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Abstract 

Activity cliffs (AC) are formed by pairs of structural analogues that are active against the same target but have a large 
difference in potency. While much of our knowledge about ACs has originated from the analysis and comparison 
of compounds and activity data, several studies have reported AC predictions over the past decade. Different from 
typical compound classification tasks, AC predictions must be carried out at the level of compound pairs representing 
ACs or nonACs. Most AC predictions reported so far have focused on individual methods or comparisons of two or 
three approaches and only investigated a few compound activity classes (from 2 to 10). Although promising predic-
tion accuracy has been reported in most cases, different system set-ups, AC definitions, methods, and calculation 
conditions were used, precluding direct comparisons of these studies. Therefore, we have carried out a large-scale AC 
prediction campaign across 100 activity classes comparing machine learning methods of greatly varying complexity, 
ranging from pair-based nearest neighbor classifiers and decision tree or kernel methods to deep neural networks. 
The results of our systematic predictions revealed the level of accuracy that can be expected for AC predictions across 
many different compound classes. In addition, prediction accuracy did not scale with methodological complexity but 
was significantly influenced by memorization of compounds shared by different ACs or nonACs. In many instances, 
limited training data were sufficient for building accurate models using different methods and there was no detecta-
ble advantage of deep learning over simpler approaches for AC prediction. On a global scale, support vector machine 
models performed best, by only small margins compared to others including simple nearest neighbor classifiers.
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Graphical Abstract

Introduction
Activity cliffs (ACs) were originally defined as struc-
tural similar active  compounds with large differences 
in potency   (against the same target), presenting major 
problems for standard quantitative structure–activity 
relationship (QSAR) predictions [1]. ACs are of high rel-
evance for medicinal chemistry, given that they capture 
small chemical modifications with large consequences 
for specific biological activities [2]. As such, ACs rep-
resent extreme examples of SAR discontinuity, which is 
encountered during compound optimization and might 
(or might not) be desirable, depending on the develop-
ment stage of compound series [2]. In medicinal chem-
istry, ACs are best rationalized as structural analogues 
(belonging to the same series) having large potency dif-
ferences. However, for AC definition and assessment, 
a variety of molecular similarity and potency difference 
criteria have been introduced [2] and the AC concept has 
been further refined over time, both from a medicinal 
chemistry and chemoinformatics perspective [3].

While ACs were systematically explored on the basis 
of compound activity data analysis [2], which yielded 
most of our current insights into ACs and their distri-
bution across different compound classes [2, 3], various 
attempts have also been made to computationally predict 
ACs [3]. Compared to predictions of compound activity 
(or other molecular properties) using QSAR modeling 
including machine learning (ML), AC predictions were 
principally challenging because they needed to focus on 
compound pairs, rather than individual molecules, which 
required methodological adjustments and extensions. 

First attempts to predict individual AC compounds (i.e., 
compounds participating in the formation of an AC) or 
complete ACs were made a decade ago using random for-
est (RF) and support vector machine (SVM) , respectively 
[4, 5]. In these studies, SVM predictions using matched 
molecular pair (MMP) representations of ACs and espe-
cially designed MMP kernels to facilitate predictions at 
the level of compound pairs yielded surprisingly high 
prediction accuracy (80–90%). An MMP is defined as a 
pair of compounds with a chemical change (exchange 
of a substituent) at a single site. Therefore, the SVM-
MMP formalism was also applied in subsequent stud-
ies to further explore and refine AC predictions [6, 7]. 
As a simpler alternative to the use of MMP kernels, the 
condensed graph of reaction (CGR) formalism was also 
applied to represent MMPs for AC predictions using dif-
ferent QSAR/ML methods, reaching an accuracy overall 
comparable to SVM [8]. For representing individual com-
pounds or MMPs, standard fingerprint descriptors from 
chemoinformatics, for the most part bit string represen-
tations of chemical structure, were used in these studies. 
Following a different approach, ACs were also predicted 
on the basis of target-bound compound conformations 
and three-dimensional (3D) binding mode similarity 
measures [9], yielding lower accuracy than SVM mod-
eling. Recently, deep learning (DL) has been applied to 
predict ACs from MMP images using convolutional neu-
ral networks [10, 11] or from molecular graphs involv-
ing representation learning with graph neural networks 
(GNNs) [12]. These DL approaches to AC prediction 
reached similarly high prediction accuracy as earlier ML 
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studies (for example, with area under the receiver-oper-
ating characteristic curve (AUC) values greater 0.9). Fur-
thermore, a transformer-based chemical language model 
has recently been introduced to bridge between AC pre-
diction and the design of new AC compounds [13], hence 
adding a new dimension to predictive modeling. This 
model also achieved AC prediction accuracy comparable 
to (or better than) other state-of-the-art ML models [13]. 
In addition to classification models for AC prediction, 
regression models have also been applied to predict the 
potency of individual AC compounds [14, 15].

All AC prediction efforts reported over time applied 
a general 100-fold difference in compound potency as a 
criterion for AC definition, irrespective of the compound 
classes under investigation. Furthermore, with the excep-
tion of 3D AC predictions [9], these studies consistently 
applied the MMP formalism as a similarity criterion for 
AC definition and representation. Moreover, all of these 
studies also had in common that they reported AC pre-
dictions only for a limited number of compound activity 
classes; always fewer than 10 and in some cases –includ-
ing the DL investigations– only two to four. An activity 
class is defined as a set of compounds with experimen-
tally confirmed activity against a given target. Since the 
system set-up, compound classes, and calculation con-
ditions largely varied in the studies, they can also not be 
rigorously compared.

In this work, we report the first large-scale prediction 
of ACs over 100 compound activity classes using ML 
methods of increasing complexity including DL. For each 
activity class, ACs and nonACs (MMPs not meeting AC 
potency difference criteria) were identified and classi-
fication models were built to systematically distinguish 
between ACs and nonACs. By design, this study aimed 
to enable a direct comparison of various methodologies 
for AC prediction and provide a general assessment of 
prediction accuracy across many different compound 
classes. Furthermore, different from earlier studies, ACs 
were defined and predicted on the basis of statistically 
significant activity class-dependent potency differences 
derived from class-specific compound potency distribu-
tions, hence further refining the assessment of ACs.

Methods
Compound data sets
Compound activity classes were extracted from the 
ChEMBL database (version 29) [16] based on the fol-
lowing criteria: molecular mass less than 1000 Da, target 
confidence score of 9, interaction relationship type ‘D’, 
and availability of a numerically specified potency value. 
Only Ki or Kd measurements were considered as potency 
annotations. Each activity class consisted of qualifying 
compounds with reported activity against an individual 

target. In addition to the compound-based selection cri-
teria given above, activity classes were required to meet 
AC analysis criteria, as specified below. A total of 100 
activity classes were assembled. Their targets and compo-
sition are reported in Additional file 1: Table S1.

Activity cliff definition
Structural similarity criterion
As an intuitive representation of structurally analogous 
compounds with small chemical modifications, the MMP 
formalism was applied. An MMP is formed by a pair of 
compounds that share a common core structure and are 
distinguished by substituents at a single site. An MMP-
based AC, termed MMP-cliff, was defined as an MMP 
with a large difference in potency between the participat-
ing compounds (as further detailed below) [17]. For AC 
analysis, MMPs were generated with the computationally 
efficient molecular fragmentation algorithm introduced 
by Hussain and Rea  [18] using a previously reported 
implementation [19]. For MMP generation, a substitu-
ent was permitted to consist of at most 13 non-hydrogen 
atoms and the core structure was required to be at least 
twice as large as a substituent. The maximum difference 
in non-hydrogen atoms between the exchanged substitu-
ents was set to eight non-hydrogen atoms [17]. Gener-
ated MMPs having a core with less than 10 non-hydrogen 
atoms were discarded.

Activity class‑dependent potency difference criteria
Most of the previously reported AC analyses and predic-
tions applied a constant 100-fold difference in potency 
as a criterion, regardless of the compound classes under 
study [20]. However, the analysis of compound potency 
distributions across many activity classes has shown 
that a 100-fold difference in potency can only serve as 
an approximate criterion for AC definition [21]. Instead, 
from class-dependent compound potency distributions, 
statistically significant potency differences qualifying for 
ACs were determined as the mean compound potency 
per class plus two standard deviations, yielding more 
realistic variable class-dependent potency difference cri-
teria [21], as also applied herein. Furthermore, to balance 
potency difference-dependent boundary effects in AC 
prediction, only MMPs with a less than tenfold difference 
in potency (∆pKi < 1) were classified as nonACs.

Compound overlap in matched molecular pairs
Different MMPs from an activity class might  share indi-
vidual compounds. When MMPs are randomly divided 
into training and test sets, MMPs with compound over-
lap might appear in both sets, giving rise to high similar-
ity between such training and test instances. Accordingly, 
compound overlap between training and test MMPs 
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causes a form of “data leakage”, favoring similarity-
based detection of MMPs with shared compounds [12]. 
To address the influence of data leakage phenomena on 
model performance, we generated different MMP parti-
tions for training and testing in the presence or absence 
of data leakage. Under “data leakage possibly included” 
conditions, MMPs from 100 activity classes were ran-
domly divided into training (80%) and test sets (20%). 
By contrast, under “data leakage excluded” conditions, 
an advanced cross-validation (AXV) approach was 
applied  [8]. Accordingly, for each activity class, a hold-
out set of 20% of the compounds was randomly selected 
before MMPs were generated for the entire class. If nei-
ther compound of an MMP was present in the hold-out 
set, the MMP was assigned to the training set. If both 
MMP compounds (forming the MMP) were contained in 
the hold-out set, the MMP was assigned to the test set. If 
one of the MMP compounds was present in the hold-out 
set, the MMP was omitted from training and test  sets. 
For predictions under “data leakage excluded” conditions, 
42 activity classes yielding at least 20 ACs were selected 
to ensure meaningful model derivation and evaluation.

Molecular representation
Fingerprints
Extended connectivity fingerprints with bond diameter 4 
(ECFP4) [22] were used to represent MMPs. As a modi-
fication, features with bond diameter 1 were omitted to 
reduce feature sets and emphasize contributions of fea-
tures with larger bond diameters. Feature identifiers were 
sorted in ascending order and assigned to fingerprint bits 
in the same order to prevent feature collision and maxi-
mize the number of features contributing to AC predic-
tion. Fingerprints were separately generated for the core 
and chemical transformation of an MMP. For the trans-
formation, two fingerprints were generated including one 
recording unique features of the exchanged substituents 
and another recording common features. Then, the fin-
gerprints for the core, unique features of the substituents, 
and common features of substituents were concatenated 
to produce a single MMP fingerprint [7]. Accordingly, 
the length of the fingerprint depended on each activity 
class. MMP fingerprint calculations were conducted with 
in-house Java and Python scripts based on the OEChem 
toolkit [23].

Condensed graph of reaction representation
For neural network calculations, MMPs were also repre-
sented as a single graph applying the condensed graph of 
reaction (CGR) approach [8, 24]. The CGR formalism was 
originally conceived to combine reactant and product 
graphs based on a superposition of invariant components 
[24]. The resulting CGR forms a completely connected 

graph in which each node represents an atom and each 
edge a bond. In a CGR, the shared core of an MMP and 
the two exchanged substituents form a pseudo-molecule. 
Here, the subgraphs representing the substituents of the 
weakly and highly potent MMP compounds were con-
nected to the core via a single bond and a hypothetical 
zero-order bond, respectively. The pseudo-molecule rep-
resentation of MMPs was generated using an in-house 
Python script and  RDKit [25].

Machine learning
Four fingerprint-based ML approaches for AC prediction 
were applied including SVM, extreme gradient boost-
ing (XGB), RF, and a fully connected neural network 
(FCNN). In addition, a message passing neural network 
(MPNN) involving representation learning from graphs 
was used. For FCNN and MPNN, two distinct models 
were generated on the basis of different molecular rep-
resentations (see below). As controls, k-nearest neighbor 
(kNN) calculations including 1NN and 5NN were carried 
out, in which similarity was evaluated using the MMP 
kernel described below.

For each activity class and ML method, three inde-
pendent models were derived with three-fold internal 
cross-validation to optimize hyperparameters. Model 
performance was average over three independent trials.

FCNN and MPNN were implemented using PyTorch 
[26] and all other models using scikit-learn [27]. Hyper-
parameters of models were optimized using Optuna 
library [28], as reported in Additional file 1: Table S2 (for 
remaining parameters, default settings were used). For 
each model, the hyperparameter search with Optuna was 
performed 100 times.

Support vector machine
SVM is a supervised learning method that aims to derive 
a hyperplane separating training instances with different 
class labels by maximizing the margin from the hyper-
plane [29]. SVM can  attempt nonlinear classification in 
higher-dimensional feature spaces with the aid of kernel 
functions. Herein, the MMP kernel [5] was used that rep-
resents a product of two individual Tanimoto kernels [30] 
for determining core and substituent similarity, respec-
tively. The parameter ‘class_weight’ was set to ‘balanced’. 
The hyperparameter C was selected using grid search 
from the value range [ log(−2), log2] divided into 10 equal 
intervals.

Random forest
RF is a supervised ML method based upon an ensemble 
of decision trees generated from randomly chosen train-
ing instances using bootstrapping [31]. Class labels of test 
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instances are predicted by a majority vote over individual 
decision trees. The parameter ‘class_weight’ was set to 
‘balanced’.

Extreme gradient boosting
XGB also employs an ensemble of decision trees itera-
tively generated using gradient boosting [32] such that 
each decision tree minimized the residual error from 
a previous model. XGB is a computationally efficient 
extension of gradient boosting achieved by parallelizing 
decision tree construction.

Neural networks
Fully connected neural network  A FCNN consists of a 
series of connected perceptrons stored in several layers. 
Each perceptron receives signals from the previous layer 
that are transformed into scalar values using an activation 
function. In this study, two distinct FCNNs were imple-
mented using different input representations including 
a single MMP fingerprint (FCNN) or the three separate 
core and substituent fingerprint components (FCNN_
sep). MMP fingerprints were converted into probabilities 
of AC formation. The number of nodes in hidden layers 
was monotonically reduced. In FCNN_sep, the individual 
fingerprint components were submitted to several hid-
den layers and the output fingerprints were concatenated 
into a single vector, which was sent to subsequent hidden 
layers and transformed into the probability of AC forma-
tion using softmax layer. The number of nodes in hidden 
layers for both individual substructures and concatenated 
feature vectors was also monotonically reduced. The Rec-
tified Linear Unit (ReLU) [33] was used as activation func-
tion, except for the final layer. Binary cross-entropy with 
balance factor weighted by the ratio of  negative to posi-
tive samples was used as loss function for the Adam opti-
mizer [34]. The learning rate was facilitated by the optim.
lr_scheduler.StepLR in PyTorch. For the scheduler, the 
parameter gamma was set to 0, while the step size was an 
optimized hyperparameter. The batch size was set to 128 
if the number of MMPs in a training set was greater than 
128; otherwise, it was set to the size of the training set. 
Training steps were performed for 50 epochs during the 
hyperparameter search and for 100 epochs during fitting  
using preferred parameters.

Message passing neural network  MPNN is a graph neural 
network approach converting an input molecular graph 
into a feature vector. During MPNN training, a feature 
vector of each atom is iteratively merged with informa-
tion from its neighboring atoms and bonds to minimize 
the loss function. The initial features for each atom and 
bond are listed in Additional file 1: Table S3. The trans-
formed feature vectors of each atom are merged into sin-

gle vector submitted to a fully-connected neural network 
with several hidden layer producing an output probabil-
ity. Herein, a previously implemented MPNN architecture 
[35] originally proposed by Tang et al. [36] was used. In 
analogy to FCNN and FCNN_sep, two distinct MPNNs 
were generated based on a single CGR as input (MPNN) 
or three separate subgraphs representing the MMP core 
and substituents, respectively (MPNN_sep). In the latter 
case, feature vectors for each substructure were individu-
ally calculated and then concatenated into single vector as 
input for the fully-connected neural network. Activation 
function, loss function, optimizer, scheduler of optimizer, 
batch size, epochs, and number of hyperparameter search 
calculations were set as reported for FCNN.

Performance measures
To evaluate the performance of the different mod-
els, balanced accuracy (BA) [37], recall, precision, and 
Matthew’s correlation coefficient (MCC) [38] were 
determined.

Results and discussion
Study concept
Previous studies predicting ACs predominantly focused 
on individual ML methods and generally investigated 
only small numbers of activity classes. By contrast, our 
current investigation was designed to compare AC pre-
dictions on a large scale classes using ML methods of 
varying complexity, ranging from nearest neighbor cal-
culations to deep neural networks. Accordingly, our 
study aimed to arrive at a comprehensive assessment of 
AC predictions, taking class-specific potency difference 
thresholds for AC formation into account, and provide 
general insights into performance differences between 
methods of varying computational complexity and 
requirements.

Global performance comparison
The accuracy of AC predictions across 100 different 
activity classes using nine different methods is sum-
marized in Fig.  1. Both on the basis of BA and MCC 
performance measures, most models were predictive, 
with median BA values of ~ 0.7 or greater and positive 
median MCC values of up to ~ 0.5. Interestingly, deci-
sion tree methods including RF and XGB as well as 
MPNN displayed overall lowest performance, with XGB 
approaching random prediction accuracy on the basis of 
both performance measures. By contrast, SVM, FCNN, 
and 1NN (but not 5NN) performed comparably well. 
Notably, the simple 1NN classifier approached the per-
formance level of much more complex ML models, indi-
cating that many ACs were more similar to other ACs 
than to nonACs (and vice versa); an interesting finding. 
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When similarity was averaged over five nearest neighbors 
(5NN) prediction accuracy decreased (thus emphasizing 
closets relationships).

Furthermore, while there were essentially no differ-
ences in performance between the FCNN and FCNN_sep 
model variants, MPNN_sep achieved significantly higher 
prediction accuracy than MPNN, also slightly exceeding 
SVM on the basis of BA values. However, on the basis 
of MCC values, the prediction accuracy of MPNN_sep 
was lower compared to SVM. Thus, MPNN representa-
tion learning clearly benefitted from the use of individual 
input graph components (see “Methods section”).

An important result of global performance compari-
son was that AC prediction accuracy did not scale with 
increasing methodological complexity. Although dif-
ferences in median prediction accuracy between best-
performing methods were small, SVM represented an 
overall preferred approach.

Figure 2 shows exemplary ACs and nonACs from activ-
ity class ChEMBL4523 (Additional file  1: Table  S1) that 
were accurately predicted using different methods. In 
these exemplary cases, MMP cores of ACs and nonACs 

were distinct, but essentially conserved among ACs and 
nonACs, respectively, thus providing a rationale for con-
sistently accurate predictions.

Influence of training set size
Given the different numbers of compounds comprising 
100 activity classes (Additional file 1: Table S1), training 
sets for ML also varied in size. Therefore, we analyzed if 
there was a relationship between increasing training set 
sizes and prediction accuracy achieved by different meth-
ods. Especially for FCNN and MPNN, increasing predic-
tion accuracy might be expected for increasingly large 
training sets. Figure  3 shows the effects of training set 
size on prediction accuracy.

There was no significant correlation between training 
set sizes and prediction accuracy for the different meth-
ods including MPNN and FCNN. Models yielding poor 
predictions were typically derived from small (or small-
est) training sets and models based on large training sets 
generally achieved higher accuracy. However, best pre-
diction accuracies for different methods were obtained 
on the basis of variably sized training sets including many 
small sets. Hence, compound class-specific differences 
affected predictions more than available training data 
volumes, which was consistently observed for ML meth-
ods of different complexity; another interesting finding.

Data leakage phenomena
We next investigated to which extent possible data leak-
age affected the predictions. In the context of AC predic-
tions, data leakage corresponds to compound overlap 
between ACs or nonACs in training and test sets. In the 
absence of data leakage, ACs and nonACs in training 
and test sets are structurally distinct. Figure  4 reports 
the results of predictions in the presence and absence of 
data leakage. These predictions were carried out using 
42 activity classes that were sufficiently large to yield 
meaningful training sets having no compound overlap 
with test sets. Global trends in prediction accuracy cor-
responded to those observed in Fig.  1. However, for all 
methods, prediction accuracy was significantly reduced if 
training and test sets were structurally distinct. Although 
most models were still predictive when data leakage was 
excluded, BA values were typically reduced to ~ 0.6 or 
less and MCC values to less than 0.25. Thus, compound 
overlap between MMPs used for training and testing 
had a strong positive effect on AC prediction accuracy, 
regardless of the methods that were used.

For ACs, compound overlap predominantly leads 
to memorization of highly potent compounds in ML 
because a highly potent compound can form ACs with 
multiple weakly potent analogues. In addition, for non-
ACs, many weakly potent compounds can be memorized. 

Fig. 1  Global prediction accuracy. Boxplots report the distribution 
of AC prediction accuracy for nine ML approaches across 100 activity 
classes on the basis of A BA and B MCC values. The models were 
built based on randomly selected training and test sets (that is, under 
“data-leakage possibly included” conditions; see Methods section). 
In a boxplot, a value distribution is represented by its maximum 
(upper whisker), upper quartile (upper boundary of the box), median 
(horizontal line), lower quartile (lower boundary of the box) and its 
minimum (lower whisker). Individual values representing statistical 
outliers are shown as black dots
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Clearly, predictions at the level of compound pairs such 
as ACs can be strongly supported by compounds shared 
in training and test pairs and the ensuing memorization 
effects. For structurally distinct training and test sets, 

pair-based prediction becomes much more challenging. 
The results in Fig.  4 also imply that generally high pre-
diction accuracy obtained for ACs in independent studies 
(see “Introduction section”) was most likely supported by 
data leakage phenomena, providing a plausible explana-
tion for the partly surprising success in addressing the 
principally challenging AC prediction task.

Balanced versus imbalanced training sets
Another issue of general relevance for ML concerns 
the preferred use of training sets with balanced class 
label composition. However, for AC predictions, imbal-
anced training sets provide a realistic application sce-
nario because ACs are only rarely observed compared 
to nonACs, as discussed above. Nonetheless, we also 
investigated the influence of balanced training sets on 
AC predictions in the context of data leakage assess-
ment. Therefore, the 10 activity classes containing the 
largest number of ACs were selected and the number 
of nonACs used for training was reduced to match the 
number of ACs to provide balanced learning conditions. 
Then, SVM and MPNN_sep models were derived on the 
basis of original (imbalanced) and balanced training sets, 
both in the presence or absence of data leakage, and the 

Fig. 2  Correctly predicted test instances. Shown are exemplary ACs and nonACs that were correctly predicted using different methods. For each 
AC and nonAC, the MMP core is shown on the left, followed by the two substituent fragments representing the chemical transformation

Fig. 3  Influence of training set size on prediction accuracy. The 
swarm plot shows prediction accuracy on the basis of MCC values 
achieved by the different methods for training sets of varying 
size. Each of the 100 activity classes is represented by a dot that is 
color-coded according to the spectrum on the right according to the 
total number of MMPs in training sets (i.e., the darker the blue color, 
the larger the training set)
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predictions were compared, as reported in Figs. 5 and 6, 
respectively. Here, prediction accuracy was assessed on 
the basis of BA and MCC values as well as recall and pre-
cision. For imbalanced training sets, overall prediction 
accuracy might be overestimated on the basis of some 
performance measures if the majority class (here non-
ACs) is more accurately predicted than the minority class 
(ACs). In such cases, MCC is becoming particularly rele-
vant as a performance measure because it equally weighs 
TP, FN, TN, and FP .

Under varying calculation conditions considering 
both data balance and leakage, prediction characteris-
tics changed in different ways. For SVM, BA and recall 
further increased for balanced relative to imbalanced 
training sets, both in the presence and absence of data 
leakage (Fig. 5A and C). However, on the basis of MCC, 
this performance increase was only observed when data 
leakage was excluded. In the presence of data leakage, the 
use of balanced training sets reduced MCC-based pre-
diction accuracy compared to the original sets (Fig. 5B). 
Furthermore, precision was reduced for balanced rela-
tive to imbalanced training sets, both in the presence 
and absence of data leakage. Moreover, for MPNN_sep, 
the use of balanced compared to original training sets 
led to a decrease in BA in the absence and to an increase 
in the presence of data leakage (Fig. 6A). On the basis of 
MCC, prediction accuracy decreased for balanced sets in 

Fig. 4  Influence of data leakage on prediction accuracy. Boxplots 
report the distribution of AC prediction accuracy for nine ML 
approaches across 42 activity classes on the basis of A BA and B MCC 
values according to Fig. 1 in the presence (pink boxes) or absence 
(brown) of data leakage (i.e., compound overlap between training 
and test sets)

Fig. 5  Balanced vs. imbalanced training sets for SVM models. Boxplots report the prediction accuracy of SVM models derived from imbalanced or 
balanced training sets of 10 activity classes with largest numbers of ACs on the basis of A BA, B MCC, C recall, and D precision in the presence or 
absence of data leakage
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the presence and increased in the absence of data leak-
age (Fig.  6B), consistent with the observations made 
for SVM (Fig.  5B). In addition, precision also consist-
ently decreased for balanced training sets (Figs.  5C and 
6D), while recall of balanced MPNN_sep models only 
increased if data leakage was excluded (Fig. 6C).

Taken together, these results showed that for both 
methods, relative model performance based on imbal-
anced vs. balanced training sets depended on the pres-
ence or absence of data leakage. Furthermore, recall/
precision characteristics differed from prediction accu-
racy trends depending on data balance and leakage 
conditions. Clearly, when compound overlap between 
training and test sets was permitted, MCC decreased 
when training sets were balanced, due to the reduction 
of the majority class, while an increase in MCC as a con-
sequence of data balance was only observed when train-
ing and test sets were structurally distinct, reflecting an 
intricate interplay between these learning conditions in 
AC prediction.

Conclusion
In this work, we have investigated AC predictions on a 
much larger scale than has been done before and with a 
particular focus on comparing a spectrum of ML meth-
ods of increasing complexity. In most cases, predictive 

models were obtained and prediction accuracy did 
not scale with ML model complexity. Even a simple 
1NN classifier approached the accuracy level of over-
all best ML predictions obtained with SVM, FCNN, 
and MPNN_sep. The success of representation learning 
using MPNNs strongly depended on the graph input 
formats. However, the deep learning architectures 
investigated here did not provide an advantage over 
SVM that was the overall preferred approach across 
100 activity classes (albeit by relatively small margins). 
By contrast, decision tree methods were overall less 
predictive. In particular, XGB that is extensively used 
in compound classification, displayed only poor per-
formance in AC prediction. We also demonstrated that 
training set size was not a critical factor for AC pre-
diction accuracy, perhaps surprisingly. For all models 
including deep neural networks, best predictions were 
often obtained on the basis of relatively small training 
sets, depending on individual activity classes. However, 
given that AC predictions depend on compound pairs, 
compound overlap between different ACs in training 
and test sets was shown to strongly support accurate 
predictions. For structurally distinct training and test 
sets, prediction accuracy was significantly reduced, as 
one might anticipate, yielding a more realistic assess-
ment of AC predictions. We also observed an intricate 
interplay between varying data balance and leakage 

Fig. 6  Balanced vs. imbalanced training sets for MPNNs. Boxplots report the prediction accuracy of MPNN_sep models derived from imbalanced 
or balanced training sets of 10 activity classes with largest numbers of ACs on the basis of A BA, B MCC, C recall, and D precision in the presence or 
absence of data leakage
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conditions on model performance, yielding different 
prediction characteristics and trends on the basis of 
alternative performance measures.
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