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Abstract 

The ability of accurate predictions of biological response (biological activity/property/toxicity) of a given chemical 
makes the quantitative structure‐activity/property/toxicity relationship (QSAR/QSPR/QSTR) models unique among 
the in silico tools. In addition, experimental data of selected species can also be used as an independent variable 
along with other structural as well as physicochemical variables to predict the response for different species formu‑
lating quantitative activity–activity relationship (QAAR)/quantitative structure–activity–activity relationship (QSAAR) 
approach. Irrespective of the models’ type, the developed model’s quality, and reliability need to be checked through 
multiple classical stringent validation metrics. Among the validation metrics, error-based metrics are more significant 
as the basic idea of a good predictive model is to improve the predictions’ quality by lowering the predicted residu‑
als for new query compounds. Following the concept, we have checked the predictive quality of the QSAR and 
QSAAR models employing kernel-weighted local polynomial regression (KwLPR) approach over the traditional linear 
and non-linear regression-based approaches tools such as multiple linear regression (MLR) and k nearest neighbors 
(kNN). Five datasets which were previously modeled using linear and non-linear regression method were considered 
to implement the KwPLR approach, followed by comparison of their validation metrics outcomes. For all five cases, 
the KwLPR based models reported better results over the traditional approaches. The present study’s focus is not 
to develop a better or improved QSAR/QSAAR model over the previous ones, but to demonstrate the advantage, 
prediction power, and reliability of the KwLPR algorithm and establishing it as a novel, powerful cheminformatic tool. 
To facilitate the use of the KwLPR algorithm for QSAR/QSPR/QSTR/QSAAR modeling, the authors provide an in-house 
developed KwLPR.RMD script under the open-source R programming language. 
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Introduction
The biological response, physicochemical properties as 
well as intrinsic toxicity of a chemical have a strong rela-
tionship with its structural representation. This can be 

mathematically modeled with a series of chemical infor-
mation employing quantitative structure–activity/prop-
erty/toxicity relationship (QSAR/QSPR/QSTR) and/or 
read-across models [1]. Over the last two decades, the 
QSAR models became an integral part of computer-aided 
drug design (CADD) and discovery [2, 3], earlier predic-
tion of adsorption, distribution, metabolism, excretion, 
and toxicity (ADMET) of new drug candidates [4, 5], 
environmental risk assessment through fate and toxicity 
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modeling of chemicals [6, 7], solution of diverse com-
plications in materials sciences [8, 9], food science [10] 
along with agricultural science [11]. Researchers from 
academia and industries employ QSAR models as a 
popular technique for data gap filling through early pre-
diction of activity and toxicity of various chemicals and 
pharmaceuticals even before their synthesis. Rigorously 
validated and statistically significant QSAR models may 
significantly help the prioritization strategy for future 
synthesis and analysis, leading to substantial advantages 
in saving resources in the form of materials, human 
resources, time, and money [12].

The interspecies quantitative activity–activity relation-
ship (QAAR)/quantitative structure–activity–activity 
relationship (QSAAR) model offers to predict an end-
point (which is a dependent variable) for specific species 
employing the same endpoint (response in the form of 
activity, property, or toxicity) for another species along 
with selected structural and physicochemical features 
as a predictor or explanatory or independent variables 
(descriptors) [13, 14]. The terms QAAR and QSAAR are 
used interchangeably by different groups of authors, but 
for the ease of understanding and concept of the pre-
sent study, we will use the term QSAAR throughout the 
manuscript. The endpoint acts as a predictor variable, it 
can highlight the mechanism of action (MOA) of a series 
of chemicals to some extent as they are derived from 
experimental bioassay along with structural and physico-
chemical features. This specific feature strengthens the 
reliability and precision of the QSAAR model over the 
simple QSAR models. Furthermore, when experimental 
data of a series of chemicals for one species is present but 
absent for another species, the QSAAR model delivers a 
mathematical model (or equations) to predict the end-
point for that specific species [15]. Thus, extrapolating 
data from one species to another helps fill the data gaps 
without wasting time, money, and animal study main-
taining the 3R’s approach intended to a replacement, 
reduction, and refinement of animals.

The most common techniques for developing QSAR 
and QSAAR models are Multiple Linear Regression 
(MLR), Principal Component Regression (PCR), Partial 
Least Squares (PLS), under linear regression technique 
[1–3]. While, k nearest neighbors (kNN), artificial neu-
tral network (ANN), support vector machine (SVM) are 
the most frequently practiced techniques for non-lin-
ear regression modeling. Once the model is developed, 
it requires to be checked through rigorous validation 
methods (cross-validation, test set validation, Y-rand-
omization) using stringent validation metrics (R2, Q2

LOO, 
R2

pred/Q2
F1, Q2

F2, Q2
F3, rm

2, CCC, mean absolute predic-
tion error (MAE), Root Mean Square Error (RMSE)) [1]. 
The applicability domain strategy is useful to identify 

those chemicals that cannot be predicted reliably by the 
model. Most importantly, majority of models offer excel-
lent performance for closely related chemicals structure-
wise while the prediction error can be in the higher side 
for the new query chemical which is located outside of 
the AD generated from the training set [2, 3].

To reinforce the scientific and systematic validity of any 
QSAR/QSAAR model and promote its acceptance for 
regulatory purposes, drug design and discovery, toxic-
ity prediction to humans and the environment, the cor-
rect statistical approach for developing the model is an 
imperative one. Over the years, multiple forms of linear, 
polynomial, lasso, ridge, ecologic, Bayesian, ElasticNet, 
etc. regression approaches have been evolved [16]. With-
out any doubt, the most widely used and acceptable form 
of regression has been linear regression. Still, drawbacks 
like over-fitting and sensitivity to both cross-correlations 
and outliers are a matter of concern. In comparison, ridge 
and lasso represent a more vigorous version of linear 
regression taking constraints on regression and being less 
subject to over-fitting and straightforward interpretation. 
In polynomial regression, the coefficient can be changed 
with the predictor or explanatory variable’s value and 
estimated from data that lie within a specific window. The 
polynomial regression is suitable to evaluate the density 
of distribution and can be successfully employed when 
there are two or more predictor variables present in the 
model [17]. The polynomial models are also instrumental 
where the relationship between response study and pre-
dictor variables is curvilinear. Additionally, a nonlinear 
relationship in a narrow range of explanatory variables 
can also be modeled by polynomial regressions.

The use of the kernel-based nonparametric approach 
to regression analysis has a long tradition in econo-
metrics. Its application in computational toxicology 
and chemical risk assessment has a much shorter his-
tory. Although multiple examples of traditional QSAR/
QSPR models based on nonparametric regression exist 
[18, 19], the attempt to employ the proposed approach 
to interspecies QSAAR modelling has not been pre-
sented in literature before, to the best of the authors’ 
knowledge. Hence to introspect the advantages and 
predictive quality of the kernel-weighted local poly-
nomial regression (KwLPR) approach over the tradi-
tional linear and non-linear regression-based methods 
we have re-developed both QSAR and QSAAR mod-
els. Therefore, we have taken five different datasets 
of varying sizes from big, medium to small, and used 
diverse chemical classes of compounds for modeling 
purposes. Four datasets [20–22] were previously uti-
lized to develop the high-quality QSAAR model using 
a common linear regression technique like MLR and 
one dataset [23] was employed to develop non-linear 
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model implicating kNN technique. In present study, all 
five datasets were used to develop models utilizing the 
KwLPR approach. Then we have compared the statisti-
cal quality of our models with the previous models. It 
is important to mention that we have used the same 
modeled descriptors and the same combination of 
training and validation sets compounds as was done in 
the original papers. This study’s idea is neither the gen-
eration of the new prediction oriented QSAR/QSAAR 
models nor criticizing the previous ones. The present 
KwLPR models demonstrate the worth of the locally 
weighted least squares kernel regression in interspecies 
extrapolation as well as in application to simple QSAR 
model by offering better statistical quality than previ-
ously developed models. The R-script code to prepare 
the KwPLR based QSAR/QSPR/QSTR/QSAAR model 
is also provided for better accessibility.

Materials and methods
The main idea behind the locally weighted least squares 
kernel regression that combines the mathematical sim-
plicity and interpretability of the classical least squares 
method with the flexibility of nonlinear regression is 
the pointwise approximation of the unknown regression 
function m(x) by a polynomial of order p in a small neigh-
borhood of x0 [24]. Using a local Taylor series expan-
sion in the neighborhood of x0, a pth degree polynomial 
approximation of m(x) yields [25]:

This polynomial is fitted locally at each point of inter-
est by weighted least squares (also termed as kernel-
weighted linear regression), that minimizes:

where: X denotes the design matrix centered at x0; Y rep-
resents a vector with the response variable; β is a vector 
of regression coefficients obtained by applying weighted 
least squares; K denotes a non-negative kernel func-
tion assigning weights to each point; h is a smoothing 
parameter controlling the size of the local neighborhood; 
whereas n is the number of independent variables.

Using matrix notation, one can write this as [25]:

m(x) ≈

p∑

j=0

m(j)(x0)

j!
(x − x0)

j
≡

p∑

j=0

βj(x − x0)
j

min
βj

n�

i=1



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βj(x0)(xi − x0)
j
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
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2

K

�
xi − x0

h

�
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local

where:

The solution vector of coefficients β is provided by 
weighted least squares theory and can be conveniently 
expressed as [25]:

where: W represents a diagonal matrix of weights.
In the light of the above, the main advantage of the 

kernel-weighted local polynomial regression approach 
is that unlike the most common approaches for regres-
sion analysis, applied in QSAR/QSAAR studies (e.g. LR, 
MLR, PCR, PLS, etc.), where the regression coefficients 
are estimated using the least squares method by mini-
mizing the sum of the squared residuals on the training 
data, it employs only a small batch of training data from 
the entire training set, that are most chemically simi-
lar to a given target point. This means that in the local 
polynomial regression approach, the regression coeffi-
cients are estimated with a sliding smoothing window 
[x0—h(x0), x0 + h(x0)] by fitting a polynomial of degree 
p locally at each query point (Fig. 1). Only observations 
within that smoothing window are used to approximate 
the unknown regression function m(x) by a polynomial, 
whereas the coefficients of this polynomial are fitted at 
each point of interest by weighted least squares regres-
sion [24]. It is worth emphasizing that the shape and 
width of the smoothing window, that is, in practice the 
shape and extent of the local regression neighborhood 
is determined by the kernel function and bandwidth 
described below:

1.	 Kernel function (K) specifies the neighborhood’s 
shape and assigns weights to the neighboring points 
based on the distance to the target point. In the over-
all weighting scheme, the most significant weights are 
given to data points closest to the target point whose 

min
β

{(
y− Xβ

)T
W (y− Xβ)

}

y = (Y1,Y2, . . . . . . ,Yn)
T

X =




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.

.
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.
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T

W = diag

{
K

(
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h
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β̂ = (XTWX)
−1
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response is being estimated than those that are fur-
ther away. So simply speaking, the weights determine 
how much each response value of the neighboring 
training data points influences the activity of a given 
fitting point.

2.	 Bandwidth also called the smoothing parameter (h) 
dictates the width of the kernel function (i.e., the 
width of the neighborhood). In practice, bandwidth 
and kernel function determine the number of nearest 
neighbors for regression.

As discussed elsewhere [26], the most relevant factors 
affecting the statistical properties of kernel-weighted 
local polynomial regression are the degree of the poly-
nomials (p), the bandwidth (h), and the chosen kernel 
function (K). A brief description of the above-mentioned 
parameters is given below.

Degree of local polynomials
The benefits, drawbacks, limitations, and applicability 
of different local polynomial degrees have been exten-
sively reviewed in the literature [24, 26]. Generally, as the 

K

(
xi − x0

h

)

flexibility in the model fitting increases (by increasing 
the degree of the polynomial used), the local-polynomial 
estimator’s bias declines, but at the same time, the vari-
ance increases. Thus, high-degree polynomials will tend 
to overfit the data. The choice of degree of the approxi-
mating polynomial should appropriately balance the 
trade-off between bias and variance. It is fairly evident 
that in a relatively flat (non-sloping) region, a local con-
stant (p = 0) or local linear (p = 1) estimator is preferred. 
In contrast, at peaks and valleys, the most common 
choices are the local quadratic (p = 2) and local cubic 
(p = 3) estimators [27]. In practice, for spatially inhomo-
geneous curves, an order of polynomial approximation 
is adjusted to the curvature of the unknown regression 
function m(x) in the fixed neighborhood of x0 by choos-
ing that order p for which the estimated mean squared 
error (MSE) of the estimator is the smallest. Addition-
ally, as Ruppert and Wand [28], and Fan and Gijbels [26] 
pointed out, good practice in local polynomial regression 
is to adopt low odd-degree local polynomials since they 
have a more straightforward asymptotic bias expression. 
However, an in-depth review of the literature shows, in 
practice, the constant, linear, and quadratic polynomi-
als (p ≤ 2) are the most frequently used. An additional 
motivation behind using the low-order polynomials 
is that they appear to provide an adequate prediction 

Fig. 1  Locally weighted least squares kernel regression is illustrated with simulated data, where the dashed grey curve represents m(x) from which 
the data were generated, while the solid brown curve corresponds to the locally weighted linear regression estimate. The purple-colored points 
are the neighboring points to the query point whose response is estimated (x0). The light purple bell-shape superimposed on the plot indicates 
weights assigned to the adjacent points, decreasing to zero with increasing distance from the query point
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when extrapolated beyond the range of the given data 
[29]. Although the extrapolation in QSAR/QSAAR pre-
dictions is more tenuous than the interpolation, it is a 
common practice. In general, the estimates based on 
low-order polynomial extrapolation, similarly to linear 
extrapolation, are capable of reasonable approximation, 
especially when the region of extrapolation is not too far 
beyond the data range. However, one should be aware 
that this will not hold true for high-order polynomials 
(Fig. 2). High-order polynomials frequently fail and result 
in grossly misleading predictions. Hahn [29] and others 
[30, 31] stressed the inadequacy of high-order polynomi-
als for extrapolation.

Bandwidth
The bandwidth governs the complexity of the model, 
and therefore the choice of the smoothing parameter is 
of crucial importance for every kernel regression [32]. A 
broad bandwidth tends to over-smooth the data with a 
large bias (i.e., resulting in underfitting), whereas a small 
bandwidth on the contrary, greatly restricts neighbor-
hood size, and produces to a high-variance estimate (i.e., 
resulting in overfitting) (Fig. 3) [27].

Thus, to attain the trade-off between the goodness-
of-fit and the model complexity, bandwidth should be 
optimized in the kernel-based regression methods. To 
this date, two main strategies have been devised for the 
bandwidth selection, namely: constant bandwidth selec-
tion and variable bandwidth selection [33]. As the name 
suggests, a constant bandwidth is constant across the 
entire range of the data (i.e., for all x in m(x)). In gen-
eral, it is a reasonable choice when the unknown curve 
is spatially homogeneous. However, it might not be best 
suited to capture the unknown regression function’s 
complexity that shows different behavior in different 
regions. Hence, for estimating coefficient functions with 
a more complicated shape of the curve, it may be desir-
able to use a bandwidth that varies according to the fit-
ting point x at which m(x) is estimated. This bandwidth is 
referred to as local variable bandwidth and is denoted by 
h(x). Despite a vast number of bandwidth selection tech-
niques, most of these methods are based on minimizing 
the mean squared error (MSE) or the mean integrated 
squared error (MISE). Among the automatic data-driven 
bandwidth selection procedures, the most commonly 
used are, e.g. direct plug-in method [34], cross-validated 

Fig. 2  Schematic representations of extrapolation at various polynomial’s orders are illustrated using simulated data. The polynomials order ranges 
from 1 (a) to 4 (d). The brown dashed lines represent the 95% confidence interval limits



Page 6 of 20Gajewicz‑Skretna et al. J Cheminform            (2021) 13:9 

bandwidth method, least-squares cross-validation 
method [35], smoothed cross-validation method [36], 
and the contrast method [37]. An interesting comprehen-
sive review of bandwidth selection techniques and their 
applications can be found in [27, 38–40].

Kernel function
As has already been pointed out, the kernel’s choice 
determines the local neighborhood’s shape over which 
the smoothing is performed. Different kernels merely 
vary in the relative weights assigned to points closer/far-
ther in relation to a regression point. However, the par-
ticular form of the function, K has only a relatively small 
effect on estimation accuracy. Therefore, the differenti-
able kernels with low computational complexity such as 
the Gaussian kernel or Epanechnikov kernel are being 
favored. To date, several kernel functions have been pro-
posed, the most common are plotted in Fig. 4.

Datasets
As a proof of concept, the kernel-weighted local polyno-
mial regression approach has been applied to five diverse 
data sets, differing in both numbers and types of chemi-
cals. A summary of the selected datasets that were previ-
ously used to develop ecotoxicity QSAR/QSAAR models 
using linear and non-linear regressions, along with the 

quality metrics provided by the authors of the original 
contributions, is given in Table 1. However, it should be 
highlighted that the specific focus of this study is neither 
the development of the new prediction oriented QSAR/
QSAAR models nor criticizing the existing ones. The 
cited models serve as illustrative case studies to demon-
strate the usefulness of the locally weighted least squares 
kernel regression in simple as well as interspecies toxic-
ity extrapolation. In order to make a straightforward 
comparison between initially employed approaches for 
QSAR/QSAAR model development and the proposed 
KwLPR approach, the same training and validation sets, 
as well as the same independent variables (as in original 
works), have been used (Additional files 1, 2, 3, 4, 5).

Interpretability of the KwLPR model
As the proposed KwLPR modelling method does not 
provide a single model equation that would allow to 
quantify the relative importance of individual explana-
tory variables on the endpoint of interest, it can be 
hastily perceived, therefore, as unremarkable. This 
inherent limitation can be easily overcome. Hence, to 
gain mechanistic insight into the nature of the interre-
lationships among the modeled activity and the related 
descriptors, the factor loadings derived from princi-
pal components analysis (PCA) should be evaluated. 

Fig. 3  The effects of changing the smoothing parameter values are illustrated with simulated data. It is straightforward to see that small bandwidth 
value (the dark green curve) corresponds to large variability and small bias, whereas small variability for the highest bandwidth value (purple curve) 
results in large bias
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In essence, the loadings refer to the correlation coef-
ficients between original variables and the particular 
principal component (PC), and thereby indicate the 
strength and direction of a linear association. A positive 
loading implies that a given descriptor correlates posi-
tively with the PC, whereas a negative loading means 
an inverse correlation. In order to enhance the read-
ability and the interpretability of the KwLPR model, 
the PCA biplot was used. This choice was motivated 
by the fact that the PCA biplot simultaneously shows 
both the observations and the variables as well as pro-
vides information on the strength of the relationship 
(expressed by the vector length) and the degree of cor-
relation among the variables (expressed by the angles 
between the loading vectors: an adjacent angle implies 

high positive correlation; a straight angle indicates high 
negative correlation, whereas a right angle suggests no 
correlation between two variables).

R‑script
To facilitate the use of the kernel-weighted local polyno-
mial regression approach for QSAR/QSAAR modeling, 
we additionally provide an in-house developed script as 
Supplementary information (Additional file 6). The script 
is all written in the open-source R programming lan-
guage [41], and it heavily relies on the ’np’ package [42]. 
An excellent and detailed introduction to ’np’ package 
is provided in Hayfield and Racine publication [43]. To 
make the above-mentioned code as much user-friendly 
tool as possible and to provide its further functionality 

Fig. 4  Kernel shapes and expressions
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(i.e. preview plots and outputs all in a workspace) it is 
written in a. RMD file (i.e. R Markdown file created using 
RStudio as a graphical front-end to R). KwLPR.RMD 
script requires a single input data matrix written into 
a. CSV file, placed in the same working directory as the 
source R-code file (to see an example of an input data file 
please refer to the Supplementary information). The final 
modeling outputs are two-fold: (i) a single summary table 
with the most informative quality metrics organized by 
kernel regression estimator, degree of local polynomi-
als, and kernel functions; and (ii) detailed output files for 
every single possible combination of the most influen-
tial and frequently used modeling parameters that might 
affect the quality of the fit. A summary table into a. CSV 
file is saved in the current working directory where the 
input file, as well as the source R-code file, are located. 
Whereas, detailed output files for each individual mod-
elling scheme (including computational results, plot of 
model predicted and experimentally observed endpoint 
of interest) are saved in the automatically created nested 
subdirectory of the working directory.

Noteworthily, aside from comprehensive model devel-
opment and its validation, initial data transformation 
that ensures that all variables receive equal attention 
during the training process is a crucial step, which can-
not be overlooked. This is extremely important, since 
different variables mostly span several orders of mag-
nitude and/or different ranges of units, whereas those 
with large numerical values can compromise the stability 

and statistical validity of any predictive model. To allevi-
ate this problem, the script offers automatic data trans-
formation also known as auto-scaling. As previously 
mentioned, KwLPR.RMD code intends to facilitate the 
kernel-weighted local polynomial regression modeling 
using the most commonly used bandwidth selection 
methods, kernel regression estimator as well as kernel 
functions. Its current version uses two implemented 
automatic data-driven bandwidth selection procedures, 
namely: expected Kullback–Leibler cross-validation (cv.
aic), and least-squares cross-validation (cv.ls). Moreover, 
the current implementation of the KwLPR.RMD script 
permits application of two different degrees of the local 
polynomial smoother, namely: local-constant (Nadaraya-
Watson) estimator (lc), and local-linear estimator (ll). 
Besides, it contains three of the most popular kernel 
functions, i.e.: Gaussian, Epanechnikov, and uniform. It is 
fairly obvious that although the use of the provided script 
does not require expertise and/or advanced knowledge 
of R, however, users who are more familiar with R lan-
guage can easily customize this code further as per their 
requirements, by employing, for example, different band-
width selection method and/or kernel function than is 
proposed herein. It should be emphasized, moreover, that 
the provided KwLPR.RMD script can also be successfully 
applied for the development of any traditional QSAR/
QSPR/QSTR/QSAAR model.

Table 1  The details of the previous QSAR/QSAAR models employed as case studies for the present work

No. case study Group of chemicals Model Refs.

Case study 1 Pesticides MLR technique [20]

 pLC50 (O. mykiss) = 0.27 + 0.17 Log P + 0.67 pEC50 (D. magna)
 nT = 254; R2 = 0.813; RMSEC = 0.65; F = 545.77; p < 0.00
 nV = 64; RMSEP = 0.68; Q2

F1 = 0.817; Q2
F2 = 0.817; Q2

F3 = 0. 794; CCC = 0.894

Case study 2 Pesticides MLR technique [20]

 pLC50 (L. macrochirus) = 0.09 + 0.18 Log P + 0.67 pEC50 (D. magna)
 nT = 235; R2 = 0.831; RMSEC = 0.65; F = 570.92; p < 0.00
 nV = 59; RMSEP = 0.68; Q2

F1 = 0.831; Q2
F2 = 0.831; Q2

F3 = 0. 818; CCC = 0.900

Case study 3 Pharmaceuticals and personal care prod‑
ucts (PPCPs)

MLR technique [21]

 pEC50 (O. mykiss) = 1.31 + 1.24 pEC50 (D. magna) – 0.36 GATS1e
 nT = 35; R2 = 0.91; RMSEC = 0.45; Q2

LOO = 0.89;
 nV = 15; Q2

Ext = 0.77–0.77; RMSEP = 0.71; CCC = 0.89

Case study 4 Substituted phenols LR technique [22]

 pT (C. vulgaris) = 0.72 pT (T. pyriformis) + 0.25
 nT = 31; R2 = 0.75; Q2

LOO = 0.72; RMSEC = 0.32
 nV = 10; Q2

Ext = 0.81–0.82; RMSEP = 0.28

Case study 5 Organic chemicals kNN technique [23]

 pLC50 (P. promelas) = f(MLOGP; CIC0; SM1_Dz(Z); GATS1i; NdsCH; NdssC)
 nT = 726; k = 6; R2 = 0.62; RMSEC = 0.879; Q2

CV = 0.61; RMSECV = 0.878;
 nV = 182; Q2

EXT = 0.61; RMSEEXT = 0.888
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Results and discussion
To address the aim of this study and to introspect 
the advantages and predictive quality of the KwPLR 
approach over the traditional linear and non-linear 
regression-based methods, we have employed five toxic-
ity datasets that were previously utilized to develop the 
QSAR/QSAAR models. To keep the modeling strategy 
as consistent as possible, the following rules have been 
maintained:

a.	 The division of training and validation sets are the 
same (as in original works) for all five datasets.

b.	 The modeled descriptors are also identical compare 
to the previously reported models.

c.	 We have computed all classical internal and external 
validation metrics to quantify each QSAR/QSAAR 
model’s quality.

d.	 We have used the KwLPR approach to develop the 
QSAR/QSAAR model for all five datasets, while pre-
viously MLR, MLR, MLR, LR and kNN techniques 
were used.

e.	 In all four QSAAR models, we have modeled higher 
taxonomic class species using the response value 
of lower taxonomic class species along with other 
structural and physicochemical features. Most of 
the QSAAR models aim to fill up the response data 
gap by extrapolating data. It is always practical and 
reasonable to extrapolate response data from lower 
taxonomic species to the higher one.

Case study 1
The complete dataset consists of 318 pesticides with 
quantitative toxicity value in the form of LC50 to O. 
mykiss and D. magna. The toxicity values covered the 
toxicity range of 8.398 logarithmic units. The authors 
of the original contribution reported a two-descriptor 
QSAAR model obtained through MLR for determin-
ing the toxicity of 318 pesticides to O. mykiss [20]. The 
model calibration was performed by using 254 pesticides 
as a training set, while external validation was carried 
out by using 64 compounds as a test set. The logarith-
mic value of the partition coefficient (Log P) and experi-
mental toxicity value of D. magna (pEC50) were used 
as independent variables. The previous model reported 
a determination coefficient (R2) of 0.813, while the pre-
sent model using KwLPR increases this value to 0.85 
using the same modeled descriptors. Similarly, all three 
external correlation validation metrics showed improved 
value for the KwLPR based QSAAR model (Q2

F1 = 0.88; 
Q2

F2 = 0.88; Q2
F3 = 0.88 while previous one had 0.817, 

0.817 and 0.794, respectively). A similar trend is observed 
for the CCC parameter. The present model is also less 

error-prone than the previous one which is reflected in 
the lowest value of the RMSE in both training and vali-
dation sets (RMSEC = 0.60; RMSEP = 0.54 while previous 
one had 0.65 and 0.68, respectively). For detailed infor-
mation on the experimental and predicted toxicity data 
for particular compounds as well as the numerical values 
of the molecular descriptors used within this study, please 
refer to the Supplementary information (Additional file 7: 
Table S1). The scatter plot (Fig. 5a) of experimental and 
predicted toxicity values illustrated that training and vali-
dation set chemicals scatter on both sides of the line of 
the perfect fit, and no points have deviated within ± 1 
value. The Williams plot (Fig.  5b) for the applicabil-
ity domain (AD) analysis suggested no validation com-
pounds are outliers. In contrast, two training compounds 
showed higher leverage value compare to the critical 
value (h*) of 0.035. Both compounds behave as influ-
ential observations (X outlier), although they were not 
response outliers (not Y outlier). We have also performed 
500-fold Y-scrambling test where the plot in Fig. 5c sug-
gested the KwPLR model was not obtained by chance and 
the model is extremely reliable. The Spider plot (Fig. 5d) 
suggested that KwPLR has superior regression-based 
(higher and close to 1), as well as error based metrics 
(lower and close to 0) values, compared to MLR imple-
mented in the previous model. To provide an insight into 
the structure–activity relationship of the studied pes-
ticides the PCA analysis was performed (Fig.  5e). It is 
straightforward to see that pLC50 (O. mykiss) increases 
moving from left to right along the X-axis, termed as first 
principal component (PC1). Due to low PC1 scores and 
positive loading values, the pesticides with lower values 
of pLC50 are characterized by relatively lower lipophilic-
ity (LogP) and toxicity to D. magna (pEC50 [mM]) com-
pared to pesticides with higher values of pLC50. An acute 
angle between both variables indicates moderate posi-
tive correlation (r = 0.54), whereas comparable vectors 
length indicates that both variables equally contribute to 
describe the toxicity towards O. mykiss.

Case study 2
The complete dataset consists of 294 pesticides with 
quantitative toxicity value in the form of LC50 to L. mac-
rochirus and D. magna. The toxicity values covered the 
toxicity range of 8.354 logarithmic units. In the original 
study, Basant et  al. [20] employed the MLR approach 
for QSAAR model development, taking 235 pesticides 
as a training set and 59 as a validation set. By using two 
independent variables, namely the logarithmic value of 
the partition coefficient (Log P) and experimental toxic-
ity value of D. magna, the authors successfully calibrated 
robust model for predicting the toxicity of pesticides 
to L. macrochirus. Both QSAAR models (i.e. MLR and 
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Fig. 5  a Scatter plot of experimentally determined versus predicted values of pLC50. The formed straight line represents perfect agreement 
between the observed and calculated values. b Williams plot illustrating the applicability domain of the KwLPR model. c The results of the 500-fold 
Y-scrambling test. d Spider plot presenting the comparison of KwLPR model statistics with the MLR modeling approach. e PCA biplot
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KwLPR) reported the same value of correlation coef-
ficient (R2 = 0.83). Whereas, all three external correla-
tion validation metrics showed improved value for the 
KwLPR based QSAAR model (Q2

F1 = 0.91; Q2
F2 = 0.91; 

Q2
F3 = 0.91 while previous one had 0.831, 0.831 and 

0.818, respectively). A similar trend is observed for 
the CCC parameter where the present model reported 
a value of 0.95, and the earlier one was 0.90. The list of 
training/validation set chemicals along with the model-
ling parameters can be found in Supplementary informa-
tion (Additional file 7: Table S2). The scatter plot (Fig. 6a) 
of experimental and predicted toxicity values illustrated 
that training and validation set chemicals scatter on both 
sides of the line of the perfect fit, and no points have 
deviated within ± 1 value. The Williams plot (Fig. 6b) for 
the applicability domain (AD) analysis suggested that one 
validation compound (Tributyltin oxide) is detected as an 
outlier. While one training compound showed a higher 
leverage value compare to the critical value (h*) of 0.035, 
which behaves as influential observations (X outlier) 
although not a response outlier (not Y outlier). We have 
also performed 500-fold Y-scrambling test where the plot 
in Fig. 6c suggested the KwPLR model was not obtained 
by chance and the model is extremely reliable. The Spi-
der plot (Fig.  6d) suggested that KwPLR offered better 
validation outcomes over the MLR based model. Analysis 
of the PCA biplot graphically shown in Fig.  6e revealed 
that the toxicity of pesticides in L. macrochirus (pLC50) 
increases with increasing values of both related descrip-
tors (i.e. LogP and pEC50 [mM] D. magna). Considering 
the vectors length and the angle between them it can be 
inferred that they are moderately positively correlated 
(r = 0.58) and paly an equally important role in determin-
ing toxicity to L. macrochirus.

Case study 3
The dataset 3 includes toxicity value for O. mykiss and D. 
magna of 50 PPCPs as LC50. The modeled toxicity val-
ues of O. mykiss covered the toxicity range of 6.173 log-
arithmic units. The original model was developed using 
the MLR technique with 35 compounds in the training 
set and 15 in the validation set [21]. The present model 
uses D. magna toxicity and GATS1e as modeled descrip-
tors like the previous model. The current KwLPR based 
QSAAR model slightly improved the R2 value (the pre-
sent model reported a value of 0.95, and the earlier one 
was 0.91). A similar trend reported for external valida-
tion metrics. KwLPR based QSAAR model yielded con-
siderably higher assessment statistics in the validation set 
(Q2

F1 = 0.83; Q2
F2 = 0.83; Q2

F3 = 0.83), compared to the 
previous model (Q2

F1 = 0.77; Q2
F2 = 0.77; Q2

F3 = 0.77). A 
sharp decline of RMSEC and RMSEP values is observed 
for the present model compared to the previous one, 

which is expected. It demonstrates the good predictive 
quality of the KwLPR derived model. The perfect scat-
tering of training and validation set data points around 
the line’s best fit in the scatter plot (Fig.  7a) illustrated 
the present model’s predictive capability. The AD analysis 
suggested that all training and validation set compounds 
remain within the set boundaries of standardized residu-
als and critical leverage value, which implies that none 
of the PPCPs are outliers, and that their predictions are 
highly reliable. The Williams plot of AD analysis is illus-
trated in Fig.  7b. The 500-fold Y-scrambling test rand-
omization plot (Fig.  7c) suggested that the developed 
KwPLR based model is highly reliable and not obtained 
by chance. Additionally, the spider plot (Fig.  7d) clearly 
showed similar internal and superior external regres-
sion-based validation metrics values for the KwLPR 
model compared to the previous MLR model. Consider-
ing error-based metrics, the KwLPR model also outper-
forms the MLR-based model. Analysis of the PCA biplot 
(Fig.  7e) confirmed an evident trend in the toxicity val-
ues of tested PPCPs. PC1 is positively correlated with 
the 2D autocorrelation descriptor, namely Geary auto-
correlation of lag 1 weighted by Sanderson electronega-
tivity (GATS1e) [21], and negatively correlated with the 
toxic to D. magna (pEC50). Thus, in general, low values 
of PC1 scores correspond to PPCPs with lower GATS1e 
and greater pEC50 (D. magna) resulted in higher toxicity 
to fish (O. mykiss). The angle between the loading vectors 
confirmed relatively low negative correlation (r = -− 0.43)  
among the variables. In turn, the similar length of vectors 
provided the evidence that both descriptors are equally 
important for the studied toxicity endpoint Supplemen-
tary information (Additional file 7: Table S3).

Case study 4
This dataset includes the quantitative toxicity value of 
41 substituted phenols to Chlorella vulgaris and Tet-
rahymena pyriformis expressed in pT = − logIGC50 
(50% growth inhibition). The toxicity values of C. vul-
garis (modeled toxicity) covered a range of 2.83 loga-
rithmic units. The previous model was developed 
using simple linear regression (LR). In contrast, we 
have developed the present model using KwLPR with 
31 training set substituted phenols, and the remaining 
ten compounds were considered for external valida-
tion purposes [22]. Like the earlier model, we have used 
only T. pyriformis acute toxicity as a modeled descrip-
tor. The previous model reported a determination 
coefficient (R2) of 0.75, while the present model using 
KwLPR increases this value to 0.81 using the same divi-
sion as well as modeled descriptor. While, all external 
correlation validation metrics showed slightly improved 
value for the KwLPR based QSAAR model (Q2

F1 = 0.83; 
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Fig. 6  a Scatter plot of experimentally determined versus predicted values of pLC50. The formed straight line represents perfect agreement 
between the observed and calculated values. b Williams plot illustrating the applicability domain of the KwLPR model. c The results of the 500-fold 
Y-scrambling test. d Spider plot presenting the comparison of KwLPR model statistics with the MLR modeling approach. e PCA biplot
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Fig. 7  a Scatter plot of experimentally determined versus predicted values of pLC50. The formed straight line represents perfect agreement 
between the observed and calculated values. b Williams plot illustrating the applicability domain of the KwLPR model. c The results of the 500-fold 
Y-scrambling test. d Spider plot presenting the comparison of KwLPR model statistics with the MLR modeling approach. e PCA biplot
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Q2
F2 = 0.82; Q2

F3 = 0.83 while previous one range from 
0.81 ÷ 0.82). Similarly, in the case of error-based met-
rics, lower values for RMSEC and RMSEP were obtained 
for the present model compare to the previous, which is 
the indication of better predictive nature of the KwLPR 
model (0.28 and 0.27, respectively) over the LR model 
(0.32 and 0.28, respectively). The scatter plot (Fig.  8a) 
revealed a good correlation between the experimen-
tal and predicted toxicity. The resulting graph showed 
that most points were close and scattered around both 
sides to fit the best line. Even the most scattered point 
showed the residual error of less than one numerical 
value, implicating the good quality of the developed 

model. The Williams plot (Fig.  8b) suggested that nei-
ther training nor validation set compounds are identi-
fied as X or Y-outliers, and their predictions are highly 
reliable and acceptable. The 500-fold Y-scrambling test 
supports the robustness of the KwPLR model (Fig. 8c). 
The spider plot (Fig. 8d) clearly illustrated almost simi-
lar metrics values for Q2

LOO, Q2
F1, Q2

F2, Q2
F3, CCC, and 

RMSEP while the KwLPR model outperforms the LR 
model in case of better results for R2 and RMSEC met-
rics. In this particular case, since only one independ-
ent variable was used to develop the KwLPR model, 
the interrelationship among the modeled toxicity and 
the related descriptor can be assessed through the 

Fig. 8  a Scatter plot of experimentally determined versus predicted values of pLC50. The formed straight line represents perfect agreement 
between the observed and calculated values. b Williams plot illustrating the applicability domain of the KwLPR model. c The results of the 500-fold 
Y-scrambling test. d Spider plot presenting the comparison of KwLPR model statistics with the LR modeling approach
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correlation coefficient. Thus, in general, strong positive 
correlation (r = 0.88) indicates that substituted phenols 
highly toxic to T. pyriformis are also highly toxic to C. 
vulgaris Supplementary information (Additional file  7: 
Table S4).

Case study 5
The acute toxicity (LC50 96  h) of 908 diverse organic 
chemicals towards the fathead minnow (Pimephales 
promelas) were considered for the last case study [23]. 
Cassotti et  al. [23] employed non-linear kNN approach 
to develop the predictive QSAR model and they obtained 
a model with k = 6 (R2 = 0.62; Q2

cv = 0.61; Q2
Ext = 0.61). 

The studied toxicity range is: 0.053 to 9.612. The calibra-
tion and validation of the KwPLR model was carried out 
using the same training/test set (nT = 726/nV = 182) and 
explanatory variables as provided by the authors of the 
original work. The list of training/validation set chemi-
cals along with the modelling parameters can be found in 
Supplementary information (Additional file 7: Table S5). 
The KwPLR model reported around 37% improvement 
of quality of the model fit over kNN model. Although, 
the model’s cross-validation for the kNN model showed 
higher value than the KwLPR model, the better predic-
tion was achieved for the validation set, which can be 
confirmed by Q2

EXT parameter (0.61 and 0.68 for kNN 
and KwLPR model, respectively). The perfect scatter-
ing of training and validation set data points around the 
line’s best fit in the scatter plot (Fig.  9a) demonstrated 
the present model’s predictive capability. The Williams 
plot of AD analysis is reported in Fig.  9b. The 500-fold 
Y-scrambling test randomization plot (Fig. 9c) suggested 
that the developed KwPLR based model is highly reliable 
and not obtained by chance. Additionally, the spider plot 
(Fig. 9d) clearly showed that except internal cross-valida-
tion (Q2

CV) metric, all remaining validation metrics val-
ues for the KwLPR model compared to the previous kNN 
model are superior in terms of accepted threshold. Inter-
pretation of PCA biplot (Fig. 9e) revealed that out of six 
descriptors employed for the KwLPR model development 
the most influential variables (indicated by the longest 
arrow vectors) were Moriguchi octanol–water partition-
ing coefficient (MLOGP), Complementary Information 
Content index (CIC0) that accounts for the presence 
of heteroatoms, and the 2D autocorrelation descriptor 
that considers the ionization potential of bonded atoms 
(GATS1i). Two of these variables (i.e. MLOGP and 
CIC0) were positively correlated, whereas the last (i.e. 
GATS1i) was negatively correlated. In light of these it 
can be stated, that highly lipophilic chemicals with large 
CIC0 and low GATS1i are characterized by an inherently 
greater toxicity towards P. promelas compared to chemi-
cals with lower MLOGP and CIC0 and larger GATS1i.

The details of the factors that influence the modeling 
outcomes (i.e., bandwidth method selection, bandwidth 
parameters, local polynomial’s degree, kernel function) as 
well as internal and external validation metrics of all five 
KwLPR based QSAAR models are given in Table 2. If one 
compares the accessible validation metrics of the previ-
ously developed model and present ones (Tables 1 and 2), 
it is quite clear that for all five case studies, the quality of 
current models is superior.

Finally, to make the comparison between the proposed 
KwLPR approach and the traditional linear and non-lin-
ear regression-based techniques more meaningful, we 
have considered three error-based metrics RMSEC (Root 
Mean Square Error of Calibration), RMSECV (Root Mean 
Square Error of Cross-Validation) for the training set 
and RMSEP (Root Mean Square Error of Prediction) for 
validation set along with six classical internal and exter-
nal regression-based metrics (Fig. 10). Four new QSAR/
QSAAR models achieved higher (Case studies 1, 3, 4 and 
5) and one model (Case study 2) achieved identical R2 
value in the case of the KwLPR model compared to linear 
and non-linear models. While comparing other regres-
sion-based metrics values, in all cases, KwLPR models 
outperformed the linear as well as non-linear models. 
As no previous QSAAR studies considered RMSECV, 
we can’t compare their results with the present models, 
but all the values obtained here are acceptable. Lower 
RMSEC and RMSEP values are required to show the 
KwLPR approach’s superiority over the traditional linear 
and non-linear regression approaches. The RMSEC value 
of case study 2 is better for the linear model compared 
to KwLPR. Except for this one instance, both error-based 
metrics demonstrated improved outcomes for all remain-
ing three case studies (1, 3 and 4) in the KwLPR model’s 
case over the linear models. Similarly, the KwLPR model 
for case study 5 improve the quality of the model fit (R2) 
by over 37% compare to non-linear kNN based model.

The reason behind the better statistically predic-
tive model for all five cases is that the regression coef-
ficients of the KwLPR are estimated with a sliding 
smoothing window by fitting a polynomial of degree 
(0 or 1) locally at each query point using specific band-
width method selection (direct plug-in method; least 
squares cross-validation method or expected Kullback–
Leibler cross-validation method) and kernel function 
(Gaussian) which help in minimizing the MSE of the 
individual model. Thus, for the precise prediction of 
external test compounds (new or query compounds), 
especially for biological activity and toxicity of chemi-
cals and pharmaceuticals, the KwPLR method is a supe-
rior choice over the traditional linear and non-linear 
regression methods for the development of QSAR/
QSAAR models. On the other hand, even though the 
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Fig. 9  a Scatter plot of experimentally determined versus predicted values of pLC50. The formed straight line represents perfect agreement 
between the observed and calculated values. b Williams plot illustrating the applicability domain of the KwLPR model. c The results of the 500-fold 
Y-scrambling test. d Spider plot presenting the comparison of KwLPR model statistics with the LR modeling approach. e PCA biplot
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KwLPR approach has several advantages, it has cer-
tain constraints. One is related to the interpretability 
of the model. The interpretation of a kernel-weighted 
local polynomial regression model requires an exter-
nal technique (here PCA) to provide explanations for 
an existing model (so-called post-hoc interpretability). 
Hence, one should be aware that the interpretability of 
a KwLPR model, as several other widely-used nonlinear 
models (e.g. kNN, RF, SVM) is a necessary trade-off of 
its improved predictive accuracy [44, 45].

Conclusions
Based on comparison with five diverse databases the 
present work demonstrates the effectiveness and prac-
ticability of the KwLPR approach to develop QSAR/
QSAAR models. We also demonstrate its advantages 
compared to the traditional linear and non-linear 
regression-based techniques. Irrespective of database 
size and chemical diversity of compounds, using the 
same training and validation sets and modeled descrip-
tors; the KwLPR model offers lower residual errors for 
both training and validation sets than the other evalu-
ated approaches accomplishing the primary aim of the 
QSAR/QSAAR models. The KwLPR are estimated with 
a sliding smoothing window by fitting a polynomial of 
degree (0 or 1) locally at each query point using specific 
bandwidth and kernel functions which help in minimiz-
ing the MSE of the individual model and chemicals. It 
is characterized by mathematical simplicity and inter-
pretability of the classical least squares method with 
the flexibility of nonlinear regression. Thus, the KwLPR 

approach can be applied to develop QSAR/QSAAR 
model avoiding the disadvantages of traditional linear 
regression approaches. This is facilitated by availability 
to all users of our freely accessible KwLPR.RMD script 
in R programming language.
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