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Abstract 

Off-target drug interactions are a major reason for candidate failure in the drug discovery process. Anticipating 
potential drug’s adverse effects in the early stages is necessary to minimize health risks to patients, animal testing, and 
economical costs. With the constantly increasing size of virtual screening libraries, AI-driven methods can be exploited 
as first-tier screening tools to provide liability estimation for drug candidates. In this work we present ProfhEX, an AI-
driven suite of 46 OECD-compliant machine learning models that can profile small molecules on 7 relevant liability 
groups: cardiovascular, central nervous system, gastrointestinal, endocrine, renal, pulmonary and immune system tox-
icities. Experimental affinity data was collected from public and commercial data sources. The entire chemical space 
comprised 289′202 activity data for a total of 210′116 unique compounds, spanning over 46 targets with dataset sizes 
ranging from 819 to 18896. Gradient boosting and random forest algorithms were initially employed and ensembled 
for the selection of a champion model. Models were validated according to the OECD principles, including robust 
internal (cross validation, bootstrap, y-scrambling) and external validation. Champion models achieved an average 
Pearson correlation coefficient of 0.84 (SD of 0.05), an  R2 determination coefficient of 0.68 (SD = 0.1) and a root mean 
squared error of 0.69 (SD of 0.08). All liability groups showed good hit-detection power with an average enrichment 
factor at 5% of 13.1 (SD of 4.5) and AUC of 0.92 (SD of 0.05). Benchmarking against already existing tools demon-
strated the predictive power of ProfhEX models for large-scale liability profiling. This platform will be further expanded 
with the inclusion of new targets and through complementary modelling approaches, such as structure and pharma-
cophore-based models. ProfhEX is freely accessible at the following address: https:// profh ex. exsca late. eu/.
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Introduction
Nowadays, the concept of polypharmacology [1–4] pre-
dominates over the “one-target-one-disease” paradigm, 
thanks to a better understanding of drugs’ mode of 
action and pathological processes. Polypharmacology 
opened various possibilities in drug discovery, related 

to repurposing and detecting potential off-target lia-
bilities which can lead to adverse drug reactions [5]. 
Indeed, recent studies estimated that small molecule 
drugs bind on average 6–11 distinct off-targets exclud-
ing their intended pharmacological one [6, 7]. Off-tar-
get interactions are a major reason for drug candidate 
clinical failure and, eventually, post-market withdrawal 
[8–10]. It is necessary to anticipate such adverse effects 
at the very early stages of the drug discovery process 
to minimize health risks to patients, experimental ani-
mal testing, and economic costs [11]. The main reasons 
for failure are related to specific organ toxicities, with 
cardiovascular toxicity being the most common cause 
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(17%), followed by hepatotoxicity (14%), renal toxic-
ity (8%) and central nervous system toxicity (7%) [10]. 
The most notable example is the human voltage-gated 
potassium channel subfamily H member 2 (KCNH2, or 
hERG), which is linked to cardiac arrhythmias. Indeed, 
activity on hERG is a mandatory evaluation to be per-
formed to meet regulatory requirements [11].

The constantly increasing size of virtual screening 
libraries limits the possibility to experimentally test 
drug candidates against a large panel of liability tar-
gets, even when employing in-vitro high-throughput 
screening (HTS) approaches. For this reason, AI-driven 
methods, which are already extensively employed in 
drug discovery for hits identification [12, 13], can be 
also exploited to provide liability annotations on the 
desired chemical space, driving towards the selection 
of safe candidates. Considering the importance of car-
diotoxicity, neurotoxicity and hepatotoxicity in causing 
drug candidate failures [14–17], several silico mod-
els focusing on these endpoints have been published 
[18–20]. Pharmaceutical companies routinely explore 
screening molecules against tens of off-target [15, 17], 
which highlights the importance of polypharmacology 
during the drug discovery program. In this direction, a 
few SAR-based cheminformatics systems [21–23] have 
been developed to retrieve putative targets of a given 
compound by querying widely used databases such as 
ChEMBL or PubChem [24, 25]. However, these tools 
are not based on supervised learning algorithms but 
on simple searches by chemical similarity. The ToxCast 
and Tox21 [26, 27] programs contributed to generate 
a large chemical library of in-vitro HTS profiled com-
pounds for a broad range of targets, including nuclear 
receptor and stress response signaling pathways. The 
COMPARA and CERAPP collaborative projects [28, 
29] are two examples of first tier screening models built 
on HTS data for androgen and estrogen receptor activ-
ity, respectively. In the “big-data” domain, Lee et  al. 
[30] generated supervised binary classification models 
on 1121 targets and 235  k compounds collected from 
CHEMBL. Mayr et al. [31] followed a similar approach, 
extending the number of compounds to 500 k. Arshadi 
et  al. [32] adopted a complementary disease-related 
modelling task: hundreds of PubChem bioassays were 
mined with natural language processing techniques 
to assemble a series of modelling datasets relevant to 
key diseases (such as acute toxicity, cancer, infections, 
metabolism, etc.). Such models have the advantage of 
being able to directly provide the probability for a given 
compound to provoke unwanted effects on humans. On 
the other hand, building correct associations between 
targets and a given disease is the main source of 
uncertainty in this approach. Moreover, target-related 

models are needed if a target deconvolution analysis is 
envisaged.

A common limitation of currently published models 
is an overlap of the same public data sources (mainly 
ChEMBL and PubChem), which narrows data availabil-
ity and makes them redundant in terms of applicability 
domain. Some considerations can also be done when the 
learning approach is simplified to a binary classification 
task [33–37], which can bring some drawbacks: (i) the 
possibility to rank molecules according to their affinity is 
lost; (ii) the training process becomes more complicated 
when the binning yields unbalanced datasets (iii) the 
determination of a predefined binning cutoff is difficult 
[34], as there could exist an intrinsic bias in the measured 
activity which is specific for each protein target. Finally, 
a comprehensive “compound’s liability profile” is rarely 
provided, as current systems output in a tabular format 
numerical predictions for each target, without any mech-
anistic connection to a given liability hazard.

To the best of our knowledge, no readily available 
screening platform provides a comprehensive mecha-
nistically-driven liability profile. In this study, we aim to 
fill this gap with ProfhEX (AI-based liability profiler for 
small molecules in Exscalate), a suite of machine learn-
ing models hosted by the Exscalate computing center 
(https:// www. exsca late. eu/ en/ platf orm. html) and freely 
accessible to the scientific community. In its first release, 
ProfhEX accounts for 46 Organization for Economic 
Co-operation and Development (OECD)-compliant [38] 
ligand-based models, built on a combined chemical space 
of 289′202 activity data for a total of 210′116 unique 
compounds. It provides a safety index regarding seven 
important liability profiles, such as cardiotoxicity, neu-
rotoxicity, gastrointestinal, endocrine, pulmonary, renal, 
and immune system toxicities. We believe that ProfhEX 
would be a powerful first-tier virtual screening tool, pro-
viding researchers with useful information for drug dis-
covery campaigns.

Methods
Figure 1 depicts the development workflow of ProfhEX: 
(i) data step: selection of relevant targets for liability pro-
filing [11], data collection from public and commercial 
data sources, and data preparation process; (ii) features 
encoding step: compounds encoding with physicochemi-
cal descriptors coupled with extended connectivity and 
feature invariant fingerprints; descriptor space reduc-
tion by feature selection techniques; (iii) model genera-
tion step: hyperparameter optimization, model training 
and champion model selection; (iv) validation step: inter-
nal validated by three complementary approaches and 

https://www.exscalate.eu/en/platform.html
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external validation on the test set partition; (v) deploy-
ment: webservice implementation.

Data cleaning, feature encoding and dataset creation
Data preparation and feature encoding steps have been 
carried out in a Konstanz Information Miner [39] work-
flow. Activity data were collected from two sources: the 
publicly available ChEMBL database [24] and the com-
mercial Excelra’s GOSTAR database (https:// www. 
gosta rdb. com/), which is the world’s largest manually 
curated structure–activity-relationship database that 
collects comprehensive intelligence on bio-active com-
pounds [12]. Activity data has been retrieved from both 
ChEMBL and GOSTAR in a similar way, as both data-
bases have been designed with similar schemas. For the 
selected 46 targets all experimentally measured biological 
activity data were collected by UniProt identifier query. 
UniProt identifiers were retrieved from UniProt [40]. A 
series of sequential cleaning criteria have been applied 
to generate QSAR-ready entries. All measurements from 
sources other than “homo sapiens” or “human” have been 
excluded; censored values (i.e. > or <) have been excluded; 

only activity values encoded as “IC50”, “EC50”, “Ki or “Kd” 
have been considered and normalized to the negative log 
unit molar concentration (hereafter generally denoted 
as pACTIVITY), which is the dependent variable of the 
models. Despite functional (IC50/EC50) and binding (Ki/
Kd) measurements refer to different biological activities, 
they are often combined for the development of first-tier 
screening models in order to maximize training set’s size 
and applicability domain [21, 22, 30, 34, 41, 42].

Compound’s structures originally available as 
SMILES strings were preprocessed and standardized 
in a Pipeline Pilot (v. 2018) protocol [43] by apply-
ing standard chemical compounds cleaning rules [44], 
such as removal of salts, standardization of functional 
groups (e.g. -nitro) and neutralization. Geometric opti-
mization was not performed as employed descriptors 
are not conformer-dependent. De-duplication has been 
based on standardized SMILES matching. The median 
pACTIVITY value has been taken as a representative 
value when multiple pACTIVITY measurements were 
available for a given compound.

Fig. 1 ProfhEX development workflow

https://www.gostardb.com/
https://www.gostardb.com/
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Feature encoding has been carried out using the RDKIT 
framework (https:// www. rdkit. org/) available in KNIME 
(v. 4.5.2) [39]: 11 basic physicochemical properties cou-
pled with extended connectivity (EC) and feature invari-
ant (FC) fingerprints (radius of 6 and 1024 bits value 
each) have been generated, for a total of 2059 features. 
The value of 1024 was selected as an optimal fingerprint 
length to encode all datasets (from a few hundred up to 
several thousand compounds) without causing bit satura-
tion. Finally, each dataset is partitioned into train/test set 
with an 80/20 ratio by stratified sampling (based on the 
dependent variable pACTIVITY). Stratified sampling has 
proven useful in evaluating performances when dealing 
with unbalanced class repartitioning. To verify the influ-
ence of train/test set composition, other methods such as 
random, diversity and scaffold-based sampling have been 
explored [42, 45, 46]. Hyperparameter optimization, 
training, and internal validation have been carried out on 
the train partition, whereas the test partition was used in 
external validation.

All datapoints collected from ChEMBL, the KNIME 
and Pipeline Pilot data preparation and modelling proto-
cols and precalculated models, are freely available at the 
following Zenodo repository: https:// doi. org/ 10. 5281/ 
zenodo. 76655 86.

Chemical space analysis
Principal component analysis (PCA) is a dimensional-
ity reduction method that allows visualizing with 2D 
plots multidimensional datasets [47]. Low variance 
(SD < 0.01) and highly correlated descriptors (R > 0.95) 
were excluded. PCA was not directly applied to indi-
vidual compounds but to their “basic framework” scaf-
folds [48]. Starting from the widely accepted definition of 
scaffold (which is generated by removing all side chains 
and terminal atoms), a basic framework brings an even 
higher level of abstraction, having all the atoms con-
verted to carbons but still maintaining features such as 
ramifications, double and aromatic bonds. Generated 
basic frameworks have been used as a grouping term of 
the initial chemical space, reducing the number of items 
from 210′116 unique compounds down to 39′247 scaf-
folds. In the group-by process, computed features have 
been averaged over the entries matching a given scaffold 
and standardized (i.e. autoscaled).

Employed machine learning algorithms
All tasks related to feature selection, model training and 
scoring have been carried out with SAS Viya 3.5 software 
[49]. Tree based gradient boosting (GB) and random for-
est (RF) algorithms were employed for model genera-
tion. Gradient boosting [50] is a boosting approach that 
resamples the analysis data set several times to generate 

results that form a weighted average of the re-sampled 
data set. Tree-boosting creates a series of decision trees 
that are merged to form a single predictive model. Ran-
dom forests [51] are a combination of tree predictors 
in which each tree depends on the values of a random 
vector sampled independently and with the same distri-
bution for all trees in the forest. The performance of ran-
dom forests is related to the quality of each tree in the 
forest. Because not all the trees “see” all the variables or 
observations, the trees of the forest tend to have a small 
correlation or no correlation. In addition, multi-linear 
regression (MLR) approach was implemented as baseline 
estimation.

Autotune
A hybrid approach was used to automate the tuning 
phase of the model hyperparameters (SAS “AUTOTUNE 
procedure”). Briefly, in the first stage Latin Hypercube 
Sampling [52] is employed to generate a semi-random 
sample ensuring the uniqueness of the value-hyperpa-
rameter pair in all the experiments. The results of the 
first stage are used to initialize the evolutionary-inspired 
genetic algorithm optimization [53], which allows to effi-
ciently explore the hyperparameters space. The tuning 
procedure has been run exclusively on the train partition 
of each dataset by fivefold cross validation split, and the 
root mean squared error was set as optimizing function 
to be minimized. This procedure was employed to tune 
the main parameters of GB and RF such as the number 
of trees, tree depths, number of bins, leaf size, learning 
rate and regularization L1 and L2. For each model, a time 
threshold of 100 min and a stagnation of the optimizing 
function over five sequential iterations were set as early 
stopping criteria.

Model training and validation
The best set of hyperparameters from the autotune pro-
cedure was used for model training. Model robustness 
and predictive power have been evaluated using com-
plementary approaches. For internal validation, fivefold 
cross validation procedure, 90/10% bootstrap sampling 
and y-randomization were used [54, 55]. All internal vali-
dation procedures were iterated 100 times. In contrast, 
the test set partition was employed for external valida-
tion, which never participated neither in model train-
ing nor in hyperparameter optimization. The RF or GB 
model with the highest Pearson coefficient was chosen 
as “champion” model for each considered target. This 
metric was chosen to avoid any potential bias caused by 
the markedly higher frequency of several specific val-
ues of the dependent variable. As seen in the pACTIV-
ITY value distribution plot (Fig. 3), there is a noticeable 
number of experimental values in correspondence of key 

https://www.rdkit.org/
https://doi.org/10.5281/zenodo.7665586
https://doi.org/10.5281/zenodo.7665586


Page 5 of 17Lunghini et al. Journal of Cheminformatics           (2023) 15:60  

pACTIVITY -thresholds, such as 5 and 6 log units (cor-
responding to 10 and 1  µM, respectively). These values 
are frequently used in HTS single-concentration assays 
to discriminate potentially active compounds. This makes 
RMSE a less robust metric, whereas R coefficient seems 
to be a better indicator, being a normalized measurement 
of the covariance between experimental and predicted 
pACTIVITY.

Applicability domain
Each QSAR model has its own applicability domain 
[54], which defines the chemical space boundaries inside 
which the relationship between structure and activity 
can be considered valid and therefore the model’s pre-
diction reliable. A structure similarity approach has been 
employed to define the AD, which is similar to distance-
based methods [56]. Structural similarity to training set’s 
compounds for a given prediction compound is esti-
mated by the Tanimoto coefficient (Tc) computed on the 
2048 fingerprint variables. Each model’s AD is considered 
fulfilled with Tc > 0.7. An overall AD score is assigned 
based on the fraction of models (out of the total 46) that 
had their individual AD fulfilled: higher values indicate a 
more reliable estimation.

Evaluation metrics
Pearson correlation coefficient (R, Eq.  1), determina-
tion coefficient  (R2, Eq. 2) and root mean squared error 
(RMSE, Eq. 3) were selected as the main metrics to moni-
tor model performance. R coefficient has been calculated 
as:

where X indicates the actual values, Y the predicted val-
ues, cov(X ,Y ) is the covariance sX and sY  are the stand-
ard deviation of X and Y, respectively.

R2 determination coefficient has been calculated as:

where  Rss and  Tss are the residual sum of squared and the 
total sum of squares, respectively.

RMSE has been calculated as:

where X are the actual values, Y the predicted values and 
n is the number of observations.

In addition, the enrichment factor (EF) and related 
ROC AUC were also computed. The EF at a given cutoff 

(1)RX ,Y =
cov (X , Y )

sX sY

(2)R
2
= 1 −

Rss

Tss

(3)RMSE =

√

∑n

i= 1

(Xi − Yi)
2

n

χ is calculated from the proportion of true active com-
pounds in the selection set in relation to the proportion 
of true active compounds in the entire dataset (Eq.  3). 
To enable EF calculation, the top 2% of the pACTIV-
ITY -sorted compounds for the given dataset have been 
labelled as true actives, whereas the remaining as inac-
tives. We chose a variable cutoff rather than a fixed pAC-
TIVITY value (for such analysis a pACTIVITY value 
between 5 and 6 is generally used [34]) for two reasons: 
(i) the datasets have different sizes and (ii) to have the 
same probability of randomly picking an active com-
pound (i.e. the denominator of Eq.  3). The value of 2% 
has been chosen as a compromise between the minimum 
number of actives and dataset sizes. Furthermore, hit rate 
values between 1 and 5% are normally found in virtual 
screening benchmarking datasets [57].

The enrichment factor at different levels (1%, 5% and 
10%) has been calculated as:

where χ is the top percentage in the distribution (assum-
ing the values of 1, 5 and 10%), Aχ is the number of active 
molecules in the top k% of the distribution, Mχ is the 
number of molecules in the top k% of the distribution, A 
is the total number of actives and M is the total number 
of molecules.

Results and discussion
Target selections
The list of targets constituting ProfhEX has been taken 
from the study of Bowes et  al. [11], where the Authors 
compiled a list of a “minimal panel of targets” that are 
routinely tested in-vitro for liability profiling by world-
leading pharmaceutical companies. Relevant targets have 
been selected based on the probability of a hit on the tar-
get compared to the magnitude of the impact of this hit. 
For instance, hERG and muscarinic receptors are classi-
fied as high-rate/high-impact targets.

Table  1 reports the list of selected targets and Fig.  2 
depicts their protein family classification: most of them 
are membrane receptors from the GPCR (G protein-cou-
pled receptors) superfamily (25), followed by enzymes 
(8 members), transcription factors (6) ion channels (4) 
and transporters (3), for a total of 46 targets. Most of the 
selected targets are involved in the prediction of cardio-
vascular, central nervous system and gastrointestinal side 
effects. Additionally, several targets are relevant for more 
than one liability such as the dopamine receptors (DRD1 
and DRD2), whose activation could lead to adverse car-
diovascular, nervous, and immune system effects.

Dataset sizes range from 819 (HRH2—GPCR A 
histamine receptor) up to 18896 (CNR1—GPRC A 

(4)EF =

Aχ

Mχ

/

A

M
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Table 1 Target-liability reference

CV cardiovascular, CNS central nervous system, GI gastrointestinal, ED endocrine disruption, PU pulmonary, RE renal, IM immune. In brackets, the number of targets is 
reported

Liability Targets

CV (25) ACHE, ADORA2A, ADRA1A, ADRA2A, ADRB2, AVPR1A, CHRM1, DRD1, DRD2, HRH1, HRH2, HTR1B, 
HTR2A, HTR2B, KCNH2, MAOA, OPRD1, OPRK1, OPRM1, PDE3A, PTGS2, SCN5A, SLC6A2, SLC6A4

CNS (19) ADORA2A, ADRA1A, ADRA2A, CHRM1, CNR1, DRD1, DRD2, EDNRA, HTR1A, HTR1B, HTR2A, MAOA, 
OPRD1, OPRK1, OPRM1, PDE4D, SLC6A2, SLC6A3, SLC6A4

GI (13) ACHE, ADRA1A, ADRB1, CCKAR, CHRM1, CHRM3, HRH2, HTR3A, OPRK1, OPRM1, PPARA, PPARD, PTGS1

ED (7) AR, DRD2, EDNRA, ESR1, HTR1A, HTR3A, NR3C1

PU (5) ACHE, ADRB2, CHRM3, HTR2B, PTGS1

RE (2) AVPR1A, PTGS1

IM (6) CNR2, HRH1, LCK, NR3C1, PDE4D, PTGS2

Fig. 2 Protein family classification of the 46 selected targets
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cannabinoid receptor). The distribution of activity val-
ues and key-physicochemical properties over the entire 
chemical space is depicted in Fig. 3 (see Additional file 1: 
Table  S1 for more details). Most of the basic properties 
exhibit a normal distribution with some degree of skew-
ness, such as TPSA and number of rotatable bonds. The 
right tail of the distributions of MW, TPSA and number 
of rotatable bonds is populated by peptides and natural 
products, which normally have more branching and sub-
stituents than small molecules.

The average pACTIVITY value over the 46 datasets 
ranges from 5.23 (MAOA) to 7.76 (AVPR1A), with an 
average of 6.6 log and SD of 0.6. This indicates a shift 
of individual pACTIVITY distribution mean values. 
The reasons for this deviation could be due to (i) an 
intrinsically higher receptor selectivity (i.e. it tends to 
be activated only by specific chemical families of small 
molecules); (ii) a bias of in in the design of experimen-
tally tested chemical libraries. Concerning this last 
point, the ESR1, OPRM1 and ADRB2 datasets (high 
average pACTIVITY) come from patents and reviews 

describing the use of compounds for cancer, inflam-
mation, osteoporosis and other disorders. On the other 
hand, the hERG, COX-1 and MAOA datasets (low aver-
age pACTIVITY) are mainly associated with liability 
studies aiming to demonstrate that the compounds 
are not active on high hazard/impact receptors.Fig. 4a 
(Additional file  1: Figure S3) illustrates the pairwise 
pACTIVITY distribution distances calculated from 
the Kolmogorov–Smirnov test [58]. Targets such as 
KNCH2 (T4), MAOA (T5) and PTGS1 (T6) have sig-
nificantly different distributions (p < 0.05) compared to 
most of the targets, having the lowest average pACTIV-
ITY values (around 5.5 log units). Figure 4b (Additional 
file  1: Figure S4) illustrates the pairwise average Tani-
moto similarity between compounds in the dataset. 
Most of the time, datasets from the same protein family 
are clearly characterized by analogue chemical moie-
ties, as in the case of ADRB1 (T1) with ADRB2 (Tani-
moto = 0.91) and HTR1A (T2) with HTR1B HTR2A 
and HTR2B (Tanimoto ~ 0.48). On the other hand, 
the chemistry of tested compounds on PDE3A (T5) is 

Fig. 3 Key-properties distribution over the entire chemical space of the 46 considered targets. The boxplot depicts pACTIVITY values, whereas 
the histograms depict (in order from top-left to bottom-right), topological surface area, number of rotatable bonds, logP, number of stereocenters, 
molecular weight and number of aromatic rings
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noticeably different from all other datasets, except for 
PDE4A (Tanimoto = 0.37).

Chemical space analysis
Figure  5 depicts the PCA of the chemical space by 
means of annotated heatmaps. The cumulative variance 
explained by the first two components is 34% (28 and 
6% respectively). Black and white scatterplots in Fig.  5a 
depict the trend of some key properties (see also loadings 
plot in Additional file  1: Figures  S1 and S2). Molecular 
weight is one of the most influential features and dis-
tributes the scaffolds on the x-axis from lower (left) to 
higher (right) MW compounds. This trend has also been 
reported in other publications exploring chemical space 
comparison [59, 60]. Other properties such as topological 
surface area, number of aromatic rings, number of stere-
ocenters and number of H-bond donor/acceptor, follow 
the same trend, which is quite expected as an increase 
in the molecular weight generally corresponds to a fre-
quency increase of all chemotypes. The second princi-
pal component is mainly driven by the fraction of sp3 
hybridized carbons and the number of aliphatic rings, 
both increasing when moving towards lower y-axis val-
ues (see Additional file 1: Figures S1 and S2).

Figure  5a is annotated by the average pACTIVITY 
value. Intuitively, smaller and common chemical moie-
ties, such as indane (Fig. 5a, structure i), benzene, naph-
thalene, cyclohexylbenzene and biphenyl are the most 
frequent scaffolds, as they serve as common build-
ing blocks for more complex structures. Therefore, the 
average activity value over the entire chemical space is 
around 6 log units (Additional file 1: Table S1). Figure 5b, 
c annotate the chemical space by pACTIVITY standard 
deviation and scaffold frequency, respectively.

There is a clear gradient of increasing activity when 
shifting towards bigger and more peculiar scaffolds 
(e.g. Figure  5a structures ii–v): this is expected as such 
structures have been designed to be specifically selec-
tive against a given target (low standard deviation and 
frequency). For instance, the scaffold of the drug halop-
eridol (structure iv) appears in a total of 435 molecules 
with an average activity of 9.13 pACTIVITY (SD of 1.65), 
spanning over 14 different targets (e.g. adrenoreceptors, 
dopamine, histamine, serotonin, opioid and solute car-
rier receptors) [61–63]. The scaffold of the drug fentanyl 
(structure v) appears in 486 molecules, showing an aver-
age pACTIVITY of 7.1 (SD of 1.5) over 23 unique targets 
(e.g. ion channels, acetylcholinesterase, opioid, dopamine 
and cannabinoid receptors) [64–66]. On the other hand, 

Fig. 4 a Pairwise comparison of the 46 datasets pACTIVITY distributions computed by Kolmogorov–Smirnov statistical test. Analogously, b. depicts 
the average Tanimoto similarity coefficient among the compounds of the given datasets pair. The color scale has been normalized between 0 and 
1: higher values (red) indicate that the given datasets pair show significantly different distributions a and higher chemical similarity b, as opposed 
to values closer to 0 (blue). Marked rows and columns with codes T1-6 highlight some targets referenced in the text, in order: ADRB1, ESR1, HTR1A, 
KNCH2, MAOA, PTGS1
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Fig. 5 First two components of the principal component analysis of the 46 targets scaffold-based chemical space. Explained variance from the 
first two PC is 34%. Three heatmaps depict the chemical space annotated by the following properties: average pACTIVITY value a, pACTIVITY value 
standard deviation b, and scaffold occurrence over considered targets (c). Black and white scatterplots around the main plot a show the trend of 
key properties which participated in PCA (from lower to higher values for white and black, respectively). Some key scaffolds mentioned in the text 
have been highlighted (Latin numbers i-v)
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some scaffolds are clearly inactive towards multiple tar-
gets, such as dibenzo-oxazapine derivates (structure 
iii) with an average pACTIVITY of 2.5 (SD of 1) over 5 
unique targets (serotonin, histamine, dopamine and mus-
carinic receptors) [67].

Models’ internal and external validation performance
Table  2 and Fig.  6 report models performance aver-
aged over the 46 modelled targets (see Additional file 1: 
Table  S2 for individual target performance). In both 
internal and external validation, the most perform-
ing algorithm resulted to be GB (R = 0.79–0.84 and 
RMSE = 0.77–0.69), followed by RF (R = 0.79–0.81 and 
RMSE = 0.85–0.79) with slightly lower performance. GB 
has already been reported to outperform RF in model-
ling biological data [13, 68]. Due to the higher predictive 
power, GB-based models were designed as champions 
for all 46 targets. In fivefold cross validation, GB and RF 
scored R of 0.83 and 0.82; whereas in bootstrap 0.79 and 
0.79, respectively. Similar performances in external vali-
dation (R of 0.84 and 0.81 for GB and RF, respectively) 
indicate that the models have good predictive power 
on unseen data and support the absence of overfitting. 
Train/test partitioning did not negatively affect model 
performances (Additional file 1: Figure S6, graphs a) and 
b)), as there is no significant difference (p > 0.05) in the 
model’s  R2 and RMSE distributions. Moreover, R and 
 R2 values for both GB and RF models are close to zero 
in y-scrambling simulations: such a drop in performance 
confirms that models are unlikely to be biased by chance 
correlations. Finally, significantly higher performances 
than the baseline MLR classifier indicate that GB and 
RF algorithms proved successful in learning meaning-
ful structure–activity relationships for the considered 

datasets. Tree-based algorithms are very proficient in 
modelling toxicology data, as they are less prone to over-
fitting, less susceptible to outliers and not as heavily 
affected by noise as other algorithms [30, 69]. Toxicologi-
cal in-vitro and in-vivo data is indeed highly affected by 
variability due to the high number of factors that con-
tribute to error, such as experimental measurements, 
and inter-laboratories variability, lower accuracy of HTS 
methods and heterogeneous datasets composition (e.g. 
measurements coming from binding and functional 
assays) [70, 71]. The overall RMSE of trained models is 
0.75 (SD = 0.09), which is comparable to the variability of 
experimental affinity measurements of 0.66 (SD = 0.22). 
Achieving a prediction error comparable to the experi-
mental data variability support the validity of learned 
structure–activity relationships, as machine learning 
models cannot be more accurate than the error of train-
ing instances. When dealing with biological data, it has 
been reported that the variance in experimental meas-
urements could contribute more to prediction error than 
the error from the model itself [69, 72, 73].

PTGS1 and PTGS2 were the lowest performing models 
(R = 0.6–0.66 and RMSE = 0.8–0.87), despite their rela-
tively large size of roughly 3000 and 6300 compounds, 
respectively. One explanation could be related to their 
different properties compared to the other datasets 
(Fig. 4) which made the learning process more difficult.

We also verified the impact on model performances 
by merging different activity types (i.e. IC50 and Ki). 
First, the correlation between inhibition concentration 
and binding affinity has been quantified when multiple 
measurements were available for the same compound 
of a given dataset. On average, 225 compounds for each 
dataset had the double IC50/Ki annotation. The correla-
tion is significant, with R = 0.73 (SD = 0.20, p < 0.05). This 
suggests that, as an approximation, IC50 and Ki meas-
urements can be merged. To verify the effect on perfor-
mances, original models (i.e. combined IC50 and Ki data) 
were retrained using KI and IC50 measurements only 
(Additional file  1: Table  S3). As expected, the average 
training set size of these new models is much smaller, and 
not all targets could be efficiently modeled (e.g. PTGS1, 
LCK, PTGS2, PPARG, PPARD, HRH2, DRD1). We can 
see that the performance distributions (Additional file 1: 
Figure S5) are not significantly different, having an aver-
age  R2 of 0.69 (SD = 0.10), 0.66 (SD = 0.10) and 0.71 
(SD = 0.11) for combined, Ki-only and IC50-only models, 
respectively. This also applies to the models’ RMSE, being 
on average 0.70, 0.77, 0.66 for combined, Ki-only and 
IC50-only models, respectively. This means only a ± 10% 
range. This error is also comparable to the experimental 
variability of activity measurements: which is (on average 
across the datasets) 0.50 for Ki and 0.56 for IC50.

Table 2 Models’ performance averaged over the 46 targets for 
the given algorithm and validation approach

The standard deviation is reported in brackets

Validation Algorithm R R2 RMSE

External MLR 0.62 (0.1) 0.35 (0.2) 1.08 (0.17)

GB 0.84 (0.05) 0.68 (0.1) 0.69 (0.08)

RF 0.81 (0.07) 0.64 (0.11) 0.79 (0.1)

Bootstrap MLR 0.66 (0.1) 0.43 (0.13) 1.02 (0.14)

GB 0.79 (0.07) 0.63 (0.11) 0.77 (0.11)

RF 0.79 (0.07) 0.6 (0.11) 0.85 (0.1)

fivefold cross valida-
tion

MLR 0.65 (0.11) 0.42 (0.15) 1.02 (0.14)

GB 0.83 (0.06) 0.67 (0.1) 0.71 (0.09)

RF 0.82 (0.06) 0.65 (0.1) 0.79 (0.1)

Y-scrambling MLR 0.0 (0.1) 0.46 (0.14) 0.99 (0.13)

GB 0.0 (0.02) 0.22 (0.09) 1.49 (0.28)

RF 0.0 (0.02) 0.05 (0.01) 1.37 (0.26)
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The Office of Economic Cooperation and Development 
(OECD) principles [26] for building robust quantitative 
structure–activity relationship models were followed. 
The five OECD principles are: (i) a defined endpoint; (ii) 
an unambiguous algorithm; (iii) a defined applicability 
domain; (iv) appropriate measures for goodness-of-fit, 
robustness, and predictivity; (v) and a mechanistic inter-
pretation, if possible. In this study, the endpoint for each 
model is well defined and goodness-of-fit, robustness 

and predictivity were evaluated using internal (fivefold 
cross validation, bootstrap, y-scrambling) and external 
validation. The model’s applicability domain is evaluated 
by structural similarity comparison to the training set’s 
compounds.

Models’ enrichment factor performance
Figure  7a depicts the enrichment factor, whereas 
Fig.  7b the hit-detection performance in terms of AUC 

Fig. 6 Box plot representation for determination coefficient  (R2), Pearson correlation coefficient (R) and root mean squared error (RMSE) over the 46 
modelled targets, grouped by algorithm and validation method. Where: MLR multi-linear regression, GB gradient boosting and RF random forest, CV 
cross validation
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(Additional file  1: Table  S2) grouped by liability group. 
All liability groups showed good hit-detection power 
with comparable performance, with the only exception 
of renal toxicity (RE), which showed lower discriminative 
power. However, this group is also composed of only two 
targets (PTGS1 and AVPR1A) which makes the evalua-
tion less statistically robust. Overall, enrichment factor 
and AUC analysis showed that generated models can suc-
cessfully retrieve active compounds at lower dataset fac-
tion levels, supporting their ability to discriminate true 
actives in large-volume virtual screening campaigns.

Perspectives
Ligand-based approaches are generally easier to imple-
ment as they do not require knowledge of the crystal 
structure of the target protein, and thus can be trained 
by simpler 2D descriptors with good performances. 
Still, they possess some limitations: (i) the absence of 
target-related information inhibits the model to learn 
any rules related to protein–ligand interactions; (ii) the 

applicability domain is restricted to compounds that are 
similar to the chemical space delimited by their training 
set; and (iii) the distribution between active and inactive 
compounds is generally unbalanced in favor of the latter, 
leading to low recall rates and failure to reliably detect 
potential activity cliffs. To overcome these limitations, 
ligand-based or structure-based pharmacophore mod-
els can be developed to find common chemical features 
relevant to biological activity [74]. Recent applications of 
3D pharmacophores reported their screening power in 
virtual screening studies and their synergistic combina-
tion with docking approaches [75]. Moreover, when the 
crystal structure is available, the inclusion of descriptors 
related to the crystal structure and docking simulations 
can be employed. All these approaches can be ensembled 
in consensus. Finally, to provide a comprehensive liability 
profile, it would be important to evaluate the metabolites 
of the query compounds, as they may provoke harmful 
responses once metabolized in the human body.

ProfhEX webservice implementation
Compounds should be submitted to ProfhEX (Fig. 8) via 
SMILES format. The prediction process leading to the 
generation of its liability profile comprises the following 
steps: (i) a vector of 46 predicted activities on the mod-
elled targets is generated; (ii) predictions are binned 
into the two classes “concern” (C) and “not concern” 
(nC) based on a predefined pACTIVITY cutoff value of 
6.5 (300 nM); (iii) classes are grouped into the 7 liability 
groups according to the liability mapping as described 
in Table 1; (iv) for each liability group a liability score is 
computed as the number of C labels out of the total num-
ber targets relevant for the given liability (Eq. 4).

where, Hsi is the liability score for the given liability 
group i, ranging from 0 (no target flagged as C) to 1 (all 
targets flagged as C); Ci and nCi are the number of tar-
gets for the given liability group i flagged as C and nC, 
respectively.

A predefined threshold of 6.5 log units has been 
selected to achieve a balance between active and inactive 
compounds. A more generalizable approach would be 
to select a variable threshold depending on the distribu-
tion of experimental pACTIVITY measurements for the 
given target, for instance with the two-sigma rules. Such 
an approach could help in considering response biases 
present in the training datasets. Furthermore, a weighted 
approach could also be implemented when calculat-
ing the liability score, by putting more importance on 
key targets: for instance, voltage-gated channels such as 

(5)Lsi =
Ci

Ci + nCi

Fig. 7 Enrichment factor and hit-detection performance for each 
liability group, a depicts a box plot representation of enrichment 
factor computed at 1, 5 and 10% cutoffs. b depicts normalized hit 
rate performance, where the x-axis represents the faction of the 
dataset and the y-axis the fraction of retrieved hits. Dataset size and 
the number of hits have been normalized across all the datasets to 
make them comparable
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KCNH2 (hERG) and KCNA5 (Kv1.5) are more relevant 
for cardiotoxicity than for the other liability groups.

ProfhEX benchmarking
ProfhEX models were benchmarked against four works 
that performed large-scale modelling of affinity data: 
Cortés-Ciriano et  al. [76], Yao et  al. [77], Mayr et  al. 
[31] and Bosc et  al. [35]. We should underline that this 
is not a completely unbiased analysis due to the absence 
of a common benchmarking dataset. To mitigate this, 
we considered statistics originating from cross valida-
tion as they were always reported. Results are reported in 

Table 3 (extended statistics in Additional file 1: Table S4), 
and more details are provided in Additional file  1: Fig-
ures S7, S8 and S9.

An evaluation of regression performances was only 
possible for 14 targets from Cortés-Ciriano et  al. [76]. 
ProfhEX models are as performant as those reported by 
the authors, without a significant difference (p > 0.05) in 
the distribution of RMSE values  (RMSEProfhEX = 0.71, 
 RMSE[76] = 0.72; Additional file  1: Figure S7). However, 
ProfhEX models perform noticeably better (18% lower 
error) for some targets, such as AR, LCK and SLC6A2. 
In Cortés-Ciriano et al. work all data from both human 

Fig. 8 ProfhEX webservice workflow

Table 3 ProfhEX performances compared against already existing tools

No. targets indicate the number of targets in common with ProfhEX. Type “R” or “C” indicates the type of learning task, either regression or classification, respectively. 
Metrics Sn, Sp and BA stand for Sensitivity, Specificity and Balanced Accuracy, respectively. The standard deviation is reported in brackets
* Statistics come from a blind evaluation of the dataset provided by the authors

Platform No. targets Type Metric

RMSE AUC Sn* Sp* BA*

ProfhEX 46 R 0.71 (0.09) 0.91 (0.04) 0.87 (0.23) 0.97 (0.04) 0.92 (0.11)

Cortés-Ciriano et al. [76] 14 R 0.72 (0.07) – – – –

Yao et al. [77] 44 C – 0.91 (0.04) – – –

Mayr et al. [31] 29 C – 0.84 (0.15) – – –

Bosc et al. [35]* 27 C – – 0.75 (0.1) 0.93 (0.04) 0.85 (0.04)
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and non-human sources were retained, which could have 
increased data variability and model error. Performances 
in terms of ROC AUC (Additional file 1: Figure S8) were 
retrieved on all 46 targets from the works of Yao et al. [77] 
and Mayr et al. [31]. ProfhEX models (AUC ProfhEX = 0.91) 
scored practically the same AUC as Yao et al. [77] (AUC 
[77] = 0.91, p > 0.05) but a much better value than Mayr 
et  al. [31] (AUC [31] = 0.84, p < 0.05). Finally, we also per-
formed a blind prediction on a dataset of affinity data 
taken from Bosc et al. [35]. After excluding compounds 
overlapping with ProfhEX training sets, the final num-
ber was 17580 (over 27 targets). The authors followed a 
less strict data-cleaning procedure, which explains a large 
number of new molecules. ProfhEX models scored very 
good performances in terms of balanced accuracy (BA), 
slightly better than those reported by Bosc et  al. [35] 
 (BAProfhEX = 0.92,  BA[35] = 0.85, p < 0.05).

As a case study, we carried out a blind evaluation on 
pre-registered, registered and withdrawn drugs, extracted 
from Cortellis Drug Discovery Intelligence (CDDI) data-
base (https:// access. corte llis. com/ login? app= corte llis). 
After excluding compounds in ProfhEX datasets, 536 
drugs were retained (Additional file 1: Table S5). Only a 
qualitative analysis through EF and AUC was possible, 
as drugs were annotated only by their primary target: 
41/46 targets had at least one experimental annotation. 
ProfhEX models scored good performance in hit detec-
tion, with EFavg = 6.9 and AUCavg = 0.71 (Additional 
file  1: Figure S10, graphs (a) and (b)). Some EF spikes 
are caused by the limited number of annotated drugs for 
some targets. There is a drop in performance when using 
the liability groups scoring method we proposed (Eq. 4), 
with EFavg = 2.0 and AUCavg = 0.57 (Additional file  1: 
Figure S10, graphs (c) and (d)), suggesting that it may 
require further tuning depending on the use case.

Conclusion
In this work we presented ProfhEX, an AI-driven web-
based platform for small molecules liability profiling. 
In its first version, ProfhEX is composed of 46 OECD-
compliant ligand-based machine learning models trained 
on binding affinity data, built on a combined dataset of 
289′202 activity data for a total of 210′116 unique com-
pounds. ProfhEX provides estimation for 7 important 
liability profiles, such as cardiovascular, central nervous 
system, gastrointestinal, endocrine disruption, renal, pul-
monary and immune response toxicities.

Collected data from public and commercial databases 
was standardized and encoded by physicochemical 
descriptors and extended connectivity fingerprints. Gra-
dient boosting and random forest algorithms were imple-
mented. Models were validated according to the OECD 
principles, including robust internal (fivefold cross 

validation, bootstrap, y-scrambling) and external vali-
dation. The most performing model for each target was 
designed as a champion and implemented in ProfhEX. 
Champion models achieved an average Pearson correla-
tion coefficient of 0.84 (SD of 0.05), an  R2 determination 
coefficient of 0.68 (SD of 0.1) and a root mean squared 
error of 0.69 (SD of 0.08). All 7 liability profiles showed 
good hit-detection power with an average enrichment 
factor at 5% of 13.1 (SD of 4.5) and AUC of 0.92 (SD of 
0.05). Performance comparison against already exist-
ing tools demonstrated the predictive power of ProfhEX 
models, supporting the platform’s utility for large-scale 
liability profiling. ProfhEX will be further expanded with 
the inclusion of new targets and by complementary mod-
elling approaches, such as docking- and pharmacophore-
based models.

All collected data from public sources together with the 
KNIME and Pipeline Pilot protocols are available at the 
following Zenodo repository: https:// doi. org/ 10. 5281/ 
zenodo. 76655 86. ProfhEX is freely accessible at the fol-
lowing address: https:// profh ex. exsca late. eu/.
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