
Tovey et al. Journal of Cheminformatics (2023) 15:19
https://doi.org/10.1186/s13321-023-00687-y

SOFTWARE

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Journal of Cheminformatics

MDSuite: comprehensive post‑processing
tool for particle simulations
Samuel Tovey1, Fabian Zills1, Francisco Torres‑Herrador2,3,4, Christoph Lohrmann1, Marco Brückner1 and
Christian Holm1* 

Abstract 

Particle-Based (PB) simulations, including Molecular Dynamics (MD), provide access to system observables that
are not easily available experimentally. However, in most cases, PB data needs to be processed after a simulation
to extract these observables. One of the main challenges in post-processing PB simulations is managing the large
amounts of data typically generated without incurring memory or computational capacity limitations. In this work,
we introduce the post-processing tool: MDSuite. This software, developed in Python, combines state-of-the-art
computing technologies such as TensorFlow, with modern data management tools such as HDF5 and SQL for a fast,
scalable, and accurate PB data processing engine. This package, built around the principles of FAIR data, provides a
memory safe, parallelized, and GPU accelerated environment for the analysis of particle simulations. The software
currently offers 17 calculators for the computation of properties including diffusion coefficients, thermal conductiv‑
ity, viscosity, radial distribution functions, coordination numbers, and more. Further, the object-oriented framework
allows for the rapid implementation of new calculators or file-readers for different simulation software. The Python
front-end provides a familiar interface for many users in the scientific community and a mild learning curve for the
inexperienced. Future developments will include the introduction of more analysis associated with ab-initio methods,
colloidal/macroscopic particle methods, and extension to experimental data.

Keywords  Molecular dynamics, Computational physics, Material properties, High performance computing,
TensorFlow, FAIR data

Introduction
Particle-based (PB) simulations, of which we declare
Molecular dynamics (MD) to be a subset, are a cor-
nerstone of modern computational physics, chemistry,
biology, and engineering. The benefit of PB simulations

comes in their access to system observables and prop-
erties that are otherwise unavailable experimentally.
Whilst the method itself involves the sampling of
configuration space under constraints imposed by
defined interactions, it is the analysis of these config-
urations that leads to insights in medicine [1–5], bat-
tery technology [6–15], astrophysics [16], materials
engineering [17–21], and much more. When running
simulations, one is faced with the choice of either per-
forming On-The-Fly (OTF) analysis, or post-processing
their simulation data to extract information. In the case
of OTF analysis, it is often difficult to know before-
hand parameters such as measurement range, number
of samples, or bin resolution, that will be required in
the calculations. For this reason, post-processing of

*Correspondence:
Christian Holm
holm@icp.uni-stuttgart.de
1 Institute for Computational Physics, Universität Stuttgart, Stuttgart,
Germany
2 Aeronautics and Aerospace Department, von Karman Institute for Fluid
Dynamics, Rhode‑St‑Genese, Belgium
3 Thermo and Fluid Dynamics (FLOW), Vrije Universiteit Brussel, Brussels,
Belgium
4 Laboratory for Chemical Technology (LCT), Ghent University, Ghent,
Belgium

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-023-00687-y&domain=pdf

Page 2 of 15Tovey et al. Journal of Cheminformatics (2023) 15:19

simulation results has become a preferred solution,
particularly in cases where simulations are computa-
tionally expensive. Another important consideration is
the number of simulations that will be studied. In the
case of temperature or al-chemical comparison, often
several large simulations will be run under varying con-
ditions. In these cases, it is convenient to have access
to post-processing tools that can track and analyse each
simulation as well as compare the results of the analy-
sis. Several post-processing tools have been developed
in the past and are used by scientists around the world
including MDAnalysis [22], PyLAT [23], pyLOOS,
mdtraj [24], pytraj [25], freud [26], and VMD [27] to
name some of the most popular. These programs, each
having their own strengths, follow a similar workflow:

1	 Load a trajectory object
2	 Perform analysis
3	 Close trajectory object

Whilst this method meets the demands of many users in the
PB community, it is positioned more as a tool for the analysis
of single simulations and less as an integral part of the scien-
tific process. In the direction of managing many simulations,
there also exists several data management tools including
datreant [28] and signac [29]. These packages allow scientists
to build large data workflows and track their states as they
use other libraries to perform analysis. Put together, the post-
processing libraries as well as data management packages
can assist scientists in handling their simulations so long as
interoperability is well handled by the users. A downside of
course is that the post processing and the experiment han-
dling is separated which can result in a more complex inter-
face and reduced usability.

In this paper we introduce MDSuite, a post-processing
program for PB simulations that allows for the collection
and analysis of simulation data from many simulations
under a common framework. MDSuite differs from the
previously mentioned programs in that it takes raw simu-
lation data and generates a new database more suited for
rapid post-processing. This database structure, hereafter
referred to as MDS-DB, allows data to be loaded only
when it is pertinent to the analysis being performed.
Furthermore, the structure is such that properties of the
particles (i.e. positions, stress, and forces) are separated
by species at the time of database construction, thereby
eliminating expensive computational overhead dur-
ing analysis. Furthermore, MDSuite uses an enveloping
object that we have named the Project class, in which
the results of any number of simulations may be con-
tained, analysed, and compared to one another.

The proceeding work is structured as follows. First we
discuss the guiding principles of the MDSuite Python

library, introducing the Project and Experiment
class objects as well as how they work together to cre-
ate an optimised and user-friendly analysis environment.
This is followed by a discussion into the MDS-DB struc-
ture used by MDSuite to store simulation data. We then
introduce the different properties that can currently be
computed using the MDSuite code including informa-
tion regarding the implementation of the analysis. After
the introduction of the calculators, a brief performance
review is presented in order to outline how the MDSuite
code has been written to take full advantage of the latest
high performance computing systems. Finally, we intro-
duce the outlook of the MDSuite package including the
extension beyond simulations as well as general perfor-
mance optimization.

Implementation
Software architecture
The governing principle behind MDSuite is the simplifi-
cation of PB investigations. MDSuite approaches this by
providing an infrastructure in which simulation data and
analysis results from any number of simulations may be
stored, (re-)analyzed, and compared.

The two integral components of this infrastructure are
the Project class and the Experiment class (Fig. 1).

The Experiment class contains all the information
pertaining to a single simulation including particle trajec-
tories, net system properties such as fluxes, and thermo-
dynamic information such as temperature and pressure.
This data is stored in a compressed manner within the
MDS-DB. Simulation data can be added to the Experi-
ment at one time or iteratively over the course of a sim-
ulation as might be necessary in the case where several
runs are required. Further to the storage of trajectory
data, the Experiment class connects to the MDSuite
calculators ("Calculators" section) which are used to per-
form analysis. The results of the analyses, including any
series data generated in the process, are also stored by
the Experiment class in an SQL database (SQL-DB).
This means that once an analysis has been performed,

Fig. 1  Structure of a MDSuite project. Each experiment stores
data in its own database and has access to the Calculators and
Transformations

Page 3 of 15Tovey et al. Journal of Cheminformatics (2023) 15:19 	

the raw data such as an autocorrelation function, or a
radial distribution function, as well as the outcome of the
analysis such as a diffusion coefficient or coordination
number, may be accessed at any time without needing to
repeat the calculations. Furthermore, the use of an SQL
database structure allows for the storage of the param-
eters used in the calculation such as data range, correla-
tion time, or bin spacing. This means that analyzed data
can be queried from a database and compared along with
the parameters of the calculation. One may also use this
feature for further processing such the common practice
of fitting the autocorrelation function with double expo-
nentials for the determination of the thermal conductiv-
ity with all necessary information about the computation
stored. An additional important feature of the trajectory
data stored by the Experiment class is the assigned
version. If a computation is performed with a fixed set of
parameters before additional trajectory data is added, it
is important that when this computation is called again
after the addition of data, that it is recomputed and not
simply loaded from the database. This is handled by a
version system that assigns a new number to each state
of the MDS-DB as trajectory data is added. If new data
is parsed into the database, the version will be updated
and the computations performed on the old set of data
will become stale such that computations with identical
parameters may be re-performed.

The Project class acts as a container for multiple
Experiment objects and can be used to collect prop-
erty values for each of the classes and compare them
with respect to a desired parameter. Experiments can be
added and removed from the Project class at any time
during an investigation and there is no need to know
beforehand how many will be performed. Fundamental
simulation properties such as thermostat temperature,
time-step, and species information are stored in the SQL-
DB for each experiment. Due to the internal use of SI
units in MDSuite, simulations performed using different
systems of units or simulation engines can still be directly
compared with one another. As an example, consider the
comparisons of two inter-atomic potentials, each con-
structed with a specific unit system in mind. Utilizing the
MDSuite framework eliminates the necessity of unit con-
version whilst also providing a simple means for compar-
ing analysis results.

SQL‑DB
As was mentioned earlier, MDSuite utilizes an SQL data-
base for the management of simulation parameter data
and results of computations. This database is built using
the SQLAlchemy package [30] which allows for multiple
back-end SQL engines. Data stored within the database
can either be series type data, e.g. an autocorrelation

function, or the results of some analysis such as diffu-
sion coefficients along with the uncertainty associated
with this measurement. This data will also have associ-
ated with it meta-data including computation range, cor-
relation time, and number of configurations. This type
of record keeping is essential in the communication of
results in case of publication as is in line with the FAIR
data principles [31]. FAIR data guidelines are a frame-
work for improving the way scientists approach the Find-
ability, Accessibility, Interoperability, and Reuse of digital
assets [31]. In MDSuite, the storage of all computation
results along with their parameters provides an environ-
ment for such a framework as these results are freely
accessible from outside MDSuite, they can be hosted
online, they will provide data in standard data types, and
provide a complete parameter set describing how the
data was produced. Utilization of the SQL-DB not only
allows for simple navigation of data through the Pro-
ject class, but also for the use of generic SQL database
navigation tools for studying data graphically.

MDS‑DB
The database generation process is one of the unique fea-
tures of MDSuite. Typically, MD codes dump the results
of simulations into data files of varying format which
may contain trajectory information of the particles or net
system information such as fluxes and temperatures. In
order to avoid complications with calculators, MDSuite
reads simulation data and constructs a database based
upon the HDF5 hierarchical data format [32]. Currently,
MDSuite uses a slight variation of the established H5MD
database structure [33], however, this will change in the
near future and be brought completely inline with this
standard. The database construction process is depicted
in Fig. 2. When data is added to an Experiment, the
File I/O module will choose the corresponding reader
with which to process the data. Simultaneously, the Mem-
ory Management module will analyze the original
trajectory file and decide the appropriate batching size

Fig. 2  Database generation logic. Solid lines indicate actions and
dashed lines data flow

Page 4 of 15Tovey et al. Journal of Cheminformatics (2023) 15:19

to process the data. This allows one to efficiently parse
large datasets on a machine with limited memory. As the
batches of data are read, they are stored in the simulation
database. Additionally, the PubChemPy [34] library is
called to expand species information to real element spe-
cific data such as mass and charge which is then stored in
the SQL-DB.

The MDS-DB, rather than trivially storing configura-
tions of atoms, splits the information into groups and
sub-groups by property (Fig. 3). As an example, in the
generation of an MDS-DB for a system of NaCl, posi-
tions, forces, and velocities for all sodium and chlo-
ride atoms in the simulation will be split first into the
groups Na and Cl and then into sub-groups of posi-
tions, velocities, and forces. This extends naturally to
the use of coarse-grained descriptions where molecules
are used as the groups and center of mass positions and
velocities are stored. In the case of system wide proper-
ties such as global flux (eg. thermal flux), data is simply
stored in a group with the name of the flux. Currents,
fluxes, or other global properties can also be computed
inside MDSuite using the transformations and stored
in the MDS-DB. With this structure, any simulation
data may be stored in a simple, compressed format.
The motivation behind such a partitioning scheme is
rooted in programming simplicity, memory safety, and
improved computational performance. Programming
simplicity becomes evident when looking at calcula-
tor definitions. In MDSuite, each calculator has a set of
properties that it requires to perform the calculation.
With a partitioned database scheme this becomes uni-
versal across file formats and makes writing new calcu-
lators more efficient. Furthermore, with species-wise

separation it becomes simple to perform computations
on only a selection of species in a simulation. Beyond
simplicity in writing calculators, memory safety also
becomes easier to handle with data being split by prop-
erty. This is because when MDSuite is called to com-
pute a diffusion coefficient for a single species, it can
load only the specific positions of the single species
rather than having to search through all trajectory data
and filter it for the desired components. In this way,
memory usage calculations can be performed on a well-
defined amount of data. Finally, while using a partition-
ing scheme may increase the initial processing time
when creating an experiment, it means that data is read
from a file precisely once and during analysis there is
no need for searching through trajectory data.

As different MD simulation engines have different out-
put formats, MDSuite implements readers to pre-process
simulation data and prepare it for storage. MDSuite utilizes
the Chemfiles library [35] as a foundation for file-reading
thereby giving access to over 21 different formats including
those for large simulations engines such as GROMACS [36],
AMBER [37], CHARMM [38] and LAMMPS [39, 40]. Fur-
thermore, the MDSuite file readers are written such that it
is simple to add new readers for custom simulation outputs.
This has been used, for example, to store the output of an
ESPResSo [41] simulation of a bacteria study, initially stored
as a pandas [42, 43] DataFrame

User interface
The aim of the MDSuite user interface is to allow for
easy and understandable communication with the
Calculators and Transformations. To this
end, MDSuite is distributed as a Python package with
a streamlined API. That is to say, users typically require
only a single package import and only access meth-
ods from a single class. To aid in usability, many user-
focused methods have been added to perform simple
tasks such as accessing stored data, changing names
of MDS database groups, and updating physical prop-
erties of species. These features keep the focus on sci-
entific work rather than computational baggage. This
usability is particularly noticeable when using the pack-
age through Jupyter notebooks [44, 45], as this allows
direct interaction with results as they are calculated.

Code sample 1 demonstrates the MDSuite API for the
analysis of two molten salt systems of NaCl and LiCl.

Fig. 3  Typical structure of the simulation database. For each atom
type, sub-groups for each variable are created. Data is then stored in
tables. Currents or fluxes are also stored as global quantities

Page 5 of 15Tovey et al. Journal of Cheminformatics (2023) 15:19 	

import mdsuite as mds

project = mds.Project(name="Molten_Salts")

Add simulation data from two simulations

NaCl = project.add_experiment(

name="NaCl",

units="metal",

temperature =1400.0 ,

simulation_data="NaCl.lammpstraj"

)

LiCl = project.add_experiment(

name="LiCl",

units="real",

temperature =1600.0 ,

simulation_data="LiCl.xyz"

)

Compute diffusion coefficients for both

diffusion_data = project.run.EinsteinDifusionCoefficients(

data_range =200, correlation_time = 50

)

Compute the RDF for NaCl

rdf_data = NaCl.run.RadialDistributionFunction (zeta =6)

cn_data = NaCl.run.CoordinationNumbers(rdf_data)

Compute ionic conductivity for LiCl

ic_data = LiCl.run.GreenKuboIonicConductivity ()

Code sample 1 Example of MDSuite API for the anal-
ysis of two molten salts. In this case,self-diffusion coef-
ficients are computed for both salts whereas the radial
distribution functions and ionic conductivitiy are com-
puted only for the NaCl and LiCl respectively.

Calculators
A driving factor in the design logic of MDSuite was the
desire to be able to perform a multitude of analyses on
a simulation trajectory under a single framework. The
construction of the MDS-DB allows for data to be rap-
idly loaded based on the particle type and property under
consideration. With this approach, a number of meth-
ods for analysis become possible in a fast and memory
safe manner. This section discusses the different analysis

options available to the MDSuite user with some details
about their implementation.

All analyses in MDSuite are built from the Calcula-
tor parent class. Every other calculator inherits from
this class and implements the actual computation. The
benefit of this is that the Experiment class is agnos-
tic towards the inner workings of calculator objects and
interfaces with them in the same manner, regardless
of the computation being performed. Furthermore, by
structuring the calculator implementations as children
of a parent class, additional calculators may be easily
added by users.

The execution logic of a calculator is depicted in Fig. 4.
When a Project requests that a particular calculation
be performed, the corresponding Calculator will

Page 6 of 15Tovey et al. Journal of Cheminformatics (2023) 15:19

Fig. 4  Execution logic of a Calculator. Continuous lines depict
actions, dashed lines depict data flow

be called. This Calculator will request the required
data from the MDS-DB ("MDS-DB" section). If this
data is not available, the Calculator will make use
of the appropriate Transformation to compute it.
The computed data will be stored in the MDS-DB to
avoid re-computation in the event that the analysis is
repeated. Once all the dependencies are available, the
calculation of the property will proceed. Finally, the
results will be stored in the SQL-DB.

All calculators in MDSuite may be called simply from
the Project class with:

The following section outlines the various structural
analyses available to users as well as what each of them
describes.

Radial distribution function
Radial distribution functions (RDFs) describe the particle
density of species α at a distance r from a particle of spe-
cies β [47]. This may be calculated directly from the posi-
tions of particles within a simulation by:

where gαβ is the RDF of species α with respect to species
β , Nα is the number of particles of species α , V is the box
volume, and ri is the position of particle i.

Angular distribution function
Angular distribution functions (ADFs), similar to the
RDF, describe the distribution of the angle between three
atoms. ADFs can be used to better understand bonding
between specific species as well as to identify breakdown
in structure under changing environments. An ADF is

(1)gαβ(r) =
NαNβ

V

Nα
∑

i=1

Nβ
∑

j=1

�δ(r − |rαi − r
β
j |)�,

project = mdsuite.Project (...)

project.run.ComputationName (...)

In order to optimize the performance of the calcula-
tors, as well as to take advantage of modern hardware,
MDSuite utilizes the TensorFlow Python library [46] to
allow not only for optimized tensor calculations, but
also for immediate deployment on GPU and parallel
processing with a small increase in import time due to
device registration. TensorFlow is also used in the con-
struction of optimized data pipelines for the computa-
tions where TensorFlow Datasets, used for elements
of batching, are employed. Memory safety is handled
both with configuration-wise batching and atom-wise
mini-batching if necessary (see Additional file 1). The
performance improvements of the TensorFlow library
are discussed in more detail in "Performance" section
where strong-scaling tests have been performed.

The remainder of this section will discuss the available
calculators.

Structural properties
The computation of structural properties in MDSuite
largely revolves around the radial distribution function.

computed with reference to three atoms in the system
and is calculated by:

where the angle being measured is between the triangle
formed with the atom of species α at the centre and ζ is
a sensitivity factor used to highlight peaks and relevant
distances. This sensitivity index can be useful in filtering
out angles occurring at large distances from the central
particle. This is because, during the ADF calculation, no
information about distance between the particles is used
in the calculation of the angles.

Coordination numbers
Coordination numbers describe the number of particles
surrounding a reference particle at a chosen distance and
are related to the ordering in the system [48]. In the case
of a crystalline structure, this reduces simply to the num-
ber of particles bonded to the reference particle [49]. In

(2)

gαβγ (θ) =
1

NαNβNγ

∑

ijk∈αβγ

1

|rij|ζ |rik |ζ
�δ(θ − θijk)�,

Page 7 of 15Tovey et al. Journal of Cheminformatics (2023) 15:19 	

a liquid system this becomes a less rigorous definition
and the coordination numbers are often calculated at dif-
ferent points along the RDF referred to as coordination
shells [48]. MDSuite uses the definition of coordination
numbers taken from Waseda [48]:

where i ≥ 1 is the coordination number to be calculated
associated with a chosen coordination shell. The inte-
gration range is taken at minimums between successive
peaks in the RDF. MDSuite uses the Golden-Section
search algorithm [50] along with a Savitzky-Golay [51]
filter to identify the minimums in the RDFs and perform
the analysis correctly (see Additional file 1). The param-
eters of the filter are tunable at runtime.

Potential of mean‑force
Potential of mean-force (PMF) is a measurement of how
the free energy of a system changes as a function of inter-
atomic distance and may be calculated directly from the
RDF as [52, 53]:

The PMF ( wαβ ), computed between species α and β , can
be used to understand effective binding strength between
atomic species [14]. MDSuite utilizes the minima find-
ing algorithm discussed for the coordination numbers to
identify the minimum value of the PMF.

Kirkwood‑Buff integrals
Kirkwood-Buff (KB) integrals are a fundamental com-
ponent of the Kirkwood-Buff solution theory developed
by John G. Kirkwood and Frank P. Buff aimed at relat-
ing microscopic properties of a solution to its thermo-
dynamic quantities [54]. The integrals are calculated
directly from an RDF by:

The KB integral ( Gαβ ), computed between species α and
β , can be used to better understand preferential binding
between species in a system [55].

Dynamic properties
Dynamic calculations are those that take place with
respect to time. As such, there exists correlation between
properties of particles and therefore, species atten-
tion must be paid when performing computations. In
all dynamic calculations in MDSuite, ensembling is

(3)niαβ = 4πρ

ri
∫

ri−1

drr2gαβ(r),

(4)wαβ(r) = −kBT ln gαβ(r).

(5)Gαβ = 4π

∞
∫

0

drr2(gαβ(r)− 1).

performed to ensure correct statistics [56]. This ensem-
bling is represented by the angled brackets in each of the
calculations to follow. In each computation, the user may
set a desired correlation time to decide over what time
range this ensembling occurs and thereby also computing
correct errors.

Typically in particle simulations there are two
approaches to the computation of dynamic properties,
Green-Kubo, and Einstein-Helfand. MDSuite imple-
ments both of these calculation approaches and there-
fore, a brief discussion of each is included.

Green‑Kubo calculations
The first method discussed is the Green-Kubo
approach [57–59] which uses autocorrelation functions
to compute dynamic properties from a flux in the system
by:

where ωGK is some calculation specific pre-factor, d is
the dimension, and η is the flux on which autocorrela-
tion is computed. In reality, the integral cannot be taken
to infinity and rather a cutoff value must be chosen at
which to integrate the system. As this can take optimi-
zation, MDSuite allows the user to set an integration
range and then computes the running integral, along with
the uncertainty, on the function up to this value. This
approach allows users to identify a converged value for
the integral. This running integral can be seen in Fig. 5.

Einstein‑Helfand computations
In the case of an Einstein-Helfand computation, rather
than use an autocorrelation function we look at the gra-
dient of a mean square displacement. The property for
which we look at the mean square displacement is often
the integral of the flux used in the corresponding Green-
Kubo approach. In this case one would like to solve:

where ζ is the integrated flux, ωEH is a property species
pre-factor, and d is the dimension.

In the remainder of this section each dynamic calcula-
tor available in MDSuite is discussed.

Viscosity
Viscosity is a fluids resistance to deformation. In MDSuite,
the viscosity can be calculated using both the Green-Kubo
relation and the Einstein-Helfand relation [60]. Assuming

(6)� =
ωGK

d · V

∞
∫

0

dt�η(t) · η(0)�,

(7)� = lim
t→∞

ωEH

2 · d · t
�|ζ (t)− ζ (0)|2�,

Page 8 of 15Tovey et al. Journal of Cheminformatics (2023) 15:19

isotropy, the equation to compute viscosity by means of
Green-Kubo reads [60]:

where V is the volume of the system, kB is the Boltzmann
constant, T is the temperature, and Pa,b(t) are the off-
diagonal components of the stress tensor at time t. The
Einstein-Helfand approach uses a limit observation to
determine the viscosity [60] with:

where La,b(t) is defined as:

and where pia and rb(t) are the momentum and position
of particle i respectively.

Self‑diffusion coefficients
Self-diffusion coefficients describe the average rate at
which atoms of species α diffuse through the bulk. They
may be calculated from a Green-Kubo relation by:

(8)

κ =
V

3kBT

∞
∫

0

dt�Pa,b(0) · Pa,b(t)� (a �= b ∈ {x, y, z})

(9)κ =
1

VkBT
lim
t→∞

1

2t
�[Lia,b(t)− Lia,b(0)]

2�,

(10)Lia,b(t) = pia(t) · r
i
b(t),

where vαi is the velocity of particle i of species α . MDSuite
also provides the corresponding Einstein relation,
written [47]:

where d is the dimension of the system.

Distinct‑diffusion coefficients
A related property to the self-diffusion coefficients are
the so-called distinct diffusion coefficients which provide
information about atom correlation in a system [61]. The
Green-Kubo relation implemented in MDSuite is written:

where summation is performed over distinct atoms i and
j. In the case of α = β , the condition i = j is enforced.

(11)Dα =
1

3Nα

∞
∫

0

dt

Nα
∑

i

�vαi (t) · v
α
i (0)�,

(12)Dα =
1

2 · d · t

1

Nα

lim
t→∞

Nα
∑

i

�|rαi (t)− rαi (0)|
2�,

(13)Dαβ =
1

3

1

Nα · Nβ

∞
∫

0

dt

Nα
∑

i

Nβ
∑

j

�vαi (t) · v
β
j (0)�,

Fig. 5  A snapshot from an MD simulation of the BMIM-BF4 ionic liquid

Page 9 of 15Tovey et al. Journal of Cheminformatics (2023) 15:19 	

The corresponding Einstein formulation is also imple-
mented as:

Ionic conductivity
The ionic conductivity of a system describes the ability
of a material to dissipate electrical energy based on the
mobility and charge of the constituent ions. Ionic con-
ductivity may be calculated by the Green-Kubo relation
as [62]:

where β = 1
kBT

 , V is the volume of the system, and

Jσ = q
N
∑

i

zivi is the ionic current. An alternative

approach, denoted the Einstein-Helfand method, involves
studying the mean square displacement of the transla-
tional dipole moment as:

where M = q
N
∑

i

ziri is the translational dipole moment of

the system. To further probe the effects of ion correlation
in a system, MDSuite also calculates the Nernst-Einstein
ionic conductivity which uses the self-diffusion coeffi-
cients to approximate the property as

where xα is the mass fraction of species α , zα is the ion
charge, and Dα is the self-diffusion coefficient. The
Nernst-Einstein approach suffers from the absence of
correlation effects, often resulting in an over-estimate for
the ionic conductivity [61]. Whilst the Green-Kubo and
Einstein-Helfand approaches can be used, it is also pos-
sible to correct the Nernst-Einstein equation using the
distinct diffusion coefficients by [61]

where the symbols are as above and the Dβγ is the dis-
tinct diffusion coefficient for the β , γ pair. MDSuite
implements both the Einstein-Helfand and Green-Kubo

(14)Dαβ =
1

Nα · Nβ

1

2 · d · t
lim
t→∞

Nα
∑

i

Nβ
∑

j

�(rαi (t)− rαi (0)) · (r
β
j (t)− r

β
j (0))�.

(15)σ =
β

3V

∞
∫

0

dt�Jσ (t) · Jσ (0)�,

(16)σ = lim
t→∞

β

2 · d · t
�|M(t)−M(0)|2�,

(17)σNE =
q2β

3V

(

∑

α

xαz
2
αDα

)

,

(18)

σCNE =
q2β

3V

(

∑

α

xαz
2
αDα +

∑

βγ

xβxγ zβzγDβγ

)

,

approaches for the full ionic conductivity as well as the
self and distinct diffusion coefficients thereby enabling

the calculation of the Nernst-Einstein and corrected
Nernst-Einstein conductivities.

Thermal conductivity
The thermal conductivity of a system describes the abil-
ity of a material to transport heat. At a macroscopic
scale, thermal transport by means of conduction is
described by Fourier’s law:

In Eq. 19, � is defined as the thermal conductivity of the
material and can be expressed using a Green-Kubo rela-
tion as:

where Jκ is the heat-flux defined as:

The equivalent Einstein-Helfand relation is also imple-
mented for this quantity as

where J (t) is defined as the integrated heat current. This
current can be stored during a simulation or computed in
MDSuite as:

where ei(t) and ri(t) are the energy and the position vec-
tor of the i-th particle in the simulation respectively. In
all cases, the per-particle energy must be printed dur-
ing the simulation run in order for MDSuite to perform
the computation. This can be done for example, using
the LAMMPS [39, 40] compute pe/atom command
which will dump the energy of an atom up to the speci-
fied cutoff including non-local terms such as electrostat-
ics. In its current state, MDSuite makes no assumptions
about inter-particle interactions.

(19)q = −�∇T .

(20)� =
V

3kBT 2

∞
∫

0

dt�Jκ(0) · Jκ(t)�,

(21)

Jκ(t) =
1

V

[

∑

i

eivi(t)−
1

2

∑

i<j

Fij(t)(vi(t)+ vj(t))rij(t)

]

.

(22)κ =
1

VkBT 2
lim
t→∞

1

2t
�|J (t)−J (0)|2�

(23)J (t) =

N
∑

i=1

ei(t) · ri(t),

Page 10 of 15Tovey et al. Journal of Cheminformatics (2023) 15:19

Transformations
In MDSuite, transformations are defined as operations
on simulation data that yield time-dependent results.
Because these properties exist at each time step, they
are also stored under new groups in the MDS-DB.

Transformation may be called from a Project by:

project = mdsuite.Project (...)

project.run.TransformationName (...)

In the case where a transformation is required for a
calculator to run, it will be called automatically by the
MDSuite dependency handler. Whilst many of the trans-
formations have already been discussed in the calcula-
tor section including ionic current, translational dipole
moment, thermal flux, and the integrated heat current,
MDSuite also offers some unique transformations which
warrant additional discussion.

Coordinate (Un)wrapping
A core component of particle-based simulations is the
use of periodic boundary conditions (PBC) to mimic a
bulk system of infinite particles [47]. When post-process-
ing is then performed on these systems, the application
of PBC sometimes must be reversed in order to retrieve
for example, correct dynamics, or to complete a molecu-
lar structure. In MDSuite, two approaches may be taken
to unwrapping coordinates, box-hopping detection and
scaling by image numbers stored during a simulation.

Molecule mapping
A notable transformation in MDSuite is the molecular
mapping module. In this module, a distance search is
used to perform graph decomposition on a configura-
tion in order to map free particles into molecule groups.
These groups can then be used with any of the aforemen-
tioned calculators thereby allowing for the construction
and analysis of coarse-grained representations. To fur-
ther improve the accuracy of this method, approximate
graph isomorphism checks may be applied to ensure that
the molecular graph built is approximately isomorphic
with a reference graph constructed from the SMILES
string (see Additional file 1). While molecule mapping
module is very flexible and can be used to construct any

number of molecule groups, it is currently hampered by
computational limitations. In its current state, the ini-
tial construction of groups, usually performed on one or
two configurations, is an O(N 2) operation whereas the
mapping of these groups over the full trajectory is O(N) .

Current work is underway in constructing more accurate
and faster approaches to this molecular mapping.

Customization
An important aspect of any post-processing tool is an
ability to adapt its features for custom analysis. Through
the use of object oriented programming, MDSuite pro-
vides users with the ability to subclass the parent calcu-
lator classes and in doing so, take full advantage of the
database interface, memory safety, and performance.
Due to the Python interpreter, these additions can be
made without any reinstallation of the MDSuite software.
Detailed information about this process is provided on
the MDSuite developer documentation page at https://​
mdsui​te.​readt​hedocs.​io/​en/​main/_​devel​oper_​docs/​imple​
menti​ng_​calcu​lators.​html.

Software and development
Aside from the features and performance of MDSuite,
the development process is of utmost importance for sta-
ble and usable software. MDSuite utilizes a test-driven
development approach where both unit tests and integra-
tion tests are used to cover the code base. Furthermore,
continuous integration is used to ensure that before any
code is added to the main branch the package installs for
all supported Python versions, the documentation builds,
and all of the tests and example scripts pass. MDSuite
adopts the semantic versioning approach [63] and
aims for a small number of major changes. MDSuite is
released under the OSI approved Eclipse Public License
2.0 (EPLv2) and can be installed on Linux, Windows, and
MacOS operating systems via pip

https://mdsuite.readthedocs.io/en/main/_developer_docs/implementing_calculators.html
https://mdsuite.readthedocs.io/en/main/_developer_docs/implementing_calculators.html
https://mdsuite.readthedocs.io/en/main/_developer_docs/implementing_calculators.html

Page 11 of 15Tovey et al. Journal of Cheminformatics (2023) 15:19 	

Fig. 6  Interactive plot environment offered by Bokeh [65]. In this case, we see a velocity autocorrelation function along with the cumulative
integral to identify a point of convergence

pip install mdsuite

or directly from the github repository at https://​github.​
com/​zincw​are/​MDSui​te.

Data visualization
Data visualization and exploration is of fundamen-
tal importance particularly in the age of big-data. In
MDSuite, focus is placed on exploratory data analysis,
that is, plots and visualizations that allow users to move
through the data and identify or operate on regions of
interest.

Three‑dimensional visualization
The ability to visualize a simulation or any particle trajec-
tory can lead to better insights and intuition during anal-
ysis. MDSuite offers a rudimentary visualization module
based on the ZnVis particle simulation visualizer []. ZnVis
is built on top of the Open3D data processing engine [64]
which utilizes a C++ backend for the visualization of
point-cloud and mesh data. In MDSuite, ZnVis is used to
display particles in an interactive window (Figs. 5 and 6),
visualize the trajectory of small simulations, and capture

https://github.com/zincware/MDSuite
https://github.com/zincware/MDSuite

Page 12 of 15Tovey et al. Journal of Cheminformatics (2023) 15:19

Fig. 7  (left) Strong-scaling of the RDF calculation on 99000 Oxygen atoms. (right) GPU time scaling with respect to number of 108’000 argon atom
configurations in an RDF computation

snapshots of a simulation at a specific time step as a png
file.

Two‑dimensional visualization
In cases where a full three-dimensional visualization is
not required, MDSuite utilizes the Bokeh [65] library to
construct interactive plots for data analysis and explora-
tion. These plots, displayed within a web-browser at the
end of a calculation, are fully interactive in that they ena-
ble exploration of plotted data through zooming, sliding,
and hovering over points in the plot. In addition to the
automatic plotting features, user have complete access to
the raw calculation data for custom plotting.

Results and discussion
Performance
Beyond providing functionality, MDSuite has been devel-
oped to maximise the performance of computations.
Much of the performance of the MDSuite calculators
and transformations arises from the heavy use of Tensor-
Flow [46] and the formulation of computations as tensor
operations. By utilizing TensorFlow for these operations
the computations can immediately be performed in par-
allel and on GPU with little to no additional software.
This, coupled with the memory manager, results in mem-
ory safe and computationally efficient calculations. To
assess the performance of MDSuite, a strong-scaling test
has been performed using the RDF calculator as it pre-
sents both a memory and time intensive operation that is
frequently used in computational studies. Strong-scaling
measures the improvement in the time of a computa-
tion with respect to additional computational resources.
In this study, the CPU access of TensorFlow was limited

from 1 to 96 cores and the RDF computation performed
10 times to ensure correct statistics. In addition to the
strong-scaling test, the calculations were also performed
on several devices to assess performance improvements
with respect to accelerators including a GTX 1070 and
RTX 2080 GPU. In the strong-scaling test, 3 configura-
tions of 33’000 oxygen atoms were used in the RDF com-
putation. To additionally test the memory management
capabilities of MDSuite, a 108’000 atom simulation of
liquid argon was performed using the LAMMPS [39]
simulation engine generating 5000 time-steps in the
process , the trajectory of which was used in the device
scaling tests.. In the device test, an RDF calculation has
been performed on an increasing number of configura-
tions, or frames, of this simulation. In the largest case (80
configurations), 80 · 108000 = 8640000 atoms are used in
the RDF computation on devices with as little as 8 GB of
memory. Fig. 7 outlines the results of these experiments.
It is clear when studying the figure that the parallelization
of the computation results in improved speeds.

In addition to plotting simply the computation time,
the speedup factor is also included on the second y-axis
of Fig. 7. This plot shows the factor speedup upon the
introduction of additional resources and demonstrates
how MDSuite natively scales to more capable compu-
tational devices. Turning attention now to the device
scaling test, it can be seen that the deployment of the cal-
culation onto a GPU results in a substantial improvement
in computation speed over even the 96 core CPU com-
putation. Furthermore, due to the use of the TensorFlow
library [46] no specific GPU code was required for the
acceleration. While the scaling of the MDSuite library is
effective at improving computation times, it is not perfect
scaling, i.e, with increasing resources vs computations

Page 13 of 15Tovey et al. Journal of Cheminformatics (2023) 15:19 	

the time plot will have a non-zero gradient. This may be
partially addressed with continued optimization of the
calculators, however, on some fundamental level this will
always be limited by the performance of the TensorFlow
library.

Conclusion
We have introduced a new post-processing suite for
particle-based simulations capable of combining the
simulation data from several investigations, perform-
ing analysis on each, and comparing the outcomes of
this analysis under a single framework. The Python
library consists of an easy-to-use API thereby promot-
ing accessibility to those in the community unfamiliar
with programming.

Implemented methods of analysis combine librar-
ies for tensor operations such as TensorFlow in order
to optimize performance and provide better support
for GPU and cluster deployment. Beyond a direct focus
on performance, MDSuite also provides a memory-safe
framework and in doing so, allows for the analysis of
million atoms systems on desktop machines.

Whilst the current state of MDSuite is capable of a
wide range of analysis, there is always more to be done.
In future releases, development will focus on the exten-
sion of MDSuite calculators to other fields including col-
loidal studies, biological systems, and ideally, areas in
high-energy physics.

The outlook of computational methods is promising.
With the ever-increasing capabilities of interaction mod-
els and simulation engines, the possibility for new discov-
eries continues to grow. MDSuite offers a new, innovate
means to combine scientific research with computational
methods under a common framework.

Abbreviations
PB	� Particle based
MD	� Molecular dynamics
MDS-DB	� MDSuite database used for the storage of simulation data
SQL-DB	� SQL database used by MDSuite to store the analysis of

computations
RDF	� Radial distribution function
ADF	� Angular distribution function
KB	� Kirkwood-Buff
PMF	� Potential of mean-force
GPU	� Graphics processing unit
CPU	� Central processing unit
API	� Application programming interface
PBC	� Periodic boundary conditions
GK	� Green-Kubo
EH	� Einstein-Helfand

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​023-​00687-y.

Additional file 1. Additional information regarding molecule mapping,
data processing, and memory management algorithms.

Acknowledgements
S.T would like to acknowledge the invaluable technical discussion with
Johannes Zeman, Kai Szuttor, and Rudolf Weeber at the Institue for Compu‑
tational Physics. S.T would also like to thank Ganesh Sivaraman and Anand
Narayanan Krishnamoorthy for early testing of the software.

Author contributions
ST developed the initial MDSuite code base, worked on the software, and
wrote the paper. FTH contributed to the software and wrote the paper. CL
contributed to the development of the software. FZ and MB both contributed
to the software and to the paper. CH supervised the project and edited the
paper. All authors read the paper, contributed edits and approved of its final
form. All authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. The research of
F. T-H is supported by SB PhD fellowship 1S58718N of the Research Founda‑
tion Flanders (FWO). C.H and S.T acknowledge financial support from the
German Funding Agency (Deutsche Forschungsgemeinschaft DFG) under
Germany’s Excellence Strategy EXC 2075-390740016, and S. T was supported
by a LGF stipend of the state of Baden-Württemberg. C.H, F.Z, and S.T acknowl‑
edge support from SPP 2363- “Utilization and Development of Machine
Learning for Molecular Applications—Molecular Machine Learning” Funded by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation),
Project-No 497249646. C.L and C.H acknowledge support from the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation), project num‑
ber 327154368, SFB 1313.

Availability of data and materials
Project name: MDSuite Project home page: https://​github.​com/​zincw​are/​
MDSui​te Operating system(s): Platform independent Programming language:
Python3 License: EPL v2.0

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 10 March 2022 Accepted: 22 January 2023

References
	1.	 Kreissl P, Holm C, Weeber R (2021) Frequency-dependent magnetic sus‑

ceptibility of magnetic nanoparticles in a polymer solution: a simulation
study. Soft Matter 17:174–183. https://​doi.​org/​10.​1039/​D0SM0​1554G

https://doi.org/10.1186/s13321-023-00687-y
https://doi.org/10.1186/s13321-023-00687-y
https://github.com/zincware/MDSuite
https://github.com/zincware/MDSuite
https://doi.org/10.1039/D0SM01554G

Page 14 of 15Tovey et al. Journal of Cheminformatics (2023) 15:19

	2.	 Salo-Ahen OMH, Alanko I, Bhadane R, Bonvin AMJJ, Honorato RV, Hossain
S, Juffer AH, Kabedev A, Lahtela-Kakkonen M, Larsen AS, Lescrinier E,
Marimuthu P, Mirza MU, Mustafa G, Nunes-Alves A, Pantsar T, Saadabadi
A, Singaravelu K, Vanmeert M (2021) Molecular dynamics simulations in
drug discovery and pharmaceutical development. Processes. https://​doi.​
org/​10.​3390/​pr901​0071

	3.	 Durrant JD, McCammon JA (2011) Molecular dynamics simulations and
drug discovery. BMC Biol 9(1):71. https://​doi.​org/​10.​1186/​1741-​7007-9-​71

	4.	 De Vivo M, Masetti M, Bottegoni G, Cavalli A (2016) Role of molecu‑
lar dynamics and related methods in drug discovery. J Med Chem
59(9):4035–4061. https://​doi.​org/​10.​1021/​acs.​jmedc​hem.​5b016​84

	5.	 Zhao H, Caflisch A (2015) Molecular dynamics in drug design. Eur J Med
Chem 91:4–14. https://​doi.​org/​10.​1016/j.​ejmech.​2014.​08.​004

	6.	 Zeman J, Kondrat S, Holm C (2021) Ionic screening in bulk and under
confinement. J Chem Phys 155(20):204501. https://​doi.​org/​10.​1063/5.​
00693​40

	7.	 Sivaraman G, Guo J, Ward L, Hoyt N, Williamson M, Foster I, Benmore C,
Jackson N (2021) Automated development of molten salt machine learn‑
ing potentials: application to LICL. J Phys Chem Lett 12(17):4278–4285.
https://​doi.​org/​10.​1021/​acs.​jpcle​tt.​1c009​01. (PMID: 33908789)

	8.	 Uhlig F, Zeman J, Smiatek J, Holm C (2018) First-principles parametrization
of polarizable coarse-grained force fields for ionic liquids. J Chem Theory
Comput 14(3):1471–1486. https://​doi.​org/​10.​1021/​acs.​jctc.​7b009​03.
(PMID: 29357238)

	9.	 Deringer VL (2020) Modelling and understanding battery materials
with machine-learning-driven atomistic simulations. J Phys Energy
2(4):041003. https://​doi.​org/​10.​1088/​2515-​7655/​abb011. (Publisher: IOP
Publishing)

	10.	 Franco AA, Rucci A, Brandell D, Frayret C, Gaberscek M, Jankowski P,
Johansson P (2019) Boosting rechargeable batteries R &D by multiscale
modeling: myth or reality? Chem Rev 119(7):4569–4627. https://​doi.​org/​
10.​1021/​acs.​chemr​ev.​8b002​39

	11.	 Sun Y, Yang T, Ji H, Zhou J, Wang Z, Qian T, Yan C (2020) Boosting the opti‑
mization of lithium metal batteries by molecular dynamics simulations: a
perspective. Adv Energy Mater 10(41):2002373. https://​doi.​org/​10.​1002/​
aenm.​20200​2373

	12.	 Muralidharan A, Chaudhari MI, Pratt LR, Rempe SB (2018) Molecular
dynamics of lithium ion transport in a model solid electrolyte interphase.
Sci Rep 8(1):10736

	13.	 Breitsprecher K, Holm C, Kondrat S (2018) Charge me slowly, I am in a
hurry: optimizing charge-discharge cycles in nanoporous supercapaci‑
tors. ACS Nano 12(10):9733–9741. https://​doi.​org/​10.​1021/​acsna​no.​8b047​
85

	14.	 Tovey S, Narayanan Krishnamoorthy A, Sivaraman G, Guo J, Benmore C,
Heuer A, Holm C (2020) DFT accurate interatomic potential for molten
NaCl from machine learning. J Phys Chem C 124(47):25760–25768.
https://​doi.​org/​10.​1021/​acs.​jpcc.​0c088​70

	15.	 Breitsprecher K, Janssen M, Srimuk P, Mehdi BL, Presser V, Holm C, Kondrat
S (2020) How to speed up ion transport in nanopores. Nat Commun
11(1):6085. https://​doi.​org/​10.​1038/​s41467-​020-​19903-6

	16.	 Zaverkin V, Molpeceres G, Kästner J (2021) Neural-network assisted study
of nitrogen atom dynamics on amorphous solid water—II. Diffusion. Mon
Notices Royal Astron Soc 510(2):3063–3070. https://​doi.​org/​10.​1093/​
mnras/​stab3​631

	17.	 Sivaraman G, Krishnamoorthy AN, Baur M, Holm C, Stan M, Csányi G,
Benmore C, Vázquez-Mayagoitia Á (2020) Machine-learned interatomic
potentials by active learning: amorphous and liquid hafnium dioxide. NPJ
Comput Mater 6(1):104. https://​doi.​org/​10.​1038/​s41524-​020-​00367-7

	18.	 Zaverkin V, Netz J, Zills F, Köhn A, Kästner J (2022) Thermally averaged
magnetic anisotropy tensors via machine learning based on Gaussian
moments. J Chem Theory Comput. https://​doi.​org/​10.​1021/​acs.​jctc.​1c008​
53. ((PMID: 34882425))

	19.	 de Tomas C, Suarez-Martinez I, Marks NA (2016) Graphitization of amor‑
phous carbons: a comparative study of interatomic potentials. Carbon
109:681–693

	20.	 Desai S, Li C, Shen T, Strachan A (2017) Molecular modeling of the
microstructure evolution during carbon fiber processing. J Chem Phys
147(22):224705. https://​doi.​org/​10.​1063/1.​50009​11. (Publisher: Ameri-
can Institute of Physics)

	21.	 Salaway RN, Zhigilei LV (2014) Molecular dynamics simulations of thermal
conductivity of carbon nanotubes: Resolving the effects of computa‑
tional parameters. Int J Heat Mass Transfer 70:954–964

	22.	 Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O (2011) MDAnaly‑
sis: a toolkit for the analysis of molecular dynamics simulations. J Comput
Chem 32(10):2319–2327. https://​doi.​org/​10.​1002/​jcc.​21787

	23.	 Humbert MT, Zhang Y, Maginn EJ (2019) PyLAT: python LAMMPS analysis
tools. J Chem Inf Model 59(4):1301–1305. https://​doi.​org/​10.​1021/​acs.​
jcim.​9b000​66

	24.	 McGibbon RT, Beauchamp K, Harrigan M, Klein C, Swails J, Hernández C,
Schwantes C, Wang L-P, Lane T, Pande V (2015) Mdtraj: a modern open
library for the analysis of molecular dynamics trajectories. Biophys J
109(8):1528–1532. https://​doi.​org/​10.​1016/j.​bpj.​2015.​08.​015

	25.	 Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for process‑
ing and analysis of molecular dynamics trajectory data. J Chem Theory
Comput 9(7):3084–3095. https://​doi.​org/​10.​1021/​ct400​341p. (PMID:
26583988)

	26.	 Ramasubramani V, Dice BD, Harper ES, Spellings MP, Anderson JA, Glotzer
SC (2020) freud: A software suite for high throughput analysis of particle
simulation data. Comput Phys Commun 254:107275. https://​doi.​org/​10.​
1016/j.​cpc.​2020.​107275

	27.	 Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynam‑
ics. J Mol Graph 14:33–38

	28.	 David L Dotson, Sean L Seyler, Max Linke, Richard J Gowers (2016) Oliver
Beckstein: datreant: persistent, Pythonic trees for heterogeneous data. In:
Sebastian Benthall, Scott Rostrup (eds.) Proceedings of the 15th Python
in Science Conference, pp. 51–56. https://​doi.​org/​10.​25080/​Majora-​629e5​
41a-​007

	29.	 Adorf CS, Dodd PM, Ramasubramani V, Glotzer SC (2018) Simple data and
workflow management with the signac framework. Comput Mater Sci
146:220–229. https://​doi.​org/​10.​1016/j.​comma​tsci.​2018.​01.​035

	30.	 Bayer M (2012) Sqlalchemy. In: Brown A, Wilson G. (eds.) Thearchitecture
of open source applications volume II: structure, scale, and a few more
fearless hacks. aosabook.org. http://​aosab​ook.​org/​en/​sqlal​chemy.​html.
Accessed 03 Feb 2022.

	31.	 ...Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak
A, Blomberg N, Boiten J-W, da Silva Santos LB, Bourne PE, Bouwman J,
Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Fink‑
ers R, Gonzalez-Beltran A, Gray AJG, Groth P, Goble C, Grethe JS, Heringa
J, ’t Hoen PAC, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons
A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone
S-A, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M,
van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P,
Wolstencroft K, Zhao J, Mons B (2016) The fair guiding principles for sci‑
entific data management and stewardship. Sci Data 3(1):160018. https://​
doi.​org/​10.​1038/​sdata.​2016.​18

	32.	 Collette A (2013) Python and HDF5. O’Reilly Media, Sebastopol.
	33.	 de Buyl P, Colberg PH, Höfling F (2014) H5md: a structured, efficient,

and portable file format for molecular data. Comp Phys Commun
185(6):1546–1553. https://​doi.​org/​10.​1016/j.​cpc.​2014.​01.​018

	34.	 Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA,
Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE (2018) PubChem
2019 update: improved access to chemical data. Nucleic Acids Res
47(D1):1102–1109. https://​doi.​org/​10.​1093/​nar/​gky10​33

	35.	 Fraux G, Fine J, Ezavod, Barletta GP, Scalfi L, Dimura M: Chemfiles/chem‑
files: Version 0.9.3. https://​doi.​org/​10.​5281/​zenodo.​36531​57.

	36.	 Lindahl, Abraham, Hess, van der Spoel (2021) ROMACS 2021.4 Manual.
Zenodo https://​doi.​org/​10.​5281/​zenodo.​56365​22

	37.	 Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev
A, Simmerling C, Wang B, Woods RJ (2005) The amber biomolecular
simulation programs. J Comput Chem 26(16):1668–1688. https://​doi.​org/​
10.​1002/​jcc.​20290

	38.	 Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus
M (1983) Charmm: a program for macromolecular energy, minimization,
and dynamics calculations. J Comput Chem 4(2):187–217. https://​doi.​
org/​10.​1002/​jcc.​54004​0211

	39.	 Plimpton S (1995) Fast parallel algorithms for short-range molecular
dynamics. J Comput Phys 117(1):1–19. https://​doi.​org/​10.​1006/​jcph.​1995.​
1039

https://doi.org/10.3390/pr9010071
https://doi.org/10.3390/pr9010071
https://doi.org/10.1186/1741-7007-9-71
https://doi.org/10.1021/acs.jmedchem.5b01684
https://doi.org/10.1016/j.ejmech.2014.08.004
https://doi.org/10.1063/5.0069340
https://doi.org/10.1063/5.0069340
https://doi.org/10.1021/acs.jpclett.1c00901
https://doi.org/10.1021/acs.jctc.7b00903
https://doi.org/10.1088/2515-7655/abb011
https://doi.org/10.1021/acs.chemrev.8b00239
https://doi.org/10.1021/acs.chemrev.8b00239
https://doi.org/10.1002/aenm.202002373
https://doi.org/10.1002/aenm.202002373
https://doi.org/10.1021/acsnano.8b04785
https://doi.org/10.1021/acsnano.8b04785
https://doi.org/10.1021/acs.jpcc.0c08870
https://doi.org/10.1038/s41467-020-19903-6
https://doi.org/10.1093/mnras/stab3631
https://doi.org/10.1093/mnras/stab3631
https://doi.org/10.1038/s41524-020-00367-7
https://doi.org/10.1021/acs.jctc.1c00853
https://doi.org/10.1021/acs.jctc.1c00853
https://doi.org/10.1063/1.5000911
https://doi.org/10.1002/jcc.21787
https://doi.org/10.1021/acs.jcim.9b00066
https://doi.org/10.1021/acs.jcim.9b00066
https://doi.org/10.1016/j.bpj.2015.08.015
https://doi.org/10.1021/ct400341p
https://doi.org/10.1016/j.cpc.2020.107275
https://doi.org/10.1016/j.cpc.2020.107275
https://doi.org/10.25080/Majora-629e541a-007
https://doi.org/10.25080/Majora-629e541a-007
https://doi.org/10.1016/j.commatsci.2018.01.035
http://aosabook.org/en/sqlalchemy.html
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1016/j.cpc.2014.01.018
https://doi.org/10.1093/nar/gky1033
https://doi.org/10.5281/zenodo.3653157
https://doi.org/10.5281/zenodo.5636522
https://doi.org/10.1002/jcc.20290
https://doi.org/10.1002/jcc.20290
https://doi.org/10.1002/jcc.540040211
https://doi.org/10.1002/jcc.540040211
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039

Page 15 of 15Tovey et al. Journal of Cheminformatics (2023) 15:19 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	40.	 Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Brown WM, Crozier
PS, in ’t Veld, P.J., Kohlmeyer, A., Moore, S.G., Nguyen, T.D., Shan, R., Stevens,
M.J., Tranchida, J., Trott, C., Plimpton SJ, (2022) Lammps—a flexible simu‑
lation tool for particle-based materials modeling at the atomic, meso,
and continuum scales. Comp Phys Commun 271:108171. https://​doi.​org/​
10.​1016/j.​cpc.​2021.​108171

	41.	 Weik F, Weeber R, Szuttor K, Breitsprecher K, de Graaf J, Kuron M, Landsge‑
sell J, Menke H, Sean D, Holm C (2019) Espresso 4.0—an extensible
software package for simulating soft matter systems. Eur Phys J Spec Top
227(14):1789–1816. https://​doi.​org/​10.​1140/​epjst/​e2019-​800186-9

	42.	 pandas development team, T.: Pandas-dev/pandas: Pandas. https://​doi.​
org/​10.​5281/​zenodo.​35091​34

	43.	 Wes McKinney: Data Structures for Statistical Computing in Python. In:
Stéfan van der Walt, Jarrod Millman (eds.) Proceedings of the 9th Python
in Science Conference, pp. 56–61 (2010). https://​doi.​org/​10.​25080/​
Majora-​92bf1​922-​00a

	44.	 Pérez F, Granger BE (2007) IPython: a system for interactive scientific
computing. Comput Sci Eng 9(3):21–29. https://​doi.​org/​10.​1109/​MCSE.​
2007.​53. (Publisher: IEEE Computer Society)

	45.	 Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J,
Kelley K, Hamrick J, Grout J, Corlay S, Ivanov P, Avila D, Abdalla S, Willing C,
Team JD (2016) Jupyter Notebooks—a publishing format for reproduc‑
ible computational workflows. In: Loizides F, Scmidt B. (eds.) Positioning
and power in academic publishing: players, agents and agendas, IOS
Press, pp 87–90.

	46.	 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS,
Davis A, Dean J, Devin M, Ghemawat S et al (2015) TensorFlow: Large-
scale machine learning on heterogeneous systems. Available via Tensor‑
flow. https://​www.​tenso​rflow.​org/​about/​bib. Accessed 04 Feb 2022.

	47.	 Frenkel D, Smit B (2002) Understanding molecular simulation, 2nd edn.
Academic Press, San Diego. https://​doi.​org/​10.​1016/​B978-​01226​7351-1/​
50006-7. Publication Title: Understanding Molecular Simulation (Second
Edition)

	48.	 Waseda Y (1980) The Structure of non-crystalline materials: liquids and
amorphous solids. Advanced Book Program. McGraw-Hill International
Book Company, New York.

	49.	 Muller P (1994) Glossary of terms used in physical organic chemistry
(IUPAC Recommendations 1994). Pure Appl Chem 66(5):1077–1184.
https://​doi.​org/​10.​1351/​pac19​94660​51077. (Place: Berlin, Boston Pub-
lisher: De Gruyter)

	50.	 Kiefer J, Wolfowitz J (1952) Stochastic estimation of the maximum of a
regression function. Ann Math Stat 23(3):462–466. https://​doi.​org/​10.​
1214/​aoms/​11777​29392

	51.	 Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by
simplified least squares procedures. Anal Chem 36(8):1627–1639. https://​
doi.​org/​10.​1021/​ac602​14a047

	52.	 Smiatek J, Heuer A, Wagner H, Studer A, Hentschel C, Chi L (2013) Coat
thickness dependent adsorption of hydrophobic molecules at polymer
brushes. J Chem Phys 138(4):044904. https://​doi.​org/​10.​1063/1.​47893​05

	53.	 Smiatek J, Wohlfarth A, Holm C (2014) The solvation and ion condensa‑
tion properties for sulfonated polyelectrolytes in different solvents-a
computational study. New J Phys 16(2):025001. https://​doi.​org/​10.​1088/​
1367-​2630/​16/2/​025001. (Publisher: IOP Publishing)

	54.	 Kirkwood JG, Buff FP (1951) The statistical mechanical theory of solutions
I. J Chem Phys 19(6):774–777. https://​doi.​org/​10.​1063/1.​17483​52

	55.	 Kobayashi T, Reid JESJ, Shimizu S, Fyta M, Smiatek J (2017) The proper‑
ties of residual water molecules in ionic liquids: a comparison between
direct and inverse kirkwood-buff approaches. Phys Chem Chem Phys
19:18924–18937. https://​doi.​org/​10.​1039/​C7CP0​3717A

	56.	 Janke W (2002) Statistical analysis of simulations: data correlations and
error estimation. In: Grotendorst J, Marx D, Muramatsu A (eds) Quantum
Simulations of Complex Many-Body Systems: From Theory to Algorithms.
NIC Series, vol 10. John von Neumann Institute for Computing, Jülich, pp
423-445.

	57.	 Green MS (1952) Markoff random processes and the statistical mechanics
of time-dependent phenomena. J Chem Phys 20(8):1281–1295. https://​
doi.​org/​10.​1063/1.​17007​22

	58.	 Kubo R (1957) Statistical-mechanical theory of irreversible processes. I.
General theory and simple applications to magnetic and conduction
problems. J Phys Soc Japan 12(6):570–586. https://​doi.​org/​10.​1143/​JPSJ.​
12.​570

	59.	 Kubo R, Toda M, Hashitsume N (1991) Statistical physics II: nonequilibrium
statistical mechanics, 2nd edn. Springer Series in Solid-State Sciences,
Springer Ser. Solid-State Statistical Physics. Springer, Berlin Heidelberg.
https://​doi.​org/​10.​1007/​978-3-​642-​58244-8

	60.	 Kinaci A, Haskins JB, Çağın T (2012) On calculation of thermal conductiv‑
ity from Einstein relation in equilibrium molecular dynamics. J Chem Phy
137(1):014106. https://​doi.​org/​10.​1063/1.​47314​50. (Publisher: American
Institute of Physics)

	61.	 Kashyap HK, Annapureddy HVR, Raineri FO, Margulis CJ (2011) How is
charge transport different in ionic liquids and electrolyte solutions? J
Phys Chem B 115(45):13212–13221. https://​doi.​org/​10.​1021/​jp204​182c.
(PMID: 22022889)

	62.	 Gillan MJ (1991) The molecular dynamics calculation of transport coef‑
ficients. Phys Scripta T39:362–366. https://​doi.​org/​10.​1088/​0031-​8949/​
1991/​t39/​057. (Publisher: IOP Publishing)

	63.	 Lam P, Dietrich J, Pearce DJ (2020) Putting the semantics into semantic
versioning. arXiv:​2008.​07069

	64.	 Zhou Q-Y, Park J, Koltun V (2018) Open3D: a modern library for 3D data
processing. arXiv:​1801.​09847

	65.	 Bokeh Development Team (2018) Bokeh: python library for interactive
visualization. https://​bokeh.​pydata.​org/​en/​latest/

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1140/epjst/e2019-800186-9
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53
https://www.tensorflow.org/about/bib
https://doi.org/10.1016/B978-012267351-1/50006-7
https://doi.org/10.1016/B978-012267351-1/50006-7
https://doi.org/10.1351/pac199466051077
https://doi.org/10.1214/aoms/1177729392
https://doi.org/10.1214/aoms/1177729392
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1063/1.4789305
https://doi.org/10.1088/1367-2630/16/2/025001
https://doi.org/10.1088/1367-2630/16/2/025001
https://doi.org/10.1063/1.1748352
https://doi.org/10.1039/C7CP03717A
https://doi.org/10.1063/1.1700722
https://doi.org/10.1063/1.1700722
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1007/978-3-642-58244-8
https://doi.org/10.1063/1.4731450
https://doi.org/10.1021/jp204182c
https://doi.org/10.1088/0031-8949/1991/t39/057
https://doi.org/10.1088/0031-8949/1991/t39/057
http://arxiv.org/abs/2008.07069
http://arxiv.org/abs/1801.09847
https://bokeh.pydata.org/en/latest/

	MDSuite: comprehensive post-processing tool for particle simulations
	Abstract
	Introduction
	Implementation
	Software architecture
	SQL-DB
	MDS-DB
	User interface

	Calculators
	Structural properties
	Radial distribution function
	Angular distribution function
	Coordination numbers
	Potential of mean-force
	Kirkwood-Buff integrals

	Dynamic properties
	Green-Kubo calculations
	Einstein-Helfand computations
	Viscosity
	Self-diffusion coefficients
	Distinct-diffusion coefficients
	Ionic conductivity
	Thermal conductivity

	Transformations
	Coordinate (Un)wrapping
	Molecule mapping

	Customization
	Software and development
	Data visualization
	Three-dimensional visualization
	Two-dimensional visualization

	Results and discussion
	Performance

	Conclusion
	Acknowledgements
	References

