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Abstract 

Particle-Based (PB) simulations, including Molecular Dynamics (MD), provide access to system observables that 
are not easily available experimentally. However, in most cases, PB data needs to be processed after a simulation 
to extract these observables. One of the main challenges in post-processing PB simulations is managing the large 
amounts of data typically generated without incurring memory or computational capacity limitations. In this work, 
we introduce the post-processing tool: MDSuite. This software, developed in Python, combines state-of-the-art 
computing technologies such as TensorFlow, with modern data management tools such as HDF5 and SQL for a fast, 
scalable, and accurate PB data processing engine. This package, built around the principles of FAIR data, provides a 
memory safe, parallelized, and GPU accelerated environment for the analysis of particle simulations. The software 
currently offers 17 calculators for the computation of properties including diffusion coefficients, thermal conductiv‑
ity, viscosity, radial distribution functions, coordination numbers, and more. Further, the object-oriented framework 
allows for the rapid implementation of new calculators or file-readers for different simulation software. The Python 
front-end provides a familiar interface for many users in the scientific community and a mild learning curve for the 
inexperienced. Future developments will include the introduction of more analysis associated with ab-initio methods, 
colloidal/macroscopic particle methods, and extension to experimental data.

Keywords  Molecular dynamics, Computational physics, Material properties, High performance computing, 
TensorFlow, FAIR data

Introduction
Particle-based (PB) simulations, of which we declare 
Molecular dynamics (MD) to be a subset, are a cor-
nerstone of modern computational physics, chemistry, 
biology, and engineering. The benefit of PB simulations 

comes in their access to system observables and prop-
erties that are otherwise unavailable experimentally. 
Whilst the method itself involves the sampling of 
configuration space under constraints imposed by 
defined interactions, it is the analysis of these config-
urations that leads to insights in medicine  [1–5], bat-
tery technology [6–15], astrophysics  [16], materials 
engineering  [17–21], and much more. When running 
simulations, one is faced with the choice of either per-
forming On-The-Fly (OTF) analysis, or post-processing 
their simulation data to extract information. In the case 
of OTF analysis, it is often difficult to know before-
hand parameters such as measurement range, number 
of samples, or bin resolution, that will be required in 
the calculations. For this reason, post-processing of 
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simulation results has become a preferred solution, 
particularly in cases where simulations are computa-
tionally expensive. Another important consideration is 
the number of simulations that will be studied. In the 
case of temperature or al-chemical comparison, often 
several large simulations will be run under varying con-
ditions. In these cases, it is convenient to have access 
to post-processing tools that can track and analyse each 
simulation as well as compare the results of the analy-
sis. Several post-processing tools have been developed 
in the past and are used by scientists around the world 
including MDAnalysis  [22], PyLAT  [23], pyLOOS, 
mdtraj  [24], pytraj  [25], freud  [26], and VMD  [27] to 
name some of the most popular. These programs, each 
having their own strengths, follow a similar workflow: 

1	 Load a trajectory object
2	 Perform analysis
3	 Close trajectory object

Whilst this method meets the demands of many users in the 
PB community, it is positioned more as a tool for the analysis 
of single simulations and less as an integral part of the scien-
tific process. In the direction of managing many simulations, 
there also exists several data management tools including 
datreant [28] and signac [29]. These packages allow scientists 
to build large data workflows and track their states as they 
use other libraries to perform analysis. Put together, the post-
processing libraries as well as data management packages 
can assist scientists in handling their simulations so long as 
interoperability is well handled by the users. A downside of 
course is that the post processing and the experiment han-
dling is separated which can result in a more complex inter-
face and reduced usability.

In this paper we introduce MDSuite, a post-processing 
program for PB simulations that allows for the collection 
and analysis of simulation data from many simulations 
under a common framework. MDSuite differs from the 
previously mentioned programs in that it takes raw simu-
lation data and generates a new database more suited for 
rapid post-processing. This database structure, hereafter 
referred to as MDS-DB, allows data to be loaded only 
when it is pertinent to the analysis being performed. 
Furthermore, the structure is such that properties of the 
particles (i.e. positions, stress, and forces) are separated 
by species at the time of database construction, thereby 
eliminating expensive computational overhead dur-
ing analysis. Furthermore, MDSuite uses an enveloping 
object that we have named the Project class, in which 
the results of any number of simulations may be con-
tained, analysed, and compared to one another.

The proceeding work is structured as follows. First we 
discuss the guiding principles of the MDSuite Python 

library, introducing the Project and Experiment 
class objects as well as how they work together to cre-
ate an optimised and user-friendly analysis environment. 
This is followed by a discussion into the MDS-DB struc-
ture used by MDSuite to store simulation data. We then 
introduce the different properties that can currently be 
computed using the MDSuite code including informa-
tion regarding the implementation of the analysis. After 
the introduction of the calculators, a brief performance 
review is presented in order to outline how the MDSuite 
code has been written to take full advantage of the latest 
high performance computing systems. Finally, we intro-
duce the outlook of the MDSuite package including the 
extension beyond simulations as well as general perfor-
mance optimization.

Implementation
Software architecture
The governing principle behind MDSuite is the simplifi-
cation of PB investigations. MDSuite approaches this by 
providing an infrastructure in which simulation data and 
analysis results from any number of simulations may be 
stored, (re-)analyzed, and compared.

The two integral components of this infrastructure are 
the Project class and the Experiment class (Fig. 1).

The Experiment class contains all the information 
pertaining to a single simulation including particle trajec-
tories, net system properties such as fluxes, and thermo-
dynamic information such as temperature and pressure. 
This data is stored in a compressed manner within the 
MDS-DB. Simulation data can be added to the Experi-
ment at one time or iteratively over the course of a sim-
ulation as might be necessary in the case where several 
runs are required. Further to the storage of trajectory 
data, the Experiment class connects to the MDSuite 
calculators ("Calculators" section) which are used to per-
form analysis. The results of the analyses, including any 
series data generated in the process, are also stored by 
the Experiment class in an SQL database (SQL-DB). 
This means that once an analysis has been performed, 

Fig. 1  Structure of a MDSuite project. Each experiment stores 
data in its own database and has access to the Calculators and 
Transformations
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the raw data such as an autocorrelation function, or a 
radial distribution function, as well as the outcome of the 
analysis such as a diffusion coefficient or coordination 
number, may be accessed at any time without needing to 
repeat the calculations. Furthermore, the use of an SQL 
database structure allows for the storage of the param-
eters used in the calculation such as data range, correla-
tion time, or bin spacing. This means that analyzed data 
can be queried from a database and compared along with 
the parameters of the calculation. One may also use this 
feature for further processing such the common practice 
of fitting the autocorrelation function with double expo-
nentials for the determination of the thermal conductiv-
ity with all necessary information about the computation 
stored. An additional important feature of the trajectory 
data stored by the Experiment class is the assigned 
version. If a computation is performed with a fixed set of 
parameters before additional trajectory data is added, it 
is important that when this computation is called again 
after the addition of data, that it is recomputed and not 
simply loaded from the database. This is handled by a 
version system that assigns a new number to each state 
of the MDS-DB as trajectory data is added. If new data 
is parsed into the database, the version will be updated 
and the computations performed on the old set of data 
will become stale such that computations with identical 
parameters may be re-performed.

The Project class acts as a container for multiple 
Experiment objects and can be used to collect prop-
erty values for each of the classes and compare them 
with respect to a desired parameter. Experiments can be 
added and removed from the Project class at any time 
during an investigation and there is no need to know 
beforehand how many will be performed. Fundamental 
simulation properties such as thermostat temperature, 
time-step, and species information are stored in the SQL-
DB for each experiment. Due to the internal use of SI 
units in MDSuite, simulations performed using different 
systems of units or simulation engines can still be directly 
compared with one another. As an example, consider the 
comparisons of two inter-atomic potentials, each con-
structed with a specific unit system in mind. Utilizing the 
MDSuite framework eliminates the necessity of unit con-
version whilst also providing a simple means for compar-
ing analysis results.

SQL‑DB
As was mentioned earlier, MDSuite utilizes an SQL data-
base for the management of simulation parameter data 
and results of computations. This database is built using 
the SQLAlchemy package [30] which allows for multiple 
back-end SQL engines. Data stored within the database 
can either be series type data, e.g. an autocorrelation 

function, or the results of some analysis such as diffu-
sion coefficients along with the uncertainty associated 
with this measurement. This data will also have associ-
ated with it meta-data including computation range, cor-
relation time, and number of configurations. This type 
of record keeping is essential in the communication of 
results in case of publication as is in line with the FAIR 
data principles  [31]. FAIR data guidelines are a frame-
work for improving the way scientists approach the Find-
ability, Accessibility, Interoperability, and Reuse of digital 
assets  [31]. In MDSuite, the storage of all computation 
results along with their parameters provides an environ-
ment for such a framework as these results are freely 
accessible from outside MDSuite, they can be hosted 
online, they will provide data in standard data types, and 
provide a complete parameter set describing how the 
data was produced. Utilization of the SQL-DB not only 
allows for simple navigation of data through the Pro-
ject class, but also for the use of generic SQL database 
navigation tools for studying data graphically.

MDS‑DB
The database generation process is one of the unique fea-
tures of MDSuite. Typically, MD codes dump the results 
of simulations into data files of varying format which 
may contain trajectory information of the particles or net 
system information such as fluxes and temperatures. In 
order to avoid complications with calculators, MDSuite 
reads simulation data and constructs a database based 
upon the HDF5 hierarchical data format [32]. Currently, 
MDSuite uses a slight variation of the established H5MD 
database structure  [33], however, this will change in the 
near future and be brought completely inline with this 
standard. The database construction process is depicted 
in Fig.  2. When data is added to an Experiment, the 
File I/O module will choose the corresponding reader 
with which to process the data. Simultaneously, the Mem-
ory Management module will analyze the original 
trajectory file and decide the appropriate batching size 

Fig. 2  Database generation logic. Solid lines indicate actions and 
dashed lines data flow
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to process the data. This allows one to efficiently parse 
large datasets on a machine with limited memory. As the 
batches of data are read, they are stored in the simulation 
database. Additionally, the PubChemPy  [34] library is 
called to expand species information to real element spe-
cific data such as mass and charge which is then stored in 
the SQL-DB.

The MDS-DB, rather than trivially storing configura-
tions of atoms, splits the information into groups and 
sub-groups by property  (Fig. 3). As an example, in the 
generation of an MDS-DB for a system of NaCl, posi-
tions, forces, and velocities for all sodium and chlo-
ride atoms in the simulation will be split first into the 
groups Na and Cl and then into sub-groups of posi-
tions, velocities, and forces. This extends naturally to 
the use of coarse-grained descriptions where molecules 
are used as the groups and center of mass positions and 
velocities are stored. In the case of system wide proper-
ties such as global flux (eg. thermal flux), data is simply 
stored in a group with the name of the flux. Currents, 
fluxes, or other global properties can also be computed 
inside MDSuite using the transformations and stored 
in the MDS-DB. With this structure, any simulation 
data may be stored in a simple, compressed format. 
The motivation behind such a partitioning scheme is 
rooted in programming simplicity, memory safety, and 
improved computational performance. Programming 
simplicity becomes evident when looking at calcula-
tor definitions. In MDSuite, each calculator has a set of 
properties that it requires to perform the calculation. 
With a partitioned database scheme this becomes uni-
versal across file formats and makes writing new calcu-
lators more efficient. Furthermore, with species-wise 

separation it becomes simple to perform computations 
on only a selection of species in a simulation. Beyond 
simplicity in writing calculators, memory safety also 
becomes easier to handle with data being split by prop-
erty. This is because when MDSuite is called to com-
pute a diffusion coefficient for a single species, it can 
load only the specific positions of the single species 
rather than having to search through all trajectory data 
and filter it for the desired components. In this way, 
memory usage calculations can be performed on a well-
defined amount of data. Finally, while using a partition-
ing scheme may increase the initial processing time 
when creating an experiment, it means that data is read 
from a file precisely once and during analysis there is 
no need for searching through trajectory data.

As different MD simulation engines have different out-
put formats, MDSuite implements readers to pre-process 
simulation data and prepare it for storage. MDSuite utilizes 
the Chemfiles library  [35] as a foundation for file-reading 
thereby giving access to over 21 different formats including 
those for large simulations engines such as GROMACS [36], 
AMBER [37], CHARMM [38] and LAMMPS [39, 40]. Fur-
thermore, the MDSuite file readers are written such that it 
is simple to add new readers for custom simulation outputs. 
This has been used, for example, to store the output of an 
ESPResSo [41] simulation of a bacteria study, initially stored 
as a pandas [42, 43] DataFrame

User interface
The aim of the MDSuite user interface is to allow for 
easy and understandable communication with the 
Calculators and Transformations. To this 
end, MDSuite is distributed as a Python package with 
a streamlined API. That is to say, users typically require 
only a single package import and only access meth-
ods from a single class. To aid in usability, many user-
focused methods have been added to perform simple 
tasks such as accessing stored data, changing names 
of MDS database groups, and updating physical prop-
erties of species. These features keep the focus on sci-
entific work rather than computational baggage. This 
usability is particularly noticeable when using the pack-
age through Jupyter notebooks  [44, 45], as this allows 
direct interaction with results as they are calculated.

Code sample 1 demonstrates the MDSuite API for the 
analysis of two molten salt systems of NaCl and LiCl.

Fig. 3  Typical structure of the simulation database. For each atom 
type, sub-groups for each variable are created. Data is then stored in 
tables. Currents or fluxes are also stored as global quantities
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import mdsuite as mds

project = mds.Project(name="Molten_Salts")

# Add simulation data from two simulations

NaCl = project.add_experiment(

name="NaCl",

units="metal",

temperature =1400.0 ,

simulation_data="NaCl.lammpstraj"

)

LiCl = project.add_experiment(

name="LiCl",

units="real",

temperature =1600.0 ,

simulation_data="LiCl.xyz"

)

# Compute diffusion coefficients for both

# diffusion_data = project.run.EinsteinDifusionCoefficients(

data_range =200, correlation_time = 50

)

# Compute the RDF for NaCl

rdf_data = NaCl.run.RadialDistributionFunction (zeta =6)

cn_data = NaCl.run.CoordinationNumbers(rdf_data)

# Compute ionic conductivity for LiCl

ic_data = LiCl.run.GreenKuboIonicConductivity ()

Code sample 1 Example of MDSuite API for the anal-
ysis of two molten salts. In this case,self-diffusion coef-
ficients are computed for both salts whereas the radial 
distribution functions and ionic conductivitiy are com-
puted only for the NaCl and LiCl respectively.

Calculators
A driving factor in the design logic of MDSuite was the 
desire to be able to perform a multitude of analyses on 
a simulation trajectory under a single framework. The 
construction of the MDS-DB allows for data to be rap-
idly loaded based on the particle type and property under 
consideration. With this approach, a number of meth-
ods for analysis become possible in a fast and memory 
safe manner. This section discusses the different analysis 

options available to the MDSuite user with some details 
about their implementation.

All analyses in MDSuite are built from the Calcula-
tor parent class. Every other calculator inherits from 
this class and implements the actual computation. The 
benefit of this is that the Experiment class is agnos-
tic towards the inner workings of calculator objects and 
interfaces with them in the same manner, regardless 
of the computation being performed. Furthermore, by 
structuring the calculator implementations as children 
of a parent class, additional calculators may be easily 
added by users.

The execution logic of a calculator is depicted in Fig. 4. 
When a Project requests that a particular calculation 
be performed, the corresponding Calculator will 
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Fig. 4  Execution logic of a Calculator. Continuous lines depict 
actions, dashed lines depict data flow

be called. This Calculator will request the required 
data from the MDS-DB  ("MDS-DB" section). If this 
data is not available, the Calculator will make use 
of the appropriate Transformation to compute it. 
The computed data will be stored in the MDS-DB to 
avoid re-computation in the event that the analysis is 
repeated. Once all the dependencies are available, the 
calculation of the property will proceed. Finally, the 
results will be stored in the SQL-DB.

All calculators in MDSuite may be called simply from 
the Project class with:

The following section outlines the various structural 
analyses available to users as well as what each of them 
describes.

Radial distribution function
Radial distribution functions (RDFs) describe the particle 
density of species α at a distance r from a particle of spe-
cies β [47]. This may be calculated directly from the posi-
tions of particles within a simulation by:

where gαβ is the RDF of species α with respect to species 
β , Nα is the number of particles of species α , V is the box 
volume, and ri is the position of particle i.

Angular distribution function
Angular distribution functions (ADFs), similar to the 
RDF, describe the distribution of the angle between three 
atoms. ADFs can be used to better understand bonding 
between specific species as well as to identify breakdown 
in structure under changing environments. An ADF is 

(1)gαβ(r) =
NαNβ

V

Nα
∑

i=1

Nβ
∑

j=1

�δ(r − |rαi − r
β
j |)�,

project = mdsuite.Project (...)

project.run.ComputationName (...)

In order to optimize the performance of the calcula-
tors, as well as to take advantage of modern hardware, 
MDSuite utilizes the TensorFlow Python library [46] to 
allow not only for optimized tensor calculations, but 
also for immediate deployment on GPU and parallel 
processing with a small increase in import time due to 
device registration. TensorFlow is also used in the con-
struction of optimized data pipelines for the computa-
tions where TensorFlow Datasets, used for elements 
of batching, are employed. Memory safety is handled 
both with configuration-wise batching and atom-wise 
mini-batching if necessary (see Additional file  1). The 
performance improvements of the TensorFlow library 
are discussed in more detail in  "Performance" section 
where strong-scaling tests have been performed.

The remainder of this section will discuss the available 
calculators.

Structural properties
The computation of structural properties in MDSuite 
largely revolves around the radial distribution function. 

computed with reference to three atoms in the system 
and is calculated by:

where the angle being measured is between the triangle 
formed with the atom of species α at the centre and ζ is 
a sensitivity factor used to highlight peaks and relevant 
distances. This sensitivity index can be useful in filtering 
out angles occurring at large distances from the central 
particle. This is because, during the ADF calculation, no 
information about distance between the particles is used 
in the calculation of the angles.

Coordination numbers
Coordination numbers describe the number of particles 
surrounding a reference particle at a chosen distance and 
are related to the ordering in the system [48]. In the case 
of a crystalline structure, this reduces simply to the num-
ber of particles bonded to the reference particle [49]. In 

(2)

gαβγ (θ) =
1

NαNβNγ

∑

ijk∈αβγ

1

|rij|ζ |rik |ζ
�δ(θ − θijk)�,
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a liquid system this becomes a less rigorous definition 
and the coordination numbers are often calculated at dif-
ferent points along the RDF referred to as coordination 
shells  [48]. MDSuite uses the definition of coordination 
numbers taken from Waseda [48]:

where i ≥ 1 is the coordination number to be calculated 
associated with a chosen coordination shell. The inte-
gration range is taken at minimums between successive 
peaks in the RDF. MDSuite uses the Golden-Section 
search algorithm  [50] along with a Savitzky-Golay  [51] 
filter to identify the minimums in the RDFs and perform 
the analysis correctly (see Additional file 1). The param-
eters of the filter are tunable at runtime.

Potential of mean‑force
Potential of mean-force (PMF) is a measurement of how 
the free energy of a system changes as a function of inter-
atomic distance and may be calculated directly from the 
RDF as [52, 53]:

The PMF ( wαβ ), computed between species α and β , can 
be used to understand effective binding strength between 
atomic species  [14]. MDSuite utilizes the minima find-
ing algorithm discussed for the coordination numbers to 
identify the minimum value of the PMF.

Kirkwood‑Buff integrals
Kirkwood-Buff (KB) integrals are a fundamental com-
ponent of the Kirkwood-Buff solution theory developed 
by John G. Kirkwood and Frank P. Buff aimed at relat-
ing microscopic properties of a solution to its thermo-
dynamic quantities  [54]. The integrals are calculated 
directly from an RDF by:

The KB integral ( Gαβ ), computed between species α and 
β , can be used to better understand preferential binding 
between species in a system [55].

Dynamic properties
Dynamic calculations are those that take place with 
respect to time. As such, there exists correlation between 
properties of particles and therefore, species atten-
tion must be paid when performing computations. In 
all dynamic calculations in MDSuite, ensembling is 

(3)niαβ = 4πρ

ri
∫

ri−1

drr2gαβ(r),

(4)wαβ(r) = −kBT ln gαβ(r).

(5)Gαβ = 4π

∞
∫

0

drr2(gαβ(r)− 1).

performed to ensure correct statistics  [56]. This ensem-
bling is represented by the angled brackets in each of the 
calculations to follow. In each computation, the user may 
set a desired correlation time to decide over what time 
range this ensembling occurs and thereby also computing 
correct errors.

Typically in particle simulations there are two 
approaches to the computation of dynamic properties, 
Green-Kubo, and Einstein-Helfand. MDSuite imple-
ments both of these calculation approaches and there-
fore, a brief discussion of each is included.

Green‑Kubo calculations
The first method discussed is the Green-Kubo 
approach  [57–59] which uses autocorrelation functions 
to compute dynamic properties from a flux in the system 
by:

where ωGK is some calculation specific pre-factor, d is 
the dimension, and η is the flux on which autocorrela-
tion is computed. In reality, the integral cannot be taken 
to infinity and rather a cutoff value must be chosen at 
which to integrate the system. As this can take optimi-
zation, MDSuite allows the user to set an integration 
range and then computes the running integral, along with 
the uncertainty, on the function up to this value. This 
approach allows users to identify a converged value for 
the integral. This running integral can be seen in Fig. 5.

Einstein‑Helfand computations
In the case of an Einstein-Helfand computation, rather 
than use an autocorrelation function we look at the gra-
dient of a mean square displacement. The property for 
which we look at the mean square displacement is often 
the integral of the flux used in the corresponding Green-
Kubo approach. In this case one would like to solve:

where ζ is the integrated flux, ωEH is a property species 
pre-factor, and d is the dimension.

In the remainder of this section each dynamic calcula-
tor available in MDSuite is discussed.

Viscosity
Viscosity is a fluids resistance to deformation. In MDSuite, 
the viscosity can be calculated using both the Green-Kubo 
relation and the Einstein-Helfand relation  [60]. Assuming 

(6)� =
ωGK

d · V

∞
∫

0

dt�η(t) · η(0)�,

(7)� = lim
t→∞

ωEH

2 · d · t
�|ζ (t)− ζ (0)|2�,
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isotropy, the equation to compute viscosity by means of 
Green-Kubo reads [60]:

where V is the volume of the system, kB is the Boltzmann 
constant, T is the temperature, and Pa,b(t) are the off-
diagonal components of the stress tensor at time t. The 
Einstein-Helfand approach uses a limit observation to 
determine the viscosity [60] with:

where La,b(t) is defined as:

and where pia and rb(t) are the momentum and position 
of particle i respectively.

Self‑diffusion coefficients
Self-diffusion coefficients describe the average rate at 
which atoms of species α diffuse through the bulk. They 
may be calculated from a Green-Kubo relation by:

(8)

κ =
V

3kBT

∞
∫

0

dt�Pa,b(0) · Pa,b(t)� (a �= b ∈ {x, y, z})

(9)κ =
1

VkBT
lim
t→∞

1

2t
�[Lia,b(t)− Lia,b(0)]

2�,

(10)Lia,b(t) = pia(t) · r
i
b(t),

where vαi  is the velocity of particle i of species α . MDSuite 
also provides the corresponding Einstein relation, 
written [47]:

where d is the dimension of the system.

Distinct‑diffusion coefficients
A related property to the self-diffusion coefficients are 
the so-called distinct diffusion coefficients which provide 
information about atom correlation in a system [61]. The 
Green-Kubo relation implemented in MDSuite is written:

where summation is performed over distinct atoms i and 
j. In the case of α = β , the condition i  = j is enforced. 

(11)Dα =
1

3Nα

∞
∫

0

dt

Nα
∑

i

�vαi (t) · v
α
i (0)�,

(12)Dα =
1

2 · d · t

1

Nα

lim
t→∞

Nα
∑

i

�|rαi (t)− rαi (0)|
2�,

(13)Dαβ =
1

3

1

Nα · Nβ

∞
∫

0

dt

Nα
∑

i

Nβ
∑

j

�vαi (t) · v
β
j (0)�,

Fig. 5  A snapshot from an MD simulation of the BMIM-BF4 ionic liquid
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The corresponding Einstein formulation is also imple-
mented as:

Ionic conductivity
The ionic conductivity of a system describes the ability 
of a material to dissipate electrical energy based on the 
mobility and charge of the constituent ions. Ionic con-
ductivity may be calculated by the Green-Kubo relation 
as [62]:

where β = 1
kBT

 , V is the volume of the system, and 

Jσ = q
N
∑

i

zivi is the ionic current. An alternative 

approach, denoted the Einstein-Helfand method, involves 
studying the mean square displacement of the transla-
tional dipole moment as:

where M = q
N
∑

i

ziri is the translational dipole moment of 

the system. To further probe the effects of ion correlation 
in a system, MDSuite also calculates the Nernst-Einstein 
ionic conductivity which uses the self-diffusion coeffi-
cients to approximate the property as

where xα is the mass fraction of species α , zα is the ion 
charge, and Dα is the self-diffusion coefficient. The 
Nernst-Einstein approach suffers from the absence of 
correlation effects, often resulting in an over-estimate for 
the ionic conductivity  [61]. Whilst the Green-Kubo and 
Einstein-Helfand approaches can be used, it is also pos-
sible to correct the Nernst-Einstein equation using the 
distinct diffusion coefficients by [61]

where the symbols are as above and the Dβγ is the dis-
tinct diffusion coefficient for the β , γ pair. MDSuite 
implements both the Einstein-Helfand and Green-Kubo 

(14)Dαβ =
1

Nα · Nβ

1

2 · d · t
lim
t→∞

Nα
∑

i

Nβ
∑

j

�(rαi (t)− rαi (0)) · (r
β
j (t)− r

β
j (0))�.

(15)σ =
β

3V

∞
∫

0

dt�Jσ (t) · Jσ (0)�,

(16)σ = lim
t→∞

β

2 · d · t
�|M(t)−M(0)|2�,

(17)σNE =
q2β

3V

(

∑

α

xαz
2
αDα

)

,

(18)

σCNE =
q2β

3V

(

∑

α

xαz
2
αDα +

∑

βγ

xβxγ zβzγDβγ

)

,

approaches for the full ionic conductivity as well as the 
self and distinct diffusion coefficients thereby enabling 

the calculation of the Nernst-Einstein and corrected 
Nernst-Einstein conductivities.

Thermal conductivity
The thermal conductivity of a system describes the abil-
ity of a material to transport heat. At a macroscopic 
scale, thermal transport by means of conduction is 
described by Fourier’s law:

In Eq. 19, � is defined as the thermal conductivity of the 
material and can be expressed using a Green-Kubo rela-
tion as:

where Jκ is the heat-flux defined as:

The equivalent Einstein-Helfand relation is also imple-
mented for this quantity as

where J (t) is defined as the integrated heat current. This 
current can be stored during a simulation or computed in 
MDSuite as:

where ei(t) and ri(t) are the energy and the position vec-
tor of the i-th particle in the simulation respectively. In 
all cases, the per-particle energy must be printed dur-
ing the simulation run in order for MDSuite to perform 
the computation. This can be done for example, using 
the LAMMPS  [39, 40] compute pe/atom command 
which will dump the energy of an atom up to the speci-
fied cutoff including non-local terms such as electrostat-
ics. In its current state, MDSuite makes no assumptions 
about inter-particle interactions.

(19)q = −�∇T .

(20)� =
V

3kBT 2

∞
∫

0

dt�Jκ(0) · Jκ(t)�,

(21)

Jκ(t) =
1

V

[

∑

i

eivi(t)−
1

2

∑

i<j

Fij(t)(vi(t)+ vj(t))rij(t)

]

.

(22)κ =
1

VkBT 2
lim
t→∞

1

2t
�|J (t)−J (0)|2�

(23)J (t) =

N
∑

i=1

ei(t) · ri(t),
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Transformations
In MDSuite, transformations are defined as operations 
on simulation data that yield time-dependent results. 
Because these properties exist at each time step, they 
are also stored under new groups in the MDS-DB.

Transformation may be called from a Project by:

project = mdsuite.Project (...)

project.run.TransformationName (...)

In the case where a transformation is required for a 
calculator to run, it will be called automatically by the 
MDSuite dependency handler. Whilst many of the trans-
formations have already been discussed in the calcula-
tor section including ionic current, translational dipole 
moment, thermal flux, and the integrated heat current, 
MDSuite also offers some unique transformations which 
warrant additional discussion.

Coordinate (Un)wrapping
A core component of particle-based simulations is the 
use of periodic boundary conditions (PBC) to mimic a 
bulk system of infinite particles [47]. When post-process-
ing is then performed on these systems, the application 
of PBC sometimes must be reversed in order to retrieve 
for example, correct dynamics, or to complete a molecu-
lar structure. In MDSuite, two approaches may be taken 
to unwrapping coordinates, box-hopping detection and 
scaling by image numbers stored during a simulation.

Molecule mapping
A notable transformation in MDSuite is the molecular 
mapping module. In this module, a distance search is 
used to perform graph decomposition on a configura-
tion in order to map free particles into molecule groups. 
These groups can then be used with any of the aforemen-
tioned calculators thereby allowing for the construction 
and analysis of coarse-grained representations. To fur-
ther improve the accuracy of this method, approximate 
graph isomorphism checks may be applied to ensure that 
the molecular graph built is approximately isomorphic 
with a reference graph constructed from the SMILES 
string (see Additional file  1). While molecule mapping 
module is very flexible and can be used to construct any 

number of molecule groups, it is currently hampered by 
computational limitations. In its current state, the ini-
tial construction of groups, usually performed on one or 
two configurations, is an O(N 2) operation whereas the 
mapping of these groups over the full trajectory is O(N ) . 

Current work is underway in constructing more accurate 
and faster approaches to this molecular mapping.

Customization
An important aspect of any post-processing tool is an 
ability to adapt its features for custom analysis. Through 
the use of object oriented programming, MDSuite pro-
vides users with the ability to subclass the parent calcu-
lator classes and in doing so, take full advantage of the 
database interface, memory safety, and performance. 
Due to the Python interpreter, these additions can be 
made without any reinstallation of the MDSuite software. 
Detailed information about this process is provided on 
the MDSuite developer documentation page at https://​
mdsui​te.​readt​hedocs.​io/​en/​main/_​devel​oper_​docs/​imple​
menti​ng_​calcu​lators.​html.

Software and development
Aside from the features and performance of MDSuite, 
the development process is of utmost importance for sta-
ble and usable software. MDSuite utilizes a test-driven 
development approach where both unit tests and integra-
tion tests are used to cover the code base. Furthermore, 
continuous integration is used to ensure that before any 
code is added to the main branch the package installs for 
all supported Python versions, the documentation builds, 
and all of the tests and example scripts pass. MDSuite 
adopts the semantic versioning approach  [63] and 
aims for a small number of major changes. MDSuite is 
released under the OSI approved Eclipse Public License 
2.0 (EPLv2) and can be installed on Linux, Windows, and 
MacOS operating systems via pip

https://mdsuite.readthedocs.io/en/main/_developer_docs/implementing_calculators.html
https://mdsuite.readthedocs.io/en/main/_developer_docs/implementing_calculators.html
https://mdsuite.readthedocs.io/en/main/_developer_docs/implementing_calculators.html
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Fig. 6  Interactive plot environment offered by Bokeh [65]. In this case, we see a velocity autocorrelation function along with the cumulative 
integral to identify a point of convergence

pip install mdsuite

 

or directly from the github repository at https://​github.​
com/​zincw​are/​MDSui​te.

Data visualization
Data visualization and exploration is of fundamen-
tal importance particularly in the age of big-data. In 
MDSuite, focus is placed on exploratory data analysis, 
that is, plots and visualizations that allow users to move 
through the data and identify or operate on regions of 
interest.

Three‑dimensional visualization
The ability to visualize a simulation or any particle trajec-
tory can lead to better insights and intuition during anal-
ysis. MDSuite offers a rudimentary visualization module 
based on the ZnVis particle simulation visualizer []. ZnVis 
is built on top of the Open3D data processing engine [64] 
which utilizes a C++ backend for the visualization of 
point-cloud and mesh data. In MDSuite, ZnVis is used to 
display particles in an interactive window (Figs. 5 and 6), 
visualize the trajectory of small simulations, and capture 

https://github.com/zincware/MDSuite
https://github.com/zincware/MDSuite
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Fig. 7  (left) Strong-scaling of the RDF calculation on 99000 Oxygen atoms. (right) GPU time scaling with respect to number of 108’000 argon atom 
configurations in an RDF computation

snapshots of a simulation at a specific time step as a png 
file.

Two‑dimensional visualization
In cases where a full three-dimensional visualization is 
not required, MDSuite utilizes the Bokeh [65] library to 
construct interactive plots for data analysis and explora-
tion. These plots, displayed within a web-browser at the 
end of a calculation, are fully interactive in that they ena-
ble exploration of plotted data through zooming, sliding, 
and hovering over points in the plot. In addition to the 
automatic plotting features, user have complete access to 
the raw calculation data for custom plotting.

Results and discussion
Performance
Beyond providing functionality, MDSuite has been devel-
oped to maximise the performance of computations. 
Much of the performance of the MDSuite calculators 
and transformations arises from the heavy use of Tensor-
Flow [46] and the formulation of computations as tensor 
operations. By utilizing TensorFlow for these operations 
the computations can immediately be performed in par-
allel and on GPU with little to no additional software. 
This, coupled with the memory manager, results in mem-
ory safe and computationally efficient calculations. To 
assess the performance of MDSuite, a strong-scaling test 
has been performed using the RDF calculator as it pre-
sents both a memory and time intensive operation that is 
frequently used in computational studies. Strong-scaling 
measures the improvement in the time of a computa-
tion with respect to additional computational resources. 
In this study, the CPU access of TensorFlow was limited 

from 1 to 96 cores and the RDF computation performed 
10 times to ensure correct statistics. In addition to the 
strong-scaling test, the calculations were also performed 
on several devices to assess performance improvements 
with respect to accelerators including a GTX 1070 and 
RTX 2080 GPU. In the strong-scaling test, 3 configura-
tions of 33’000 oxygen atoms were used in the RDF com-
putation. To additionally test the memory management 
capabilities of MDSuite, a 108’000 atom simulation of 
liquid argon was performed using the LAMMPS  [39] 
simulation engine generating 5000 time-steps in the 
process , the trajectory of which was used in the device 
scaling tests.. In the device test, an RDF calculation has 
been performed on an increasing number of configura-
tions, or frames, of this simulation. In the largest case (80 
configurations), 80 · 108000 = 8640000 atoms are used in 
the RDF computation on devices with as little as 8 GB of 
memory. Fig. 7 outlines the results of these experiments. 
It is clear when studying the figure that the parallelization 
of the computation results in improved speeds.

In addition to plotting simply the computation time, 
the speedup factor is also included on the second y-axis 
of Fig.  7. This plot shows the factor speedup upon the 
introduction of additional resources and demonstrates 
how MDSuite natively scales to more capable compu-
tational devices. Turning attention now to the device 
scaling test, it can be seen that the deployment of the cal-
culation onto a GPU results in a substantial improvement 
in computation speed over even the 96 core CPU com-
putation. Furthermore, due to the use of the TensorFlow 
library  [46] no specific GPU code was required for the 
acceleration. While the scaling of the MDSuite library is 
effective at improving computation times, it is not perfect 
scaling, i.e, with increasing resources vs computations 



Page 13 of 15Tovey et al. Journal of Cheminformatics           (2023) 15:19 	

the time plot will have a non-zero gradient. This may be 
partially addressed with continued optimization of the 
calculators, however, on some fundamental level this will 
always be limited by the performance of the TensorFlow 
library.

Conclusion
We have introduced a new post-processing suite for 
particle-based simulations capable of combining the 
simulation data from several investigations, perform-
ing analysis on each, and comparing the outcomes of 
this analysis under a single framework. The Python 
library consists of an easy-to-use API thereby promot-
ing accessibility to those in the community unfamiliar 
with programming.

Implemented methods of analysis combine librar-
ies for tensor operations such as TensorFlow in order 
to optimize performance and provide better support 
for GPU and cluster deployment. Beyond a direct focus 
on performance, MDSuite also provides a memory-safe 
framework and in doing so, allows for the analysis of 
million atoms systems on desktop machines.

Whilst the current state of MDSuite is capable of a 
wide range of analysis, there is always more to be done. 
In future releases, development will focus on the exten-
sion of MDSuite calculators to other fields including col-
loidal studies, biological systems, and ideally, areas in 
high-energy physics.

The outlook of computational methods is promising. 
With the ever-increasing capabilities of interaction mod-
els and simulation engines, the possibility for new discov-
eries continues to grow. MDSuite offers a new, innovate 
means to combine scientific research with computational 
methods under a common framework.
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