of FOM and H̄ of ROM quanti-
fies the error of the MOR. Hardy norms like the H2-norm from Definition 5, for example,
can be applied to their transfer functions. However, a small error in the frequency domain
implies a small error in the time domain only if both systems are asymptotically stable. It
holds that

sup
t≥0

∥∥y(t) – ȳ(t)
∥∥∞ ≤ ‖H – H̄‖H2‖u‖L2[0,∞) (6)

with the maximum vector norm ‖ · ‖∞ and the L2[0,∞)-norm in time provided that all
initial values are zero, see [2]. The H2-norm of Definition 5 is a strong measure. Hence
there are neither a priori error bounds nor cheap a posteriori error bounds available in
MOR techniques. Just an approximation of theH2-norm in (6) can be computed posterior,
where the computational effort is dominated by evaluations of the transfer function in the
FOM. The balanced truncation method yields an a priori error bound in the H∞-norm,
see [1, p. 212].

2.4 Dissipative systems
In balanced truncation, see [1], the ROM (4) is always asymptotically stable provided that
the system (1) is asymptotically stable. Yet the asymptotic stability may be lost in the ROM
(4) within other MOR methods like Krylov subspace techniques, see [10], and POD, for
example.

Using Galerkin-type MOR, the stability is guaranteed for some classes of linear dynam-
ical systems. In the case of ODEs, we define the following type of system.

Definition 6 A linear dynamical system (1) is called dissipative, if
1. E is symmetric as well as positive definite, and
2. A + A	 is negative definite.

The above condition represents a dissipativity of the matrix A as shown in [20]. Other
definitions of dissipative systems are used in the literature. We prove a property, which
was shown for an explicit system of ODEs in [23].

Theorem 1 If the linear dynamical system (1) is dissipative with respect to Definition 6,
then it is also asymptotically stable as in Definition 3.
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Proof Let E = LL	 be the Cholesky decomposition of the mass matrix. The system (1) is
equivalent to the explicit system of ODEs

ż(t) = L–1AL–	z(t) + L–1Bu(t) (7)

with z = L	x and y = CL–	z. The symmetric part of the involved system matrix Ã reads as

S := Ã + Ã	 = L–1AL–	 +
(
L–1AL–	)	 = L–1(A + A	)

L–	.

It holds that v∗Sv = (L–	v)∗(A + A	)(L–	v) for any v ∈C
n \ {0}. Thus S is negative definite.

Let λ ∈ C be an eigenvalue of Ã and v be an associated eigenvector satisfying v∗v = 1. It
follows that

2 Re(λ) = λ + λ = (λ + λ)v∗v = v∗(Ã + Ã	)
v = v∗Sv < 0.

Thus the systems (7) and (1) are asymptotically stable. �

In contrast, the asymptotic stability does not imply the dissipativity of Definition 6, even
if the mass matrix E is symmetric and positive definite. An example will be presented in
Sect. 6.1. Now we consider Galerkin-type MOR.

Theorem 2 If the linear dynamical system (1) is dissipative, then a Galerkin-type MOR
yields a dissipative reduced system (4). Hence the reduced system is asymptotically stable.

The proof can be found in [27], for example.

2.5 Transformations
The asymptotic stability of a linear dynamical system is invariant with respect to basis
transformations. In contrast, if a system of ODEs is not dissipative, then it can be converted
to an equivalent dissipative form by a basis transformation in the state space, see [23].
Alternatively, a basis transformation is feasible in the image space only, see [7]. We require
a symmetric positive definite solution M ∈R

n×n of the Lyapunov inequality

A	ME + E	MA < 0, (8)

which means that the matrix on the left-hand side of (8) is negative definite. If the mass
matrix E is non-singular and the matrix pencil (E, A) satisfies the Definition 3 of asymp-
totic stability, then an infinite set of solutions M exists.

We change the system of ODEs (1) into the equivalent system

E	MEẋ(t) = E	MAx(t) + E	MBu(t),

y(t) = Cx(t).
(9)

The transformed system exhibits the desired dissipativity property.

Theorem 3 If the asymptotically stable linear dynamical system (1) has a non-singular
mass matrix E, then the transformed system (9) with M satisfying (8) is dissipative in view
of Definition 6.
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We use a Galerkin-type MOR with a projection matrix V to the transformed system
(9). This approach can be written as a Petrov–Galerkin-type MOR applied to the original
system (1) with matrices (5) and the projection matrix

W = MEV . (10)

Thus we do not require to calculate the transformed system (9) explicitly. Alternatively,
we compute the projection matrix (10). However, the original Galerkin-type MOR of the
system (1) is not equivalent to the MOR of the system (9).

2.6 Numerical solution of Lyapunov inequality
We solve the Lyapunov inequality (8) using a Lyapunov equation

A	ME + E	MA + F = 0 (11)

including a predetermined symmetric positive definite matrix F ∈R
n×n. This matrix rep-

resents a degree of freedom, because any choice yields a symmetric positive definite
solution of the Lyapunov inequality. A simple admissible choice is the identity matrix
In ∈ R

n×n. Moreover, we do not need to solve the Lyapunov equation (11) with a high ac-
curacy, because a rough approximation M̃ often still satisfies the Lyapunov inequality (8).
In [29], it was shown that any approximation M̃ of the exact solution M of the Lyapunov
equation (11) for F = In with the property

‖M̃ – M‖ <
1

‖A	‖ · ‖E‖ + ‖A‖ · ‖E	‖ (12)

in some subordinate matrix norm also solves the Lyapunov inequality (8). The condition
(12) is just sufficient and not necessary. However, approximations M̃ satisfying (12) may
have a relative error of up to 100%, see [29], which motivates that rough estimates can
solve the problem.

There are direct methods to compute a solution M of (11) or a symmetric decompo-
sition M = LL	, see [11, 21]. Their computational effort is typically O(n3). In the high-
dimensional case, we have to use approximate methods to decrease the computation work.
The following techniques are available:

(i) projection methods (Krylov subspace techniques, POD, etc.), see [13, 38],
(ii) alternating direction implicit (ADI) iteration, see [15, 22],

(iii) frequency domain integrals, see [5, 29],
and others. In the cases (i) and (ii), the methods yield an approximation M̃ = ZZ	 with
a low-rank factor Z ∈ R

n×k (k � n). Thus the transformation is given by a singular ma-
trix M̃. It follows that the mass matrix Ē of the reduced system (4) may become singular
or ill-conditioned, as shown in [27]. In contrast, the method (iii) from [29] computes the
projection matrix (10), where the underlying approximation M̃ is always non-singular.
However, the matrix M̃ is never computed but a matrix-matrix product with this approx-
imation. In the frequency domain integral approach, the projection matrix V has to be
determined by the original linear dynamical system (1).
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3 Stochastic Galerkin systems
We illustrate the concept of the stochastic Galerkin method and define our problem under
investigation.

3.1 Random linear dynamical systems
We include parameters in the linear dynamical systems and obtain

E(μ)ẋ(t,μ) = A(μ)x(t,μ) + B(μ)u(t),

y(t,μ) = C(μ)x(t,μ).
(13)

The matrices A, E ∈ R
n×n, B ∈ R

n×nin , and C ∈ R
nout×n depend on parameters μ ∈ M ⊆

R
q. We assume that the dimension n is independent of the number of parameters q. The

values μ may represent physical parameters or artificial parameters.
Thus the state variables or inner variables x : [0, tend] × M → R

n depend on time as
well as the parameters. The inputs u : [0, tend] → R

nin are independent of the parameters,
whereas the outputs y : [0, tend] × M → R

nout vary with respect to the parameters. We
consider a single output (nout = 1) without loss of generality.

We assume that the system (13) is either an ODE for all μ ∈M or a DAE for all μ ∈M.
Let the system be asymptotically stable for each parameter with respect to Definition 3.
Furthermore, initial value problems

x(0,μ) = x0(μ) (14)

are considered including a function x0 : M → R
n. The initial values may be independent

of the parameters. The initial values have to be consistent in the case of DAEs.
We suppose that the parameters in the linear dynamical system (13) are affected by un-

certainties. A common approach is to substitute the parameters by independent random
variables μ : Ω → M on a probability space (Ω ,F , P) with event space Ω , sigma-algebra
F and probability measure P, see [36, 39]. We apply traditional probability distributions
like uniform, Gaussian, beta, etc. Hence a joint probability density function ρ : M→R is
available. This approach yields a stochastic model.

A measurable function f : M → R depending on the random variables exhibits the ex-
pected value

E[f ] =
∫

Ω

f
(
μ(ω)

)
dP(ω) =

∫
M

f (μ)ρ(μ) dμ (15)

provided that the integral is finite. The expected value (15) implies the inner product

〈f , g〉 =
∫
M

f (μ)g(μ)ρ(μ) dμ (16)

for two functions in the Hilbert space

L2(M,ρ) =
{

f : M→R : f measurable,E
[
f 2] < ∞}

. (17)

The associated norm is ‖f ‖L2(M,ρ) =
√〈f , f 〉 as usual.
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3.2 Polynomial chaos expansions
In most cases, a complete orthogonal basis (Φi)i∈N of polynomials Φi : M → R exists.
These multivariate polynomials are the products

Φi(μ) = Ψ
(1)

i1 (μ1) · Ψ (2)
i2 (μ2) · . . . · Ψ (q–1)

iq–1
(μq–1) · Ψ (q)

iq (μq), (18)

where (Ψ (j)
� )�∈N0 is the family of univariate orthogonal polynomials with respect to the jth

random variable. The degree of Ψ
(j)
� is exactly � ≥ 0. Let this basis also be normalized. Each

traditional probability distribution implies its own family of orthogonal basis polynomials,
see [39]. The basis is complete in the case of uniform, beta, and Gaussian distribution, for
example. Yet the polynomials do not span the complete Hilbert space (17) in the case of a
log-normal distribution, see [8].

We assume that the QoI of the system (13) is in the space (17) for each time point. If the
parameter domain M is compact, then the continuity of the QoI is sufficient for belonging
to (17) pointwise in time. If the parameter domain M is unbounded, then integrability
conditions have to be satisfied with respect to the probability distribution. Consequently,
the QoI can be expanded into the series

y(t,μ) =
∞∑
i=1

wi(t)Φi(μ) (19)

with coefficient functions wi : [0, tend] → R, which is called a (generalized) polynomial
chaos expansion (PCE). The series (19) converges in the norm of (17) pointwise in time.

Likewise, the state variables exhibit the PCE

x(t,μ) =
∞∑
i=1

vi(t)Φi(μ) (20)

with coefficient functions vi : [0, tend] → R
n, provided that each state variable is in the

Hilbert space (17).
We assume that the first basis polynomial is the unique constant polynomial Φ1 ≡ 1.

The orthonormality 〈Φi,Φj〉 = δij of the basis functions imply the formulas

E
[
y(t, ·)] = w1(t) and Var

[
y(t, ·)] =

∞∑
i=2

wi(t)2

for the expected value and the variance of the QoI in each time point.

3.3 Stochastic Galerkin method
We truncate the series (19), (20) to a finite sum. Typically, all basis polynomials up to some
total degree d are included. There is a bijective mapping between the integers i and the
multi-indices i1, . . . , iq with the number q of random parameters. In view of (18), we obtain
the finite index set {i ∈N : i1 + i2 + · · · + iq–1 + iq ≤ d}. The cardinality of this index set is

m =
(d + q)!

d!q!
.
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Figure 1 Number of basis polynomials in
dependence on number of random variables and
total polynomial degree in semi-logarithmic scale

If the number of random variables is large, then the number of basis polynomials becomes
huge even for moderate degrees, say d = 3. Figure 1 illustrates the growth of the number
of basis polynomials.

Without loss of generality, the truncated series read as

y(m)(t,μ) =
m∑

i=1

wi(t)Φi(μ) and x(m)(t,μ) =
m∑

i=1

vi(t)Φi(μ). (21)

Inserting the approximations (21) into the linear dynamical system (13) yields a residual.
The Galerkin approach requires that the residual is orthogonal to the space spanned by
the basis polynomials Φ1, . . . ,Φm with respect to the inner product (16). Basic calculations
produce a larger coupled linear dynamical system

Ê ˙̂v(t) = Âv̂(t) + B̂u(t),

ŵ(t) = Ĉv̂(t)
(22)

for v̂ = (v̂	
1 , . . . , v̂	

m)	 and ŵ = (ŵ1, . . . , ŵm)	. Hence we obtain a linear dynamical system of
dimension n̂ = mn with m outputs. The matrices exhibit the sizes Â, Ê ∈ R

n̂×n̂, B̂ ∈ R
n̂×nin ,

and Ĉ ∈R
m×n̂. To define the matrices, we introduce the auxiliary arrays

S(μ) =
(
Φi(μ)Φj(μ)

)
i,j=1,...,m and s(μ) =

(
Φi(μ)

)
i=1,...,m. (23)

It follows that

Â = E[S ⊗ A], B̂ = E[s ⊗ B], Ĉ = E[S ⊗ C], Ê = E[S ⊗ E] (24)

using Kronecker products. Therein, the probabilistic integration (15) operates separately
in each component of the matrices. Often it holds that rank(Ĉ) = m. More details on the
stochastic Galerkin method for linear dynamical systems are given in [24, 31].

The mass matrix Ê may be singular even though all matrices E are non-singular due to
properties of the spectrum, see [35]. However, this loss of invertibility hardly occurs. Yet
the mass matrix Ê may become ill-conditioned. We assume that Ê is always non-singular in
the case of ODEs (13). Likewise, the stochastic Galerkin system (22) may be unstable even
though the systems (13) are asymptotically stable for all parameters. Academic examples
are given in [30]. Again this loss of stability is hardly observed in practice. Furthermore,



Pulch Journal of Mathematics in Industry            (2019) 9:10 Page 10 of 24

the passivity of stochastic Galerkin systems was investigated for models of electric circuits
in [16].

Initial conditions v̂(0) = v̂0 are derived from the initial values (14) of the original dynam-
ical system (13) by an own truncated PCE. If the initial values (14) are identical to zero,
then the choice v̂(0) = 0 is obvious. The approximation of the QoI reads as

ŷ(m)(t,μ) =
m∑

i=1

ŵi(t)Φi(μ), (25)

where the outputs ŵ1, . . . , ŵm of the stochastic Galerkin system (22) yield the coefficients.
If the entries of the matrices are polynomials depending on μ in the system (13), then

the matrices (24) of the stochastic Galerkin system can be calculated analytically. Conse-
quently, we obtain the matrices exactly (except for round-off errors) independent of the
number q of random variables. In contrast, stochastic collocation techniques, which are
non-intrusive methods, cf. [36, 39], induce a quadrature error or sampling error. This er-
ror typically grows for fixed numbers of collocation points and increasing dimensions q.
Although the stochastic Galerkin approach represents an intrusive method, the effort of
coding the algorithms is not extensive, because just constant matrices have to be specified
for linear time-invariant systems.

We prove a property, which will be used later.

Lemma 1 If the matrices E(μ) are symmetric and positive definite for almost all μ ∈ M,
then the stochastic Galerkin projection Ê is also symmetric and positive definite.

Proof The Galerkin-projected matrix consists of the blocks Êij = E[ΦiΦjE] for i, j =
1, . . . , m, see (24). Hence the symmetry is obvious. Let z = (z	

1 , . . . , z	
m)	 ∈ R

mn. We obtain

z	Êz =
m∑

i,j=1

z	
i Êijzj =

m∑
i,j=1

z	
i E[ΦiΦjE]zj = E

[ m∑
i,j=1

z	
i EzjΦiΦj

]

= E

[( m∑
i=1

ziΦi

)	
E

( m∑
j=1

zjΦj

)]
≥ 0,

because the integrand is almost everywhere non-negative in the probabilistic integration
(15). The basis functions (Φi)i∈N are linearly independent. Thus z �= 0 implies that the
above finite sum is non-zero on a subset U ⊂ M satisfying P({ω : μ(ω) ∈ U}) > 0 for the
probability measure P. It follows that z	Êz > 0 for z �= 0. �

Likewise, this relation applies to the case of negative definite matrices.

4 Stability preservation
We investigate three strategies to preserve the asymptotic stability in an MOR of a stochas-
tic Galerkin system. Figure 2 illustrates different possibilities.

4.1 Transformation of stochastic Galerkin system
This approach follows the steps (c), (b), (f ) in Fig. 2. If the linear dynamical systems (13)
are asymptotically stable for all parameters, then the stochastic Galerkin system (22) is
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Figure 2 Flowchart for transformations, stochastic Galerkin (SG) projections and model order reduction
(MOR). Inputs and outputs are not shown

usually asymptotically stable. However, if the system (22) is not dissipative, then stability
may be lost in some MOR methods by step (e). In this case, we can transform the system to
a dissipative form as demonstrated in Sect. 2.5 and Sect. 2.6. Consequently, the reduced
system is stable due to Theorem 2. Remark that we do not have to calculate the trans-
formed matrices of the high-dimensional system explicitly. Just an appropriate projection
matrix has to be determined via (10).

In this approach, the critical part is the solution of the high-dimensional Lyapunov equa-
tion (11). A direct method of linear algebra would require O(m3n3) operations. Thus we
are restricted to approximate methods or iteration schemes. The possibilities are listed in
Sect. 2.6.

4.2 Transformation of parameter-dependent system
Now the succession (a), (d), (f ) is performed with respect to Fig. 2. Consequently, we trans-
form the linear dynamical systems (13) first.

4.2.1 Transformation
The stochastic Galerkin system is not always asymptotically stable, even if all parameter-
dependent systems (13) are asymptotically stable. However, we obtain a positive result in
the case of dissipativity.

Theorem 4 If the linear dynamical systems (13) are dissipative for almost all μ ∈ M,
then the stochastic Galerkin system (22) is also dissipative. Consequently, a Galerkin-type
reduction of (22) yields an asymptotically stable system.

Proof Lemma 1 implies that the mass matrix Ê is symmetric and positive definite. The
matrix Â + Â	 is the Galerkin projection of A(·) + A(·)	 due to

Â + Â	 = E[S ⊗ A] + E
[
S ⊗ A	]

= E
[
S ⊗ A + S ⊗ A	]

= E
[
S ⊗ (

A + A	)]
,
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see (24). Since A(μ) + A(μ)	 is negative definite for almost all μ ∈M, Lemma 1 shows that
Â + Â	 is negative definite. Hence both conditions of Definition 6 are satisfied. Theorem 2
guarantees the stability of a reduced system. �

If the original systems (13) are not dissipative for almost all μ ∈ M, then we transform
the systems appropriately. The following transformation has to be applied for almost all
μ simultaneously (even if some system is already dissipative) to preserve continuity and
smoothness of the functions.

We obtain the parameter-dependent Lyapunov equation

A(μ)	M(μ)E(μ) + E(μ)	M(μ)A(μ) + F = 0 (26)

for μ ∈ M. Although the matrix F may depend on the parameters, we choose a constant
matrix, because no parameter-aware strategy with benefits is known yet. The Lyapunov
equations (26) yield a unique family M(μ) of symmetric positive definite matrices.

Furthermore, the stochastic Galerkin system (22) obtained by step (c) is not equivalent
to a stochastic Galerkin system obtained by steps (a), (d). On the one hand, the stochastic
Galerkin method is invariant with respect to transformations by constant non-singular
matrices. On the other hand, we use the parameter-dependent matrix E(μ)	M(μ) in the
transformation (a) to the dissipative form (9).

4.2.2 Polynomial system matrices
Now we assume that the matrices A(μ), B(μ), E(μ) of the system (13) involve only poly-
nomials in the variable μ, which is often given in practice. Thus the matrices Â, B̂, Ê of
the stochastic Galerkin system (22) can be calculated analytically in the case of traditional
probability distributions. We do not consider the output matrix C(μ), because it is not
transformed. However, the matrix-valued function M(μ) satisfying (26) consists of ratio-
nal functions in the variable μ. In the case of low dimensions n, the function M(μ) can be
calculated explicitly by a computer algebra software. Alternatively, the solution M(μ) can
be evaluated for a finite set of parameters μ.

We require the Galerkin projection of the transformed matrices

A′(μ) = E(μ)	M(μ)A(μ), B′(μ) = E(μ)	M(μ)B(μ), E′(μ) = E(μ)	M(μ)E(μ)

in the dissipative system (9). The entries of these transformed matrices are rational func-
tions of μ. A quadrature rule yields numerical approximations Ã, B̃, Ẽ of the matrices Â′,
B̂′, Ĉ′. Let {μ1, . . . ,μk} ⊂M be the nodes and {γ1, . . . ,γk} ⊂R be the weights. The approx-
imation of the blocks in Â′ reads as

Â′
ij = E

[
ΦiΦjA′] ≈

k∑
�=1

γ�Φi(μ�)Φj(μ�)E(μ�)	M(μ�)A(μ�) (27)

for i, j = 1, . . . , m. Using the auxiliary array (23), the approximation becomes

Ã =
k∑

�=1

γ�S(μ�) ⊗ A′(μ�). (28)
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Likewise, the quadrature yields B̃ and Ẽ. The computational effort is dominated by deter-
mining k numerical solutions of the Lyapunov equations (26).

Lemma 2 If all weights are positive, then a quadrature of kind (27) yields approximations
Ã, Ẽ, where Ẽ is symmetric positive semi-definite and Ã + Ã	 is negative semi-definite.

Proof The symmetry of Ẽ is obvious. Let z ∈R
mn \ {0} with z = (z	

1 , . . . , z	
m)	 and

v� =
m∑

j=1

zjΦj(μ�) for � = 1, . . . , k.

We obtain using the notation (28)

z	Ẽz =
k∑

�=1

γ�z	(
S(μ�) ⊗ E′(μ�)

)
z =

k∑
�=1

γ�

m∑
i,j=1

Φi(μ�)Φj(μ�)z	
i E′(μ�)zj

=
k∑

�=1

γ�v	
� E′(μ�)v�.

Since E′(μ�) is positive definite and the weights γ� are positive for each �, all terms of the
sum are non-negative. Hence Ẽ is positive semi-definite. The negative semi-definiteness
of Ã + Ã	 is concluded by the same treatment. �

In addition, it is very likely that one or more terms are positive in the above sum. Thus we
assume that these matrices are definite. It follows that the approximate Galerkin system
has the dissipativity condition of Definition 6.

Concerning the positivity of the weights, we address three classes of multivariate
quadrature schemes or sampling methods, which can all be found in [36]:

(i) Tensor-product formulas: Univariate quadrature rules often exhibit exclusively
positive weights like Gaussian quadrature, for example. The tensor-product
formulas inherit the positivity, because their weights are the products of the
weights in the univariate case.

(ii) Sparse grid quadrature: Often both positive and negative weights occur. Sparse
grids with purely positive weights typically require more nodes for the same
accuracy.

(iii) (Quasi) Monte-Carlo methods: In these sampling techniques, the weights are γ� = 1
k

for all � = 1, . . . , k and thus positive.

4.2.3 Properties
The strategy of this section looks appealing in the case of low dimensions n, because
the Lyapunov equations can be solved cheap. However, the number of random param-
eters is typically large in this case, because otherwise the stochastic Galerkin system is
not high-dimensional and an MOR is obsolete. A large number of random variables im-
plies a quadrature in a high-dimensional space. Using a computationally feasible number
of nodes, the quadrature error may still be too large such that the exact solution of the
approximate Galerkin system yields poor approximations (25) of the random-dependent
QoI. Therefore, the above approach is critical.
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Furthermore, there is a major loss of sparsity in this technique. Let the entries in the
matrices be polynomials of low degrees depending on μ in the system (13). Even if the
matrices are dense, then the stochastic Galerkin system (22) exhibits sparse matrices due
to the orthogonality of the basis polynomials. However, the dense matrices of the trans-
formed systems (9) are rational functions depending on μ. Inner products (16) of their
entries and orthogonal polynomials are non-zero and thus the matrices of (22) become
dense in the Galerkin projection. In contrast to the approach of Sect. 4.1, we have to cal-
culate the matrices of the alternative Galerkin system explicitly to determine a projection
matrix V of the MOR.

4.3 Transformation using reference parameter
Again the steps (c), (b), (f ) are considered in Fig. 2, where the transformation is done dif-
ferent from Sect. 4.1. We derive an additional technique to decrease the computational
effort and to omit quadrature errors. A single reference parameter μ∗ ∈M is selected like
the mean value μ∗ = E[μ], for example. We directly solve the Lyapunov equation (26) only
for μ∗ using some matrix F . The solution M∗ = M(μ∗) ∈ R

n×n is symmetric and positive
definite. We define the larger transformation matrix

M̂ = Im ⊗ M∗ ∈R
mn×mn (29)

using the identity matrix Im ∈ R
m×m and the Kronecker product. Obviously, the matrix

(29) is symmetric and positive definite again. We employ this matrix to transform the
stochastic Galerkin system (22) into the form (9). Since the matrix (29) is block-diagonal,
matrix-matrix multiplications with M̂ are cheap. We do not need to compute the trans-
formed system matrices. Alternatively, we directly compute the projection matrix (10),
where a projection matrix V is determined by the original Galerkin system.

Any random variables can be decomposed into the form μ(ω) = μ∗ + �μ(ω). We con-
sider the random variables

μθ (ω) = μ∗ + θ�μ(ω) (30)

with the real parameter θ ∈ [0, 1].

Theorem 5 Let the random variables in a linear system of ODEs (13) be of the form (30).
There is a positive constant θ0 ∈ (0, 1] such that the transformation of a stochastic Galerkin
system (22) using the matrix (29) yields a dissipative system of type (9) for all θ ∈ [0, θ0].

Proof The transformed mass matrix Ê	M̂Ê is symmetric and positive definite for all θ ,
since just the non-singularity of the original mass matrix Ê is required. In the limit, we
obtain

lim
θ→0

Ê	M̂Â = Im ⊗ (
E
(
μ∗)	M∗A

(
μ∗)) (31)

due to the orthogonality of the basis polynomials. Hence the matrix becomes block-
diagonal with identical blocks. The factor M∗ satisfies the Lyapunov equation (26) for the
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chosen positive definite matrix F . The symmetric part of the matrix (31) is negative defi-
nite, because it holds that

Im ⊗ (E(μ∗)	M∗A(μ∗)) + (Im ⊗ (E(μ∗)	M∗A(μ∗)))	

= Im ⊗ (E(μ∗)	M∗A(μ∗)) + Im ⊗ (A(μ∗)	M∗E(μ∗)) = –Im ⊗ F .

The two conditions of Definition 6 are satisfied and thus the system is dissipative in the
limit. Since the limit (31) is reached continuously with respect to the parameter θ , it fol-
lows that a sufficiently small perturbation of θ = 0 still yields matrices with the required
properties. �

Theorem 5 shows that the stochastic Galerkin system becomes dissipative for all suffi-
ciently small θ > 0. However, this implication does not guarantee that the system is dis-
sipative for θ = 1, which reproduces our desired choice of random variables in (30). Nev-
ertheless, the computational effort is low such that it is worth to try this approach. Even
if this transformed stochastic Galerkin system is not dissipative, a loss of stability may
happen less often in an MOR.

4.4 Nonlinear dynamical systems
We outline a stabilization concept for nonlinear dynamical systems. Let an autonomous
system of ODEs be given in the form

E(μ)ẋ(t,μ) = f
(
x(t,μ),μ

)
,

y(t,μ) = g
(
x(t,μ),μ

) (32)

with a parameter-dependent mass matrix E ∈ R
n×n and a nonlinear smooth right-hand

side f : Rn × M → R
n. The QoI y is defined by the linear or nonlinear function g :

R
n ×M→R

nout . Let nout = 1. We assume that a family of asymptotically stable stationary
solutions x∗ : M → R

n exists, i.e., f (x∗(μ),μ) = 0 for all μ ∈ M. The definition of stable
stationary solutions can be found in [33, p. 22]. As in [30], the system (32) is replaced by
the equivalent system

E(μ) ˙̃x(t,μ) = f̃
(
x̃(t,μ),μ

)
= f

(
x̃(t,μ) + x∗(μ),μ

)
,

y(t,μ) = g̃
(
x̃(t,μ),μ

)
= g

(
x̃(t,μ) + x∗(μ),μ

)
,

(33)

which exhibits the constant asymptotically stable stationary solution x̃∗ = 0. Let J̃(μ) ∈
R

n×n be the Jacobian matrix of f̃ evaluated at x̃∗ = 0 and μ ∈ M. The stochastic Galerkin
method yields a larger nonlinear system of ODEs

Ê ˙̂v(t) = f̂
(
v̂(t)

)
,

ŵ(t) = ĝ
(
v̂(t)

) (34)

including the mass matrix Ê from (24). The definition of the nonlinear function f̂ : Rmn →
R

mn is given in [28, 30]. This function inherits the smoothness of f . Now v̂∗ = 0 is a station-
ary solution of (34). Although this stationary solution may be unstable, this loss of stability
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hardly occurs in practice. Thus we assume that the stationary solution is asymptotically
stable again. Let Ĵ ∈R

mn×mn be the Jacobian matrix of f̂ evaluated at v̂∗ = 0. It follows that
the spectral abscissa of the matrix pencil (Ê, Ĵ) is negative, see Definition 1.

A Galekin-type projection-based MOR yields a small dynamical system

Ē ˙̄v(t) = f̄
(
v̄(t)

)
= V 	 f̂

(
V v̄(t)

)
,

w̄(t) = ḡ
(
v̄(t)

)
= ĝ

(
V v̄(t)

) (35)

with a projection matrix V and the mass matrix Ē = V 	ÊV . The reduced system owns the
stationary solution v̄∗ = 0, which may be unstable.

Stability-preserving techniques can be derived. We consider the method of Sect. 4.1,
where the high-dimensional Lyapunov equation (11) is solved including the mass matrix
Ê from (34) and A = Ĵ . The Galerkin system (34) is transformed and reduced to (35), while
the asymptotic stability of the stationary solution is guaranteed as shown in [27, p. 35]
for general nonlinear implicit systems of ODEs. Concerning the stability-preserving ap-
proach of Sect. 4.2, parameter-dependent Lyapunov equations (26) are solved including
E(μ) from (32) and A(μ) = J̃(μ) with the Jacobian matrix associated to the stationary so-
lution of (33). This technique was used for explicit ODEs in [30]. The application of the
stability-preserving method from Sect. 4.3 is straightforward now.

5 Differential-algebraic equations
If the linear dynamical system (1) features a singular mass matrix E, then a system of DAEs
is given. MOR methods are also available for DAEs, see [6]. Yet the Lyapunov equations
(11) do not have a solution, which is crucial in our stability-preserving technique. Let
x ∈R

n. It follows that

x	A	M(Ex) + (Ex)	MAx = –x	Fx.

Choosing an x �= 0 in the kernel of the matrix E implies Ex = 0 and thus a contradiction to
the definiteness of the matrix F appears. We require an alternative strategy now.

5.1 Regularization
We apply a regularization of an asymptotically stable DAE system (1), which was also used
in [19]. The asymptotic stability guarantees a regular matrix pencil as specified by Defini-
tion 2. The regularized system matrices read as

Ereg = E – αA,

Areg = A + βE
(36)

introducing parameters α,β > 0. The matrix Ereg is non-singular for all α > 0. Choosing α =
β2, it follows that the linear dynamical system (1) with Areg, Ereg is asymptotically stable for
all sufficiently small parameters β , see [19]. An advantage of this regularization technique
is that the sparsity pattern of sE – A coincides with the sparsity pattern of sEreg – Areg for
each s ∈C. Hence no loss of sparsity happens in the relevant operations.

We also choose a small parameter β (and α = β2) to ensure that the difference between
the original DAE system and the regularized ODE system is small. Assuming that the DAE
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system together with the defined outputs has a transfer function with finite H2-norm (3),
error bounds were derived with respect to this norm in [29].

5.2 Stochastic Galerkin projection
The steps (a)–(d) refer to the flowchart in Fig. 2. The following two approaches are equiv-
alent provided that the same parameters α, β are chosen in a regularization (36):

(i) Regularize the parameter-dependent system (13) and then project the systems of
ODEs in the stochastic Galerkin method.

(ii) Project the parameter-dependent DAE system (13) in the stochastic Galerkin
method and then regularize the Galerkin system (22).

In both cases, the stochastic Galerkin projection (c) yields the same matrices Â and Ê for
the system (22). The mass matrix Ê is non-singular due to the regularization.

The transformations (a) and (b) to a dissipative representation are done only for a regu-
larized system, since a system of ODEs is required for each Lyapunov equation. The trans-
formation (b) involves the matrices from (i) or (ii). However, in the transformation (a), we
have to regularize the systems of DAEs (13) immediately. Furthermore, the drawbacks of
the succession (a), (d), see Sect. 4.2.3, also apply in this case.

In the transformation (b), the approximate solution of the high-dimensional Lyapunov
equations (11) may become critical. Small regularization parameters α nearly coincide
with the singular case. This problem is less pronounced in direct methods to solve the
Lyapunov equations.

We can also employ the technique from Sect. 4.3 in this context. The linear dynami-
cal system (13) is regularized for a reference parameter μ∗ and some α,β > 0. Solving the
Lyapunov equation (26) including μ∗ yields the high-dimensional transformation matrix
(29). Now the regularized Galerkin system from strategy (ii), where the same values α, β

are used, is transformed based on (29). Again the dissipativity of the transformed repre-
sentation cannot be guaranteed a priori.

6 Illustrative examples
We investigate a system of ODEs as well as a system of DAEs in this section. We computed
on a FUJITSU Esprimo P920 Intel(R) Core(TM) i5-4570 CPU with 3.20 GHz (4 cores) and
operation system Microsoft Windows 7. The software package MATLAB [17] (version
R2018a) was used for all computations.

6.1 Mass-spring-damper system
Figure 3 depicts a mechanical configuration, which consists of 5 masses, 7 springs and 5
dampers. The single input is the excitation at the bottom spring, whereas the single output
is the position of the top mass. A mathematical modeling yields a linear dynamical system
(13) of n = 10 ODEs of first order including q = 17 parameters. The system is asymptot-
ically stable for all positive parameters. The system matrices are affine-linear functions
(polynomials of degree one) of the parameters. The Bode plot of the system is shown for
a specific choice of the parameters in Fig. 4. This system represents an extension of a test
example used in [14], where 4 masses were included.

In the stochastic modeling, we replace the parameters by independent uniformly dis-
tributed random variables, which vary 10% around their mean values. The mean values
are the constant parameters from above. In the truncated orthogonal expansion (21), we
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Figure 3 Mass-spring-damper configuration

Figure 4 Bode plot of mass-spring-damper system for a constant choice of the parameters

Table 1 Properties of stochastic Galerkin system in mass-spring-damper example

Dimension 11,400
Number of outputs 1140
# non-zeros in Ê 13,110
# non-zeros in Â 50,958
Spectral abscissa of (Ê, Â) –0.0036
Spectral abscissa of Â + Â	 42.69

include all multivariate Legendre polynomials up to degree three. We obtain m = 1140 ba-
sis functions. The stochastic Galerkin system (22) is calculated exactly except for round-off
errors. Table 1 illustrates the properties of this example. The system is asymptotically sta-
ble. The mass matrix is symmetric and positive definite. Yet the system is not dissipative.

We employ the one-sided Arnoldi method, see [1], to perform an MOR of the stochastic
Galerkin system (22). The single real expansion point s = 0.7 is used in this Krylov subspace
technique. The reduced systems are arranged for dimensions r = 1, . . . , 100. It follows that
just 38 ROMs are stable.

Now we investigate the stabilization techniques from Sect. 4. The following cases are
discussed:

(i) transformation of stochastic Galerkin system (Sect. 4.1),
(ii) transformation of original systems (Sect. 4.2), and

(iii) transformation based on reference parameter (Sect. 4.3).
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Figure 5 Relative errors inH2-norm for MOR of stochastic Galerkin system and stabilization techniques in
mass-spring-damper example

Table 2 Number of asymptotically stable systems out of 100 ROMs with dimensions 1, . . . , 100 and
computation times for projection matrix (10) in stabilization using frequency domain integrals for
mass-spring-damper example

# nodes in quadrature 10 20 30 40 untransf.
# stable ROMs 79 91 96 100 38
Computation time (s) 19.0 38.0 56.8 75.6 –

In (i) and (iii), we reuse the projection matrix V determined for the original stochastic
Galerkin system, because the Arnoldi method is invariant with respect to a basis trans-
formation in the image space. In (ii), we repeat the Arnoldi algorithm for the alternative
stochastic Galerkin system, because a smaller reduction error is expected.

We choose the identity matrix (F = I) as degree of freedom in each Lyapunov equation.
In all three approaches, the stability is achieved for each ROM. Figure 5 illustrates the
relative errors with respect to the H2-norm (3), i.e.,

‖H – H̄‖H2

‖H‖H2
(37)

with the transfer functions H , H̄ of FOM and ROM, respectively.
In the technique (i), we use the method from [29], where an integral is discretized by a

quadrature rule in the frequency domain. Therein, the solution of the high-dimensional
Lyapunov equation is not computed but the associated projection matrix (10). The com-
putation work is characterized by an LU-decomposition of the system matrix iωjÊ – Â
in each node ωj for the angular frequency ω. We employ the (univariate) Gauss-Legendre
quadrature. Table 2 shows the number of stable ROMs for different numbers of nodes. We
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Table 3 Number of non-zero entries (nnz) in matrices of stochastic Galerkin systems for
mass-spring-damper example

nnz in Ê nnz in Â

Untransformed Galerkin system 13,110 (0.01%) 50,958 (0.04%)
Galerkin system in (ii) 30,000,000 (23.1%) 29,999,562 (23.1%)

Figure 6 Maximum eigenvalue of symmetric matrix
Ê	M̂Â + (Ê	M̂Â)	 with M̂ from (29) in technique (iii)

observe that 40 nodes are sufficient to stabilize all reduced systems. Figure 5(i) depicts the
relative H2-errors (37) in this case. The error of the MOR exhibits the same magnitude as
in the original stochastic Galerkin system.

In the technique (ii), we use a sparse grid quadrature of Smolyak-type with level 3 based
on the Clenshaw-Curtis rule. The scheme exhibits 7209 nodes in the 17-dimensional space
and negative weights arise. Table 3 illustrates the loss of sparsity in this approach. Again
all ROMs become asymptotically stable. The relative errors (37) of the MOR are demon-
strated in Fig. 5(ii). The errors between the ROMs and the stochastic Galerkin projection
of the transformed systems, which we call the inherent errors, decay for increasing di-
mensions. However, the errors between these ROMs and the stochastic Galerkin system
of the untransformed systems (13), which we call the comparison, are large and stagnate.
This property indicates that the quadrature error is too large, even though a high num-
ber of nodes is used, because the original Galerkin system can be considered sufficiently
accurate.

In the technique (iii), we define the mean value of the random variables as reference pa-
rameter. We calculate the matrices of the transformed Galerkin system to analyze the def-
initeness. Figure 6 depicts the maximum eigenvalue of the symmetric part of Ê	M̂Â with
M̂ from (29) in dependence on the parameter θ from (30). We observe that the negative
definiteness is lost for θ ≥ θ0 ≈ 0.04. Although our relevant case θ = 1 is not dissipative, the
stability is preserved in all ROMs. Moreover, the error of the MOR is not compromised.

We also measured computation times illustrated by Table 4. The ROMs of dimension
r = 100 are determined using the Arnoldi method and the three stability-preserving tech-
niques. The computation time of a stabilization technique consists of all steps to calculate
the reduced matrices (5) except for the determination of the projection matrix V , which
is done by the Arnoldi method. In the technique (i), k = 40 nodes are used in the Gaussian
quadrature. On the one hand, the technique (ii) causes a relatively large computational
effort due to the high number of nodes in the sparse grid quadrature. Also the Arnoldi
algorithm is more expensive due to the loss of sparsity in the matrices. On the other hand,
the technique (iii) requires a negligible computation work, which shows that it is worth
trying this approach.
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Table 4 Computation times for MOR method producing reduced dimension r = 100 and additional
stabilization techniques in mass-spring-damper example

Computation
time (s)

Arnoldi method for original system 2.4
Arnoldi method for system in (ii) 65.4
Technique (i) 75.6
Technique (ii) 2591.9
Technique (iii) 0.1

Figure 7 Electric circuit of band-pass filter (white boxes: resistors, black boxes: inductors, parallel lines:
capacitors)

Figure 8 Bode plot of band-pass filter for a constant choice of the parameters

6.2 Band-pass filter
We examine the electric circuit of a band-pass filter shown in Fig. 7. A single input voltage
is supplied and a single output voltage drops at a load conductance. Modified nodal anal-
ysis [12] yields a linear system of DAEs of dimension n = 23. This DAE system exhibits the
index one. The physical parameters are 7 capacitances, 7 inductances and 9 conductances
(q = 23). Figure 8 depicts the Bode plot of the system for a constant selection of the pa-
rameters. Furthermore, the system matrices are affine-linear functions of the parameters.

In the stochastic modeling, we introduce independent uniformly distributed random
variables varying 20% around their mean values. The truncated series (21) include all basis
polynomials up to degree two, i.e., m = 300. The stochastic Galerkin system (22) consists
of linear DAEs, which have a finite H2-norm (3) for the defined outputs.

In the regularization (36), we choose the parameters α = 10–10 and β = 10–5. Table 5
shows the properties of the regularized system. The system is asymptotically stable. Both
Ê and Êreg are not symmetric. Thus the spectral abscissa, see Definition 1, of the symmetric
part of Âreg is irrelevant. Multiplication by Ê	

reg from the left yields a system with symmetric
positive definite mass matrix, which is still not dissipative.

The one-sided Arnoldi method yields the projection matrices of the MOR for dimen-
sions r = 1, . . . , 100. Therein, we choose the real number s = 106 as expansion point. A loss
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Table 5 Properties of regularized stochastic Galerkin system in band-pass filter example

Dimension 6900
Number of outputs 300
# non-zeros in Êreg 21,912
# non-zeros in Âreg 21,912
Spectral abscissa of (Êreg , Âreg) –4.94 · 10–4
Spectral abscissa of (Ê	

regÂreg) + (Ê	
regÂreg)	 1.28 · 10–5

Table 6 Number of asymptotically stable systems out of 100 ROMs with dimensions 1, . . . , 100 in
MOR of stochastic Galerkin system for band-pass filter example

FOM system # stable ROMs

(i) DAE 22
(ii) regularized system (ODE) 59
(iii) transformed as in Sect. 4.1 (ODE) 100
(iv) transformed as in Sect. 4.3 (ODE) 100

Figure 9 Relative errors inH2-norm for MOR of different FOMs and stabilization techniques, see Table 6, in
band-pass filter example

of stability occurs in the reduction of both the DAE system and the regularized system, as
shown in Table 6. We apply the stabilization techniques of Sect. 4.1 and Sect. 4.3 to the
regularized system. The Lyapunov equations are solved using the identity matrix as in-
put matrix. We solve the Lyapunov equations by a direct method of linear algebra. Thus a
critical behavior for small regularization parameters, as mentioned in Sect. 5.2, is avoided.
The matrices of a transformed Galerkin system are never computed explicitly. All ROMs
become asymptotically stable in both approaches.

Finally, we compute approximations of the H2-norms for the difference between the
DAE system and the reduced systems. Figure 9 illustrates the relative errors (37) of the
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reductions. We recognize that the errors are nearly identical in the two stabilization tech-
niques. The errors stagnate for reduced dimensions r > 80 in (ii)–(iv), because the total
error is dominated by the error of the regularization in this part. Most important, the
stabilization approaches do not compromise the error of the MOR.

7 Conclusions
We examined stability-preserving model order reduction of linear stochastic Galerkin sys-
tems using transformations to dissipative forms. Three approaches were analyzed. The
transformation of the conventional Galerkin system represents an adequate method. The
Galerkin projection of the transformed original systems features severe drawbacks in the
case of large numbers of random parameters. The approach using a cheap transformation
matrix based on a reference parameter is promising. Although the dissipativity property
cannot be guaranteed in the transformed system, the numerical results of test examples
demonstrate that preservation of stability is achieved. Moreover, the error of the model
order reduction does not increase in this stabilization.
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