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Abstract 

Background:  Computational methods support nowadays each stage of drug design campaigns. They assist not 
only in the process of identification of new active compounds towards particular biological target, but also help in 
the evaluation and optimization of their physicochemical and pharmacokinetic properties. Such features are not 
less important in terms of the possible turn of a compound into a future drug than its desired affinity profile towards 
considered proteins. In the study, we focus on metabolic stability, which determines the time that the compound can 
act in the organism and play its role as a drug. Due to great complexity of xenobiotic transformation pathways in the 
living organisms, evaluation and optimization of metabolic stability remains a big challenge.

Results:  Here, we present a novel methodology for the evaluation and analysis of structural features influencing 
metabolic stability. To this end, we use a well-established explainability method called SHAP. We built several predictive 
models and analyse their predictions with the SHAP values to reveal how particular compound substructures influence 
the model’s prediction. The method can be widely applied by users thanks to the web service, which accompanies the 
article. It allows a detailed analysis of SHAP values obtained for compounds from the ChEMBL database, as well as their 
determination and analysis for any compound submitted by a user. Moreover, the service enables manual analysis of 
the possible structural modifications via the provision of analogous analysis for the most similar compound from the 
ChEMBL dataset.

Conclusions:  To our knowledge, this is the first attempt to employ SHAP to reveal which substructural features are 
utilized by machine learning models when evaluating compound metabolic stability. The accompanying web service 
for metabolic stability evaluation can be of great help for medicinal chemists. Its significant usefulness is related not 
only to the possibility of assessing compound stability, but also to the provision of information about substructures 
influencing this parameter. It can assist in the design of new ligands with improved metabolic stability, helping in 
the detection of privileged and unfavourable chemical moieties during stability optimization. The tool is available at 
https://​metst​ab-​shap.​matinf.​uj.​edu.​pl/.
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Background
It is not a mystery that the process of drug design 
and development is very complex and absorbs a huge 
amount of time and money [1, 2]. Although nowadays 
it significantly differs from the drug design strategies 

from the past (the emergence of new medicines used 
to be rather a result of serendipity and fortunate acci-
dents [3]), it is still a subject to relatively high risk of 
failure. Nevertheless, the current strategies of search-
ing for new drugs are much more structured and sev-
eral steps can be distinguished within them, such as 
target identification, finding the lead structure, its 
optimization, preclinical studies and 3 phases of clini-
cal tests [4, 5].
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Finding a new active compound towards a particular 
target is just the first step in the long path of its pos-
sible transformation into a drug. Meeting the affinity 
requirements is not sufficient, as a compound needs 
to possess favourable physicochemical and pharma-
cokinetic properties as well, and it should not display 
any toxic effects [6–8]. Within the set of considered 
parameters it is also important to put attention to 
metabolic stability, because if a compound is trans-
formed in the organism too quickly, it does not have 
enough time to induce a desired biological response 
[9].

Metabolic stability is one of the most difficult 
parameters to be predicted by computational tools 
due to extreme complexity of processes related to 
xenobiotic transformations in the living organisms. 
The main role in xenobiotic metabolism is played by 
cytochrome P450—a group of haemoprotein enzymes 
with monooxidase activity. Almost sixty CYP isoforms 
occur in human organisms; however, it is CYP3A4 
that is responsible for metabolism of the majority of 
drugs [10–12].

A high number of processes that contribute to met-
abolic stability makes the correct prediction of this 
parameter a challenging task. As a result, publications 
on in silico tools for evaluating the speed of compound 
metabolism are scarce. Here, we mention a few exam-
ples of such studies. Schwaighofer et al. [13] analyzed 
compounds examined by the Bayer Schering Pharma 
in terms of the percentage of compound remaining 
after incubation with liver microsomes for 30  min. 
The human, mouse, and rat datasets were used with 
approximately 1000–2200 datapoints each. The com-
pounds were represented by molecular descriptors 
generated with Dragon software and both classifica-
tion and regression probabilistic models were devel-
oped with the AUC on the test set ranging from 0.690 
to 0.835. Lee et al. [14] used MOE descriptors, E-State 
descriptors, ADME keys, and ECFP6 fingerprints to 
prepare Random Forest and Naïve Bayes predictive 
models for evaluation of compound apparent intrin-
sic clearance with the most effective method reaching 
75% accuracy on the validation set. Bayesian approach 
was also used by Hu et al. [15] with accuracy of com-
pound assignment to the stable or unstable class rang-
ing from 75 to 78%. Jensen et al. [16] focused on more 
structurally consistent group of ligands (calcitriol 
analogues) and developed predictive model based 
on the Partial Least-Squares (PLS)  regression, which 
was found to be 85% effective in the stable/unstable 
class assignment. On the other hand, Stratton et  al. 
[17] focused on the antitubercular agents and applied 
Bayesian models to optimize metabolic stability of one 

of the thienopyrimidine derivatives. Arylpiperazine 
core was deeply examined in terms of in silico evalu-
ation of metabolic stability by Ulenberg et  al. [18] 
(Dragon descriptors and Support Vector Machines 
(SVM) were used) who obtained performance of 
R2 = 0.844 and MSE = 0.005 on the test set. QSPR 
models on a diverse compound sets were constructed 
by Shen et al. [19] with R2 ranging from 0.5 to 0.6 in 
cross-validation experiments and stable/unstable clas-
sification with 85% accuracy on the test set.

In silico evaluation of particular compound prop-
erty constitutes great support of the drug design 
campaigns. However, providing explanation of pre-
dictive model answers and obtaining guidance on the 
most advantageous compound modifications is even 
more helpful. Searching for such structural-activity 
and structural-property relationships is a subject of 
Quantitative Structural-Activity Relationship (QSAR) 
and Quantitative Structural-Property Relationship 
(QSPR) studies. Interpretation of such models can 
be performed e.g. via the application of Multiple Lin-
ear Regression (MLR) or PLS approaches [20, 21]. 
Descriptors importance can also be relatively easily 
derived from tree models [20, 21]. Recently, research-
ers’ attention is also attracted by the deep neural nets 
(DNNs) [21] and various visualization methods, such 
as the ‘SAR Matrix’ technique developed by Gupta-
Ostermann and Bajorath [22]. The ‘SAR Matrix’ is 
based on the matched molecular pair (MMP) formal-
ism, which is also widely used for QSAR/QSPR mod-
els interpretation [23, 24]. The work of Sasahara et al. 
[25] is one of the most recent examples of the devel-
opment of interpretable models for studies on meta-
bolic stability.

In our study, we focus on the ligand-based approach 
to metabolic stability prediction. We use datasets of 
compounds for which the half-lifetime (T1/2) was 
determined in human- and rat-based in  vitro experi-
ments. After compound representation by two  key-
based fingerprints, namely MACCS keys fingerprint 
(MACCSFP) [26] and Klekota & Roth Fingerprint 
(KRFP) [27], we develop classification and regres-
sion models (separately for human and rat data) with 
the use of three machine learning (ML) approaches: 
Naïve  Bayes classifiers [28], trees [29–31], and SVM 
[32]. Finally, we use Shapley Additive exPlanations 
(SHAP) [33] to examine the influence of particular 
chemical substructures on the model’s outcome. It 
stays in line with the most recent recommendations 
for constructing explainable predictive models, as the 
knowledge they provide can relatively easily be trans-
ferred into medicinal chemistry projects and help in 
compound optimization towards its desired activity 
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or physicochemical and pharmacokinetic profile [34]. 
SHAP assigns a value, that can be seen as  importance, 
to each feature in the given prediction. These val-
ues are calculated for each prediction separately and 
do not cover a general information about the entire 
model. High absolute SHAP values indicate high 
importance, whereas values close to zero indicate low 
importance of a feature.

The results of the analysis performed with tools 
developed in the study can be examined in detail 
using the prepared web service, which is available at 
https://​metst​ab-​shap.​matinf.​uj.​edu.​pl/. Moreover, the 
service enables analysis of new compounds, submit-
ted by the user, in terms of contribution of particular 
structural features to the outcome of half-lifetime pre-
dictions. It returns not only SHAP-based analysis for 
the submitted compound, but also presents analogous 
evaluation for the most similar compound from the 
ChEMBL  [35] dataset. Thanks to all the above-men-
tioned functionalities, the service can be of great help 
for medicinal chemists when designing new ligands 
with improved metabolic stability. All datasets and 
scripts needed to reproduce the study are available at 
https://​github.​com/​gmum/​metst​ab-​shap.

Results
Evaluation of the ML models
We construct separate predictive models for two 
tasks: classification and regression. In the former 
case, the compounds are assigned to one of the 
metabolic stability classes (stable, unstable, and  of 

middle stability) according to their half-lifetime 
(the T1/2 thresholds used for the  assignment to 
particular stability class are provided in the Meth-
ods section), and the prediction power of ML mod-
els is evaluated with the Area Under the Receiver 
Operating Characteristic Curve (AUC) [36]. In the 
case of regression studies, we assess the prediction 
correctness with the use of the Root Mean Square 
Error (RMSE); however, during the hyperparam-
eter optimization we optimize for the Mean Square 
Error (MSE). Analysis of the dataset division into 
the training and test set as the possible source of 
bias in the results is presented in the Appendix 1. 
The model evaluation is presented in Fig.  1, where 
the performance on the test set of a single model 
selected during the hyperparameter optimization is 
shown.

In general, the predictions of compound half-
lifetimes are satisfactory with AUC values over 
0.8 and RMSE below 0.4–0.45. These are slightly 
higher values than AUC reported by Schwaighofer 
et  al. (0.690–0.835), although datasets used there 
were different and the model performances cannot 
be directly compared [13]. All class assignments 
performed on human data are more effective for 
KRFP with the improvement over MACCSFP rang-
ing from ~ 0.02 for SVM and trees up to 0.09 for 
Naïve Bayes. Classification efficiency performed on 
rat data is more consistent for different compound 
representations with AUC variation of around 1 per-
centage point. Interestingly, in this case MACCSFP 

Fig. 1  Global prediction power of the ML algorithms in a classification and b regression studies. The Figure presents global prediction accuracy 
expressed as AUC for classification studies and RMSE for regression experiments for MACCSFP and KRFP used for compound representation for 
human and rat data

https://metstab-shap.matinf.uj.edu.pl/
https://github.com/gmum/metstab-shap
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provides slightly more effective predictions than 
KRFP. When particular algorithms are considered, 
trees are slightly preferred over SVM (~ 0.01 of 
AUC), whereas predictions provided by the Naïve 
Bayes classifiers are worse—for human data up to 
0.15 of AUC for MACCSFP. Differences for particu-
lar ML algorithms and compound representations 
are much lower for the assignment to metabolic sta-
bility class using rat data—maximum AUC variation 
is equal to 0.02.

When regression experiments are considered, the 
KRFP provides better half-lifetime predictions than 
MACCSFP for 3 out of 4 experimental setups—only 
for studies on rat data with the use of trees, the RMSE 
is higher by 0.01 for KRFP than for MACCSFP. There 
is ~ 0.02–0.03 RMSE difference between trees and 
SVMs with the  slight preference (lower RMSE) for 
SVM. SVM-based evaluations are of similar predic-
tion power for human and rat data, whereas for trees, 
there is ~ 0.03 RMSE difference between the predic-
tion errors obtained for human and rat data.

Regression vs. classification
Besides performing ‘standard’ classification and 
regression experiments, we also pose an additional 
research question related to the efficiency of the 
regression models in comparison to their classifica-
tion counterparts. To this end, we prepare the fol-
lowing analysis: the outcome of a regression model 
is used to assign the stability class of a compound, 
applying the same thresholds as for the classification 

experiments. Accuracy of such classification is pre-
sented in Table 1.

Analysis of the classification experiments performed 
via regression-based predictions indicate that depend-
ing on the experimental setup, the predictive power 
of particular method varies to a relatively high extent. 
For the human dataset, the ‘standard classifiers’ always 
outperform class assignment based on the regression 
models, with accuracy difference ranging from ~ 0.045 
(for trees/MACCSFP), up to ~ 0.09 (for SVM/KRFP). 
On the other hand, predicting exact half-lifetime value 
is more effective basis for class assignment when work-
ing on the  rat dataset. The accuracy differences are 
much lower in this case (between ~ 0.01 and 0.02), with 
an exception of SVM/KRFP with difference of ~ 0.75. 
The accuracy values obtained in classification experi-
ments for the  human dataset are similar to accuracies 
reported by Lee et al. (75%) [14] and Hu et al. (75–78%) 
[15], though one must remember that the datasets used 
in these studies are different from ours and therefore a 
direct comparison is impossible.

Global analysis of all ChEMBL data
We analyzed the predictions obtained on the ChEMBL 
data with the use of SHAP values in order to find these 
substructural features, which have the highest contribu-
tion to particular class assignment (Fig. 2) or prediction 
of exact half-lifetime value (Fig.  3); class 0—unstable 
compounds, class 1—compounds of middle stability, 
class 2—stable compounds.

Analysis of Fig.  2 reveals that among the 20 fea-
tures which are indicated by SHAP values as the most 
important overall, most features contribute rather to 
the assignment of a compound to the group of unsta-
ble molecules than to the stable ones—bars referring 
to class 0 (unstable compounds, blue) are significantly 
longer than green bars indicating influence on classify-
ing compound as stable (for SVM and trees). However, 
we stress that these are averaged tendencies for the 
whole dataset and that they consider absolute values of 
SHAP. Observations for individual compounds might be 
significantly different and the set of highest contributing 
features can vary to high extent when shifting between 
particular compounds. Moreover, the high absolute 
values of SHAP in the case of the unstable class can be 
caused by two factors: (a) a particular feature makes the 
compound unstable and therefore it is assigned to this 

Table 1  Comparison of accuracy of standard classification and 
class assignment based on the regression output

Comparison of efficiency of  classification experiments (standard and using 
class assignment based on the regression output) expressed as accuracy. Higher 
values in a particular comparison setup are depicted in bold

Dataset Human Rat

Model Representation Class Class. via 
regression

Class Class. via 
regression

SVM MACCS 0.745 0.695 0.676 0.686
KRFP 0.759 0.672 0.676 0.751

Trees MACCS 0.737 0.692 0.659 0.686
KRFP 0.734 0.661 0.670 0.676

Fig. 2  The 20 features which contribute the most to the outcome of classification models for a Naïve Bayes, b SVM, c trees constructed on human 
dataset with the use of KRFP

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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class, (b) a particular feature makes compound stable—
in such case, the probability of compound assignment 
to the unstable class is significantly lower resulting in 
negative SHAP value of high magnitude.

For both Naïve Bayes classifier as well as trees it is 
visible that the primary amine group has the highest 
impact on the compound stability. As a matter of fact, 
the primary amine group is the only feature which is 
indicated by trees as contributing mostly to compound 
instability. However, according to the above-mentioned 
remark, it suggests that this feature is important for 
unstable class, but because of the nature of the analysis 
it is unclear whether it increases or decreases the pos-
sibility of particular class assignment.

Amines are also indicated as important for evalu-
ation of metabolic stability for regression models, 
for  both SVM and trees. Furthermore, regression 
models indicate a number of nitrogen- and oxygen-
containing moieties as important for prediction 
of compound half-lifetime (Fig.  3). However, the 
contribution of particular substructures should be 
analyzed separately for each compound in order to 
verify the exact nature of their contribution.

In order to examine to what extent the choice of 
the ML model influences the features indicated as 
important in particular experiment, Venn diagrams 
visualizing overlap between sets of features indicated 
by SHAP values are prepared and shown in Fig. 4. In 
each case, 20 most important features are considered.

When different classifiers are analyzed, there is only 
one common feature which is indicated by SHAP for 
all three models: the primary amine group. The low-
est overlap between pairs of models occurs for Naïve 
Bayes and SVM (only one feature), whereas the high-
est (8 features) for Naïve Bayes and trees. For SVM 
and trees, the SHAP values indicate 4 common fea-
tures as the highest contributors to the assignment 
to particular stability class. Nevertheless, we should 
remember that for Naïve Bayes the prediction accu-
racy was significantly lower than for SVM or trees; 
and therefore, the features indicated by this approach 
are also less reliable.

Finally, 4 features are common for SVM and trees in 
the  case of regression experiments: the already men-
tioned primary amine group, alkoxy-substituted phe-
nyl, secondary amine, and ester. This is in line with 
the intuition on the possible transformations that 

can occur for compounds containing these chemical 
moieties.

Case studies
In order to verify the applicability of the developed 
methodology on particular case, we analyze the out-
put of an example compound (Fig. 5).

The highest contribution to the stability of 
CHEMBL2207577 is indicated to be the aromatic ring 
with the chlorine atom attached (feature 3545) and 
thiophen (feature 1915), the secondary amine (feature 
677) lowers the probability of assignment to the stable 
class. All these features are present in the examined 
compounds and their metabolic stability indications 
are already known by chemists and they are in line 
with the results of the SHAP analysis.

Web service
The results of all experiments can be analyzed in 
detail with the use of the web service, which can be 
found at https://​metst​ab-​shap.​matinf.​uj.​edu.​pl/. In 
addition, the user can submit their own compound 
and its metabolic stability will be evaluated with the 
use of the constructed models and the contribution 
of particular structural features will be evaluated 
with the use of the SHAP values (Fig. 6). Moreover, in 
order to enable manual comparisons, the most simi-
lar compound from the ChEMBL set (in terms of the 
Tanimoto coefficient calculated on Morgan finger-
prints) is provided for each submitted compound (if 
the similarity is above the 0.3 threshold).

Obtaining such information enables optimization 
of metabolic stability as the substructures influencing 
this parameter are detected. Moreover, the compari-
son of several ML models and compound representa-
tions allows to provide a comprehensive overview of 
the problem.

An example analysis of the output of the presented 
web service and its application in the compound opti-
mization in terms of its metabolic stability is pre-
sented in Fig. 7.

The analysis of the submitted compound (evaluated 
in the classification studies as stable) indicates that the 
highest positive contribution to its metabolic stability 
has benzaldehyde moiety, and the feature which has a 
negative contribution to the assignment to the stable 

(See figure on next page.)
Fig. 3  The 20 features which contribute the most to the outcome of regression models for a SVM, b trees  constructed on human dataset with the 
use of KRFP

https://metstab-shap.matinf.uj.edu.pl/
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Fig. 3  (See legend on previous page.)
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class is aliphatic sulphur. The most similar compound 
from the ChEMBL dataset is CHEMBL2315653, 
which differs from the submitted compound only by 
the presence of a fluorine atom. For this compound, 
the substructure indicated as the one with the highest 
positive contribution to compound stability is fluo-
rophenyl. Therefore, the proposed structural modi-
fications of the submitted compound involves the 
addition of the fluorine atom to the phenyl ring and 
the substitution of sulfone by ketone.

Conclusions
In the study, we focus on an important chemical 
property considered by medicinal chemists—met-
abolic stability. We construct predictive models of 
both classification and regression type, which can be 
used for computational assessment of this parameter 
with the use of the provided on-line tool. Moreo-
ver, we use an explainability method called SHAP to 
develop a methodology for indication of structural 
contributors, which have the strongest influence on 
the particular model output. Finally, we prepared a 
web service, where user can analyze in detail predic-
tions for CHEMBL data, or submit own compounds 
for metabolic stability evaluation. As an output, not 
only the result of metabolic stability assessment is 
returned, but also the SHAP-based analysis of the 
structural contributions to the provided outcome is 
given. In addition, a summary of the metabolic stabil-
ity (together with SHAP analysis) of the most similar 
compound from the ChEMBL dataset is provided. 
All this information enables the user to optimize the 
submitted compound in such a way that its metabolic 
stability is improved. The web service is available at 
https://​metst​ab-​shap.​matinf.​uj.​edu.​pl/.

Methods
Data
We use CHEMBL-derived datasets describing human 
and rat metabolic stability (database version used: 
23). We only use these measurements which are given 
in hours and refer to half-lifetime (T1/2), and which 
are described as examined on’Liver’,’Liver micro-
some’ or’Liver microsomes’. The half-lifetime val-
ues are log-scaled due to long tail distribution of the 

metabolic stability measurements. In case of multiple 
measurements for a single compound, we use their 
median value. In total, the human dataset comprises 
3578 measurements for 3498 compounds and the rat 
dataset 1819 measurements for 1795 compounds. 
The resulting datasets are randomly split into train-
ing and test data, with the test set being 10% of the 
whole data set. The detailed number of measurements 
and compounds in each subset is listed in Table  2. 
Finally, the training data is split into five cross-valida-
tion folds which are later used to choose the optimal 
hyperparameters.

In our experiments, we use two compound repre-
sentations: MACCSFP [26] calculated with the RDKit 
package [37] and Klekota & Roth FingerPrint (KRFP) 
[27] calculated using PaDELPy (available at https://​
github.​com/​ECRL/​PaDEL​Py)—a python wrapper for 
PaDEL descriptors [38].  These compound representa-
tions are based on the widely known sets of structural 
keys—MACCS, developed and optimized by MDL for 
similarity-based comparisons, and KRFP, prepared 
upon examination of the 24 cell-based phenotypic 
assays to identify substructures which are preferred 
for biological activity and which enable differentiation 
between active and inactive compounds. Complete 
list of keys is available at https://​metst​ab-​shap.​matinf.​
uj.​edu.​pl/​featu​res-​descr​iption.  Data preprocessing is 
model-specific and is chosen during the hyperparam-
eter search.

For compound similarity evaluation, we use Morgan 
fingerprint, calculated with the RDKit package with 
1024-bit length and other settings set to default.

Tasks
We perform both direct metabolic stability predic-
tion (expressed as half-lifetime) with regression mod-
els and classification of molecules into three stability 
classes (unstable, medium, and stable). The true class 
for each molecule is determined based on its half-life-
time expressed in hours. We follow the cut-offs from 
Podlewska et al. [39]:

•	  ≤ 0.6—low stability,
•	 (0.6 − 2.32 > —medium stability,
•	  > 2.32—high stability.

Fig. 4  Overlap of important keys for a classification studies and b regression studies; c) legend for SMARTS visualization. Analysis of the overlap of 
the most important keys (in the number of 20) indicated by SHAP values for a classification studies and b regression studies; c legend for SMARTS 
visualization (generated with the use of SMARTS plus (https://​smarts.​plus/); Venn diagrams generated by http://​bioin​forma​tics.​psb.​ugent.​be/​webto​
ols/​Venn/

(See figure on next page.)

https://metstab-shap.matinf.uj.edu.pl/
https://github.com/ECRL/PaDELPy
https://github.com/ECRL/PaDELPy
https://metstab-shap.matinf.uj.edu.pl/features-description
https://metstab-shap.matinf.uj.edu.pl/features-description
https://smarts.plus/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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Fig. 4  (See legend on previous page.)
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Models
In our experiments, we examine Naïve Bayes classi-
fiers, Support Vector Machines (SVMs), and several 
models based on trees. We use the implementations 
provided in the scikit-learn package [40]. The optimal 
hyperparameters for these models and model-spe-
cific data preprocessing is determined using five-fold 

cross-validation and a genetic algorithm implemented 
in TPOT [41]. The hyperparameter search is run on 
5 cores in parallel and we allow it to last for 24 h. To 
determine the optimal set of hyperparameters, the 
regression models are evaluated using (negative) mean 
square error, and the classifiers using one-versus-one 
area under ROC curve (AUC), which is the average 

Fig. 5  Analysis of the metabolic stability prediction for CHEMBL2207577 for human/KRFP/trees predictive model. Analysis of the metabolic stability 
prediction for CHEMBL2207577 with the use of SHAP values for human/KRFP/trees predictive model with indication of features influencing its 
assignment to the class of stable compounds; the SMARTS visualization was generated with the use of SMARTS plus (https://​smarts.​plus/)

Fig. 6  Screens of the web service a main page, b submission of custom compound, c stability predictions and SHAP-based analysis for a submitted 
compound. Screens of the web service for the compound analysis using SHAP values. a main page, b submission of custom compound for 
evaluation, c stability predictions for a submitted compound and SHAP-based analysis of its structural features

(See figure on next page.)

https://smarts.plus/
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Fig. 6  (See legend on previous page.)
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AUC of all possible pairwise combinations of classes. 
We use the scikit-learn implementation of ROC_AUC 
score with parameter multiclass set to ’ovo’.

The hyperparameters accepted by the models 
and their values considered during hyperparameter 

optimization are listed in Tables 3, 4, 5, 6, 7, 8, 9. After 
the optimal hyperparameter configuration is deter-
mined, the model is retrained on the whole training 
set and evaluated on the test set.

Fig. 7  Custom compound analysis with the use of the prepared web service and output application to optimization of compound structure. 
Custom compound analysis with the use of the prepared web service, together with the application of its output to the optimization of compound 
structure in terms of its metabolic stability (human KRFP classification model was used); the SMARTS visualization generated with the use of 
SMARTS plus (https://​smarts.​plus/)

https://smarts.plus/


Page 13 of 20Wojtuch et al. J Cheminform           (2021) 13:74 	

Explainability
We assume that if a model is capable of predicting 
metabolic stability well, then the features it uses 
might be relevant in determining the true metabolic 

stability. In other words, we analyse machine learn-
ing models to shed light on the underlying factors 
that influence metabolic stability. To this end, we 
use the SHapley Additive exPlanations (SHAP) [33]. 
SHAP allows to attribute a single value (the so-called 
SHAP value) for each feature of the input for each 
prediction. It can be interpreted as a feature impor-
tance and reflects the feature’s influence on the 
prediction. SHAP values are calculated for each pre-
diction separately (as a result, they explain a single 
prediction, not the entire model) and sum to the dif-
ference between the model’s average prediction and 
its actual prediction. In case of multiple outputs, as 
is the case with classifiers, each output is explained 
individually. High positive or negative SHAP values 
suggest that a feature is important, with positive val-
ues indicating that the feature increases the model’s 
output and negative values indicating the decrease 
in the model’s output. The values close to zero indi-
cate features of low importance.

The SHAP method originates from the Shapley 
values from game theory. Its formulation guarantees 
three important properties to be satisfied: local accu-
racy, missingness and consistency. A SHAP value for a 
given feature is calculated by comparing output of the 
model when the information about the feature is pre-
sent and when it is hidden. The exact formula requires 
collecting model’s predictions for all possible subsets 
of features that do and do not include the feature of 
interest. Each such term if then weighted by its own 
coefficient. The SHAP implementation by Lundberg 
et  al. [33], which is used in this work, allows an effi-
cient computation of approximate SHAP values.

In our case, the features correspond to presence or 
absence of chemical substructures encoded by MAC-
CSFP or KRFP. In all our experiments, we use Kernel 
Explainer with background data of 25 samples and 
parameter link set to identity.

The SHAP values can be visualised in multiple ways. 
In the case of single predictions, it can be useful to 
exploit the fact that SHAP values reflect how sin-
gle features influence the change of the model’s pre-
diction from the mean to the actual prediction. To 
this end, 20 features with the highest mean absolute 

Table 2  Number of measurements and compounds in the 
ChEMBL datasets

The table presents the number of measurements and compounds present in 
particular datasets used in the study—human and rat data, divided into training 
and test sets

Dataset Subset Number of 
measurements

Number of 
compounds

Human Train 3221 3149

Test 357 349

Total 3578 3498

Rat Train 1634 1616

Test 185 179

Total 1819 1795

Table 3  Hyperparameters accepted by different Naïve Bayes 
classifiers

The table lists the hyperparameters which are accepted by different Naïve Bayes 
classifiers

alpha Fit_prior norm var_smoothing

BernoulliNB ✓ ✓
ComplementNB ✓ ✓ ✓
GaussianNB ✓
MultinomialNB ✓ ✓

Table 4  The values considered for hyperparameters for Naïve 
Bayes classifiers

The table lists the values of hyperparameters which were considered during 
optimization process of different Naïve Bayes classifiers

Hyperparameter Considered values

Alpha 0.001, 0.01, 0.1, 1, 10, 100

var_smoothing 1e−11, 1e−10, 1e−9,  
  1e−8, 1e−7, 1e−6, 1e−5,  
  1e−4

fit_prior True, False

Norm True, False

Table 5  Hyperparameters accepted by different tree models

The table lists the hyperparameters which are accepted by different tree classifiers

n_estimators max_depth max_samples splitter max_features bootstrap

ExtraTrees ✓ ✓ ✓
DecisionTree ✓ ✓ ✓
RandomForest ✓ ✓ ✓ ✓
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SHAP value are plotted side by side starting from the 
actual prediction and the most important feature at 
the top. The SHAP values of the remaining features 
are summed and plotted collectively at the bottom of 
the plot and ending at the model’s average prediction. 
In case of classification, this process is repeated for 
each of the model outputs resulting in three separate 
plots—one for each of the classes.

The SHAP values for multiple predictions can be 
averaged to discover general tendencies of the model. 
Initially, we filter out any predictions which are incor-
rect, because the features used to provide an incorrect 
answer are of little relevance. In case of classification, 
the class returned by the model must be equal to the 
true class for the prediction to be correct. In case of 
regression, we allow an error smaller or equal to 20% 
of the true value expressed in hours. Moreover, if both 
the true and the predicted values are greater than or 
equal to 7 h and 30 min, we also accept the prediction 

to be correct. In other words, we use the following 
condition: ŷ  is correct if and only if (0.8y ≤ ŷ   ≤ 1.2y) 
or (y ≥ 7.5 and ŷ  ≥ 7.5), where y is the true half-life-
time expressed in hours, and ŷ  is the predicted value 
converted to hours. After finding the set of correct 
predictions, we average their absolute SHAP val-
ues to establish which features are on average most 
important. In case of regression, each row in the fig-
ures corresponds to a single feature. We plot 20 most 
important features with the most important one at the 
top of the figure. Each dot represents a single correct 
prediction, its colour the value of the corresponding 
feature (blue—absence, red—presence), and the posi-
tion on the x-axis is the SHAP value itself. In case of 
classification, we group the predictions according to 
their class and calculate their mean absolute SHAP 
values for each class separately. The magnitude of 
the resulting value is indicated in a bar plot. Again, 
the most important feature is at the top of each fig-
ure. This process is repeated for each output of the 
model—as a result, for each classifier three bar plots 
are generated.

Hyperparameter details
The hyperparameter details are gathered in Tables  3, 
4, 5, 6, 7, 8, 9: Table 3 and Table 4 refer to Naïve Bayes 
(NB), Table 5 and Table 6 to trees and Table 7, Table 8, 
and Table 9 to SVM.

Description of the GitHub repository
All scripts are available at https://​github.​com/​gmum/​
metst​ab-​shap/. In folder ‘models’ there are scripts 

Table 6  The values considered for hyperparameters for different 
tree models

The table lists the values of hyperparameters which were considered during 
optimization process of different tree models

Hyperparameter Considered values

n_estimators 10, 50, 100, 500, 1000

max_depth 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, None

max_samples 0.5, 0.7, 0.9, None

splitter Best, random

max_features np.arrange(0.05, 1.01, 0.05)

bootstrap True, False

Table 7  Hyperparameters accepted by SVMs with different kernels for classification experiments

The table lists the hyperparameters which are accepted by different SVMs in classification experiments

kernel c loss dual penalty gamma coeff0 degree tol epsilon Max_oter probability

linear ✓ ✓ ✓ ✓ ✓
rbf ✓ ✓ ✓ ✓ ✓
poly ✓ ✓ ✓ ✓ ✓ ✓ ✓
sigmoid ✓ ✓ ✓ ✓ ✓ ✓

Table 8  Hyperparameters accepted by SVMs with different kernels for regression experiments

The table lists the hyperparameters which are by different SVMs in regression experiments

kernel c loss dual penalty gamma Coeff0 degree tol epsilon Max_oter probability

linear ✓ ✓ ✓ ✓ ✓
rbf ✓ ✓ ✓ ✓ ✓
poly ✓ ✓ ✓ ✓ ✓ ✓ ✓
sigmoid ✓ ✓ ✓ ✓ ✓ ✓

https://github.com/gmum/metstab-shap/
https://github.com/gmum/metstab-shap/
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which can be used to train the models presented in 
our work and in folder ‘metstab_shap’, the implemen-
tation to reproduce the full results, which includes 
hyperparameter tuning and calculation of SHAP val-
ues. We encourage the use of the experiment tracking 
platform Neptune (https://​neptu​ne.​ai/) for logging 
the results, however, it can be easily disabled. Both 
datasets, the data splits and all configuration files are 
present in the repository. The code can be run with 
the use of Conda environment, Docker container or 
Singularity container. The detailed instructions to run 
the code are present in the repository.

Appendix 1
Training/test set analysis
In order to ensure that the predictions are not biased 
by the dataset division into training and test set, we 
prepared visualizations of chemical spaces of both 
training and test set (Fig. 8), as well as an analysis of 
the similarity coefficients which were calculated as 
Tanimoto similarity determined on Morgan finger-
prints with 1024 bits (Fig.  9). In the latter case, we 
report two types of analysis—similarity of each test 
set representative to the closest neighbour from the 
training set, as well as similarity of each element of 
the test set to each element of the training set.

The PCA analysis presented in Fig.  8 clearly shows 
that the final train and test sets uniformly cover the 
chemical space and that the risk of bias related to 
the structural properties of compounds presented in 
either train or test set is minimized. Therefore, if a 
particular substructure is indicated as important by 
SHAP, it is caused by its true influence on metabolic 
stability, rather than overrepresentation in the train-
ing set.

The analysis of Tanimoto coefficients between train-
ing and test sets (Fig.  9) indicates that in each case 
the majority of compounds from the test set has the 
Tanimoto coefficient to the nearest neighbour from 
the training set in range of 0.6–0.7, which points to 
not very high structural similarity. The distribution 
of similarity coefficient is similar for human and rat 
data, and in each case there is only a small fraction 
of compounds with Tanimoto coefficient above 0.9. 
Next, the analysis of the all pairwise Tanimoto coef-
ficients indicates that the overall similarity between 

Table 9  The values considered for hyperparameters for different 
SVM models

The table lists the values of hyperparameters which were considered during 
optimization process of different SVM models during classification and 
regression

hyperparameter Considered values

C 0.0001, 0.001, 0.01, 0.1, 0.5, 1.0, 5.0, 10.0, 15.0, 20.0, 
25.0

loss (SVC) hinge, squared_hinge

loss (SVR) epsilon_insensitive, squared_epsilon_insensitive

dual True, False

penalty 11, 12

gamma [auto, scale] + [10 ** i for i in range (− 6, 0)]

coef0 [10 ** i for i in range (− 6, 0)] + [0.0] + [10 ** i for i in 
range (− 1, − 7, − 1)]

degree 1…9

tol 1e−05, 0.0001, 0.001, 0.01, 0.1

epsilon 0.0001, 0.001, 0.01, 0.1, 1.0

max_iter 2000

probability True

Fig. 8  Chemical spaces of training (blue) and test set (red) for a human and b rat data. The figure presents visualization of chemical spaces of 
training and test set to indicate the possible bias of the results connected with the improper dataset division into the training and test set part. The 
analysis was generated using ECFP4 in the form of the principal component analysis with the webMolCS tool  available at http://​www.​gdbto​ols.​
unibe.​ch:​8080/​webMo​lCS/

https://neptune.ai/
http://www.gdbtools.unibe.ch:8080/webMolCS/
http://www.gdbtools.unibe.ch:8080/webMolCS/


Page 16 of 20Wojtuch et al. J Cheminform           (2021) 13:74 

Fig. 9  Tanimoto coefficients between training and test set for a, b the closest neighbour, c, d all training and test set representatives. The figure 
presents histograms of Tanimoto coefficients calculated between each representative of the training set and each element from the test set. a, b 
report only the highest values calculated for particular element from the test set and c, d present outcome of all pairwise comparisons

training and test sets is low, with over 95% of Tani-
moto values below 0.2.

Appendix 2
Prediction correctness analysis
In addition, the overlap of correctly predicted com-
pounds for various models is examined to verify, 
whether shifting towards different compound rep-
resentation or ML model can improve evaluation of 
metabolic stability (Fig.  10). The prediction correct-
ness is examined using both the training and the test 
set. We use the whole dataset, as we would like to 
examine the reliability of the analysis carried out for 
all ChEMBL data in order to derive patterns of struc-
tural factors influencing metabolic stability.

In case of regression, we assume that the prediction 
is correct when it does not differ from the actual T1/2 
value by more than 20% or when both the true and 
predicted values are above 7 h and 30 min.

The first observation coming from Fig.  10 is that 
the overlap of correctly classified compounds is much 
higher for classification than for regression studies. 
The number of compounds which are correctly clas-
sified by all three models is slightly higher for KRFP 
than for MACCSFP, although the difference is not sig-
nificant (less than 100 compounds, which constitutes 
around 3% of the whole dataset).

On the other hand, the rate of correctly predicted 
compounds overlap is much lower for regression 
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Fig. 10  Venn diagrams for experiments on human data presenting the number of correctly evaluated compounds in different setups (ML algorithms/
compound representations): a classification on KRFP, b regression on KRFP, c classification and regression on KRFP, d classification on MACCSFP, e 
regression on MACCSFP, f classification and regression on MACCSFP, g classification with Naïve Bayes, h classification with SVM, i classification 
with trees, j regression with SVM, k regression with trees. The figure presents Venn diagrams showing the overlap between correctly predicted 
compounds in different experiments (different ML algorithms/compound representations) carried out on human data. Venn diagrams were 
generated with http://​bioin​forma​tics.​psb.​ugent.​be/​webto​ols/​Venn/

studies and MACCSFP seems to be more effective 
representation when the consensus for different pre-
dictive models is taken into account. Moreover, the 
total number of correctly evaluated compounds is 
also much lower for regression studies in comparison 
to standard classification (this is also reflected by the 
lower efficiency of classification via regression for the 
human dataset).

When both regression and classification experi-
ments are considered, only 20–25% of compounds are 
correctly predicted by all classification and regression 
models. The exact percentage of compounds depends 

on the compound representation and is higher for 
MACCSFP. There is no direct relationship between 
the prediction correctness and the compound struc-
ture representation or its half-lifetime value. Consid-
ering the model pairs, the highest overlap is provided 
by Naïve Bayes and trees in ‘standard’ classification 
mode.

Examination of the overlap between compound rep-
resentations for various predictive models show that 
the highest overlap occurs for trees—over 85% of the 
total dataset is correctly classified by both models. 
On the other hand, the lowest overlap for different 

http://bioinformatics.psb.ugent.be/webtools/Venn/
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Fig. 11  Parity plots showing the misclassification distribution in classification-via-regression experiments with reference to the half-lifetime 
values for a KRFP/SVM, b KRFP/trees, c MACCSFP/SVM, d MACCSFP/trees, e KRFP/SVM, f KRFP/trees, g MACCSFP/SVM, h MACCSFP/trees. The figure 
presents differences between true and predicted metabolic stability classes in the class assignment task performed based on the exact predicted 
value of half-lifetime in regression studies

compound representations within the classification 
models occurs for Naïve Bayes; however, it is also the 
model for which there is the lowest total number of 
correctly predicted compounds (less than 75% of the 
whole dataset). When regression models are com-
pared, the fraction of correctly predicted compounds 
is higher for SVM, although the number of com-
pounds correctly predicted for both compound repre-
sentations is similar for both SVM and trees (~ 1100, a 
slightly higher number for SVM).

Another type of prediction correctness analysis was 
performed for regression experiments with the use 
of the parity plots for ‘classification via regression’ 
experiments (Fig. 11).

Figure 11 indicates that there is no apparent corre-
lation between the misclassification distribution and 
the half-lifetime values as the models misclassify mol-
ecules of both low and high stability.

Analogous analysis was performed for the classifi-
ers (Fig. 12). One general observation is that in case 
of incorrect predictions the models are more likely 
to assign the compound to the neighbouring class, 
e.g. there is higher probability of the assignment of 

stable compounds (yellow dots) to the class of mid-
dle stability (blue) than to the unstable class (red). 
For compounds of middle stability, there is no direct 
tendency of class assignment when the prediction is 
incorrect—there is similar probability of predicting 
such compounds as stable and unstable ones. In the 
case of classifiers, the order of classes is irrelevant; 
therefore, it is highly probable that the models dur-
ing training gained the ability to recognize reliable 
features and use them to correctly sort compounds 
according to their stability.

Evaluation of the predictive power of the obtained 
models allows us to state, that they are capable of 
assessing metabolic stability with high accuracy. 
This is important because we assume that if a model 
is capable of making correct predictions about the 
metabolic stability of a compound, then the struc-
tural features, which are used to produce such pre-
dictions, might be relevant for provision of desired 
metabolic stability. Therefore, the developed ML 
models underwent deeper examination to shed light 
on the structural factors that influence metabolic 
stability.
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