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Abstract 

Background:  Recently, novel 3D alignment-free molecular descriptors (also known as QuBiLS-MIDAS) based on two-
linear, three-linear and four-linear algebraic forms have been introduced. These descriptors codify chemical informa‑
tion for relations between two, three and four atoms by using several (dis-)similarity metrics and multi-metrics. Several 
studies aimed at assessing the quality of these novel descriptors have been performed. However, a deeper analysis 
of their performance is necessary. Therefore, in the present manuscript an assessment and statistical validation of the 
performance of these novel descriptors in QSAR studies is performed.

Results:  To this end, eight molecular datasets (angiotensin converting enzyme, acetylcholinesterase inhibitors, 
benzodiazepine receptor, cyclooxygenase-2 inhibitors, dihydrofolate reductase inhibitors, glycogen phosphorylase 
b, thermolysin inhibitors, thrombin inhibitors) widely used as benchmarks in the evaluation of several procedures are 
utilized. Three to nine variable QSAR models based on Multiple Linear Regression are built for each chemical dataset 
according to the original division into training/test sets. Comparisons with respect to leave-one-out cross-validation 
correlation coefficients 

(

Q2

loo

)

 reveal that the models based on QuBiLS-MIDAS indices possess superior predictive ability 
in 7 of the 8 datasets analyzed, outperforming methodologies based on similar or more complex techniques such 
as: Partial Least Square, Neural Networks, Support Vector Machine and others. On the other hand, superior external 
correlation coefficients 

(

Q2
ext

)

 are attained in 6 of the 8 test sets considered, confirming the good predictive power of 
the obtained models. For the Q2

ext values non-parametric statistic tests were performed, which demonstrated that the 
models based on QuBiLS-MIDAS indices have the best global performance and yield significantly better predictions 
in 11 of the 12 QSAR procedures used in the comparison. Lastly, a study concerning to the performance of the indices 
according to several conformer generation methods was performed. This demonstrated that the quality of predic‑
tions of the QSAR models based on QuBiLS-MIDAS indices depend on 3D structure generation method considered, 
although in this preliminary study the results achieved do not present significant statistical differences among them.

Conclusions:  As conclusions it can be stated that the QuBiLS-MIDAS indices are suitable for extracting structural 
information of the molecules and thus, constitute a promissory alternative to build models that contribute to the 
prediction of pharmacokinetic, pharmacodynamics and toxicological properties on novel compounds.
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Background
Computational methods that employ statistical and/
or artificial intelligence procedures are widely used in 
the drug discovery process, where the Quantitative 
Structure–Activity Relationship (QSAR) studies have 
an important role [1–4]. These studies are based on the 
principle that the biological activity (or property) of com-
pounds depends on their structural and physicochemical 
features and thus, are primarily aimed at finding good 
correlations among molecular features and specific bio-
logical activities [5]. In this way, models with high exter-
nal predictive ability in novel compounds could be built.

Right from the works developed by Hansch and Fujita 
in 1960s [6, 7], considered as the origins of the modern 
QSAR studies [8], several approaches have been reported 
in the literature with most of these being 2D-QSAR 
methods, that is, they only consider the topological 
structural features of molecules often using matrix rep-
resentations such as the connectivity and distance matri-
ces [8]. However, with the introduction of the CoMFA [9] 
methodology in 1988, the 3D-QSAR approaches become 
popular. These take into account the geometric (3D) fea-
tures of molecules, which can be computed either from 
the information represented in a grid through an align-
ment process with respect to a reference compound or a 
pharmacophore [2, 10, 11], or using procedures based on 
Cartesian coordinates [8, 12, 13], molecular spectra [14, 
15] and molecular transforms [16], or by the adaptation 
of 2D methods to take into account three-dimensional 
(3D) aspects [17–21].

However, despite the number and variety of proce-
dures defined up to date, there exists continued inter-
est in creating or extending the current approaches to 
more generalized forms in order to codify more relevant 
chemical information with the aim of yielding QSAR 
models with better predictive ability. This assertion is in 
accordance with the Non Free Lunch Theorem [22], which 
could be interpreted as no single QSAR procedure yields 
superior predictions than all the others when its perfor-
mance is averaged over all possible compound datasets. 
This can be confirmed in a report performed by Suther-
land et al. [23], where it is observed how well-established 
procedures, assessed in eight diverse chemical datasets, 
present moderate predictions and without significant 
differences among them (see Additional file  1: Table S1 
for a statistical analysis). The justification for this obser-
vation is that one family of molecular descriptors (MDs) 
may not suffice to codify all chemical information and/or 
molecular properties for different chemical datasets. In 
other words, the relevance of MDs depends on the nature 
of the compounds under study. It is therefore necessary 
to search for alternative methods/approaches to codify 
novel and orthogonal chemical information.

Inspired by the previous idea, recently the 3D N-linear 
algebraic molecular descriptors have been introduced as a 
novel mathematical procedure for computing the struc-
tural features of chemical compounds [24–26]. These 
MDs employ the bilinear, quadratic and linear algebraic 
maps [27] to codify information between atom-pairs by 
using several (dis-)similarity metrics [25]. Also, the N-lin-
ear algebraic forms [28] were used as generalized expres-
sions of the bilinear, quadratic and linear algebraic maps, 
when relations among three and four atoms are studied 
[26]. In this way, the geometric matrix [8] was extended 
to consider for the first time relations for more than two 
atoms.

Several studies aimed at assessing the quality of this 
novel descriptor family, also called QuBiLS-MIDAS 
[acronym of Quadratic, Bilinear and N-Linear Maps 
based on N-tuple Spatial Metric [(Dis)-Similarity] Matri-
ces and Atomic Weightings], were performed and these 
included an evaluation of the information content (vari-
ability) and linear independence using Shannon’s entropy 
based variability analysis [29] (using IMMAN software 
[30]) and the principal component analysis (PCA) tech-
nique [31], respectively. Also, comparisons with other 
MDs reported in the literature were performed [25, 26]. 
In general sense, the results demonstrated that the novel 
MDs have superior variability than 3D DRAGON indices 
and another approaches implemented in several software 
[32–35]. Furthermore, the results revealed that the novel 
3D N-linear indices not only do they codify all informa-
tion contained in the 3D DRAGON MDs, but capture 
information orthogonal to the latter. Lastly, the QuBiLS-
MIDAS MDs were used for modeling the binding affin-
ity to the corticosteroid-binding globulin (CBG), achieving 
superior results with respect to other QSAR methodolo-
gies (see Tables 8–9 in Ref. [25] and Tables 9–10 in Ref. 
[26]).

However, although the initial results with QuBiLS-
MIDAS MDs are promissory, it cannot be stated that 
these are most suitable for building QSAR models for 
all chemical datasets. It is thus necessary to evaluate the 
performance of the 3D N-linear algebraic MDs in QSAR 
modeling with different molecular sets. Therefore, this 
paper is dedicated to the assessment of the utility of the 
QuBiLS-MIDAS approach in the prediction of the bio-
logical activity in several compound datasets and the 
comparison of the obtained results with those of other 
QSAR procedures reported in the literature.

Mathematical overview of the 3D N‑linear 
algebraic molecular descriptors
In this report, the total and local-fragment 3D N-lin-
ear Algebraic indices [25, 26] (also known as QuBiLS-
MIDAS) are employed to assess the predictive 



Page 3 of 16García‑Jacas et al. J Cheminform  (2016) 8:10 

accuracy of this approach in QSAR studies. These molec-
ular descriptors (MDs) are calculated from the contri-
bution of each atom in a molecule. That is, if a molecule 
is comprised of n atoms then the kth two-linear, three-
linear and four-linear algebraic indices for each atom “a” 
are computed as N-linear (Multi-linear) algebraic forms 
(maps) in Rn, in a canonical basis set, when relations 
among two (N = 2), three (N = 3) and four (N = 4) atoms 
are considered, respectively. These descriptors are math-
ematically expressed as follows:

(1)b(F)La = ba,k(F)

(

x̄, ȳ
)

=

n
∑

i=1

n
∑

j=1

ga,kij(F)x
iyj = [X]TGa,k

(F)[Y ]

(2)tr(F)La = tra,k(F)

(

x̄, ȳ, z̄
)

=

n
∑

i=1

n
∑

j=1

n
∑

l=1

gta,kijl(F)x
iyjzl = GT

a,k
(F) · x̄ · ȳ · z̄

(3)qu(F)La = qua,k(F)

(

x̄, ȳ, z̄, w̄
)

=

n
∑

i=1

n
∑

j=1

n
∑

l=1

n
∑

h=1

gqa,kijlh(F)x
iyjzlwh

= GQ
a,k
(F) · x̄ · ȳ · z̄ · w̄

interactions among “N” atoms of a molecule. Specifically, 
for k = 1 (matrix of order 1) the coefficients g1ij, gt

1
ijl and 

gq1ijlh corresponding to the matrices G1, GT1 and GQ1 can 
be calculated by using several (dis)-similarity metrics and 
multi-metrics to capture the information on the relations 
between two, three and four atoms, respectively [25, 26]. 
To compute the atom-pair relations, metrics (see Table 1) 
derived from the general Minkowski definition (e.g. 
Manhattan, Euclidean) as well as others that have been 
successfully used in machine learning algorithms and 

where, “a” is a specific atom (a = 1, 2,…,n), n is the num-
ber of atoms in a molecule, (F)La is the entry correspond-
ing to the contribution of the atom “a” in the vector of 
atom-level indices (F)L, F is a local-fragment (group or 
atom-type) that may or not be considered in the index 
computation, and x1,…,xn, y1,…,yn, z1,…,zn and w1,…,wn 
are the values (coordinates or components) of the molec-
ular vectors x̄, ȳ, z̄ and w̄, respectively. In addition, the 
coefficients ga,kij(F), gt

a,k
ijl(F) and gqa,kijlh(F) are the elements of 

the kth two-tuple, three-tuple and four-tuple atom-level 
total (or local-fragment) spatial-(dis)similarity matrices 
[Ga,k

(F), GT
a,k
(F) and GQ

a,k
(F)], which are obtained from the 

corresponding kth two-tuple, three-tuple and four-tuple 
total (or local-fragment) spatial-(dis)similarity matrices 
[Gk

(F), GTk
(F) and GQk

(F)]. Lastly, k (±1, ±2,…,±12) is the 
power to which the matrix approaches are raised through 
the Hadamard product.

The molecular vectors (or property vectors) x̄, ȳ, z̄ and 
w̄ are calculated by using the Chemistry Development Kit 
(CDK) library [36] considering the following fragment- 
and atom-based properties: atomic mass (m), the van der 
Waals volume (v), the atomic polarizability (p), atomic 
electronegativity in Pauling scale (e), atomic Ghose-Crip-
pen LogP (a), Gasteiger-Marsili atomic charge (c), atomic 
polar surface area (psa), atomic refractivity (r), atomic 
hardness (h) and atomic softness (s).

The total matrix approaches Gk, GTk and GQk consti-
tute the basis for the calculation of the two-linear, three-
linear and four-linear indices and these are employed 
to represent the chemical information codified on 

similarity/dissimilarity studies (e.g. Canberra, Soergel, 
Clark) are employed. On the other hand, different multi-
metrics (see Table 2) to calculate the ternary (three) and 
quaternary (four) relations among atoms of a molecule 
can be utilized, such as: bond angle for relations among 
three atoms and dihedral angle for relations among four 
atoms. Table  3 shows examples of two-tuple and three-
tuple total spatial-(dis)similarity matrices calculated with 
some previously mentioned metrics and multi-metrics.

From these total matrix approaches (Gk, GTk and 
GQk ), local-fragments matrices may be computed in 
order to consider atom-types or chemical regions of 
interest and thus yielding the kth two-tuple, three-tuple 
and four-tuple local-fragment spatial-(dis)similarity 
matrices, denoted by Gk

F, GTk
F and GQk

F, respectively (see 
Eq. 13 in Ref. [25] and Eqs. 17–18 in Ref. [26]). Specifi-
cally, the local-fragments (or atom-types), F, that could 
be taken into account to compute these indices include: 
hydrogen bond acceptors (A), carbon atoms in aliphatic 
chains (C), hydrogen bond donors (D), halogens (G), ter-
minal methyl groups (M), carbon atoms in aromatic por-
tion (P) and heteroatoms (X) (see Table 4 for examples).

These total (or local-fragment) matrix approaches (Gk
(F) , 

GTk
(F) and GQk

(F)) are also known as kth non-stochastic 
two-tuple, three-tuple and four-tuple total (or local-frag-
ment) spatial-(dis)similarity matrices denoted by nsGk

(F), 
nsGTk

(F) and nsGQk
(F), respectively, because no normaliz-

ing procedure is used in their computation. Nonetheless, 
with the purpose of obtaining normalized matrix repre-
sentations three probabilistic schemes may be employed 
to compute the QuBiLS-MIDAS MDs. In this way, the 
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following normalized matrix representations are obtained 
from the corresponding non-stochastic matrices: the kth 
simple-stochastic two-tuple, three-tuple and four-tuple 
total (or local-fragment) spatial-(dis)similarity matri-
ces [ssGk

(F), ssGTk
(F) and ssGQk

(F)] (see Eq.  10 in Ref. [25] 
and Eqs.  13–14 in Ref. [26]), the kth double-stochastic 
two-tuple total (or local-fragment) spatial-(dis)similarity 
matrix [dsGk

(F)] (see Sinkhorn–Knopp algorithm in Ref. 
[37]) and the kth mutual probability two-tuple, three-tuple 
and four-tuple total (or local-fragment) spatial-(dis)simi-
larity matrices [mpG

k
(F), mpGTk

(F) and mpGQk
(F)] (see Eq. 12 

in Ref. [25] and Eqs. 15–16 in Ref. [26]). Table 5 shows the 
results obtained with the three probabilistic transforma-
tions on a two-tuple total spatial-(dis)similarity matrix.

Finally, from the non-stochastic (simple-stochastic, 
double-stochastic or mutual-probability) total (or local-
fragment) matrices [i.e. Gk

(F), GTk
(F) and GQk

(F)], the corre-
sponding atom-level matrices [denoted as Ga,k

(F), GT
a,k
(F) and 

GQ
a,k
(F), respectively] are calculated and their coefficients 

are used in the descriptors calculation (see Eqs. 1–3). Each 
atom-level matrix determines an atom-level index for 

atom “a” of a molecule and this value constitutes a com-
ponent (entry) of the vector (F)L. Once the vector (F)L is 
computed then the global definition of the kth two-linear, 
three-linear and four-linear algebraic indices is obtained 
by applying over the entries of (F)L one or several aggrega-
tion operators (see Additional file 1: Table S2 for mathe-
matical definition) [25, 26], which have been successfully 
employed in other reports [38–40]. In the Scheme  1 a 
general flowchart regarding the calculation process of 
the QuBiLS MIDAS MDs detailed in this section may be 
observed, while Scheme  2 is a graphic representation of 
each step employed in the computation of a specific two-
linear algebraic index.

In order to automatize the calculation of the 3D 
N-linear algebraic indices used in the present manu-
script the QuBiLS-MIDAS software has been developed 
[41]. This software has as one of its main features the 
multi-core processing of the MDs, as well as the option 
to carry out the distributed calculation of the indices by 
using the Multi-Server Distributed Computing Platform 
known as T-arenal [42]. The latter is particularly useful 
for high-throughput calculation tasks. Both software are 
freely available via internet at: http://tomocomd.com/.

Table 1  Metrics used to compute the “distance” between two atoms of a molecule

a  The variables xj and yj are the values of the coordinate j of the atoms X and Y of a molecule, respectively. The h value is equal to 3 and corresponds to the 3D 
Cartesian coordinates (x, y, z) of an atom. The p values in Minkowski metric are 0.25, 0.5, 1 (Manhattan), 1.5, 2 (Euclidean), 2.5 and 3 (Minkowski)
b  “Range” refers to “range” and not to “rank” and is defined as Range = max{xj} − min{xj}

Metrics Formulaa Rangeb Average Range

Minkowski (M1–M7)
p = 0.25, 0.5, 1, 1.5, 2, 2.5, 3, and ∞ [where, when p = 1 it is the Manhattan,  

city-block or taxi distance (also known as Hamming distance between  
binary vectors) and p = 2 is Euclidean distance)

dXY =

(

h
∑

j=1

∣

∣xj − yj
∣

∣

p

)
1
p [0, ∞) d̄ =

dXY
n1/p

[0, ∞)

Chebyshev/Lagrange (M8) (Minkowski formula when p = ∞) dXY = max
{∣

∣xj − yj
∣

∣

}

Canberra (M10)
dXY =

h
∑

j=1

|xj−yj |
|xj |+|yj |

[0, n] d̄ =
dXY
n

[0, 1]

Lance–Williams/Bray–Curtis (M11)
dXY =

∑h
j=1 |xj−yj |

∑h
j=1 (|xj |+|yj |)

[0, 1] d̄ =
dXY
n

[

0, 1n

]

Clark/coefficient of divergence (M12)
dXY =

√

h
∑

j=1

(

xj−yj

|xj |+|yj |

)2
[0, n] d̄ =

dXY√
n

[

0,
√
n
]

Soergel (M13)
dXY = 1

n

h
∑

j=1

|xj−yj |
max{xj ,yj}

[0, 1] d̄ =
dXY
n

[

0, 1n

]

Bhattacharyya (M14)
dXY =

√

h
∑

j=1

(√
xj −

√
yj
)2

[0, ∞) d̄ =
dXY√
n

[0, ∞)

Wave–Edges (M15)
dXY =

h
∑

j=1

(

1−
min{xj ,yj}
max{xj ,yj}

) [0, n] d̄ =
dXY
n

[0, 1]

Angular separation/[1 − Cosine (Ochiai)] (M16) dXY = 1−CosXY where, [0, 2]

CosXY = XY
XY

=

∑h
j=1 xj yj

√

∑h
j=1 x

2
j

∑h
j=1 y

2
j

http://tomocomd.com/
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Methods
In order to assess the correlation ability of the QuBiLS-
MIDAS MDs for different biological activities eight 
well-known chemical datasets were used. These were 
previously employed by Sutherland et al. in a compara-
tive study of QSAR methods commonly used in chemo-
informatics analysis [23] and since then, these have been 
utilized as “benchmarks” for comparing results obtained 
in other approaches [43–47]. These datasets are com-
prised by angiotensin converting enzyme (ACE) inhibi-
tors, acetylcholinesterase (AchE) inhibitors, ligands for 
the benzodiazepine receptor (BZR), cyclooxygenase-2 
(COX2) inhibitors, dihydrofolate reductase inhibitors 
(DHFR), inhibitors of glycogen phosphorylase b (GPB), 
thermolysin inhibitors (THER) and thrombin inhibitors 
(THR). In this study the 3D coordinates were generated 
using CORINA software, and the same partitioning into 
training and test sets used in the initial study was con-
sidered in order to guarantee comparability of results.

For these datasets, several configurations based on 3D 
two-linear, three-linear and four-linear algebraic indi-
ces were computed (see Additional file 1: Table S3) using 
the QuBiLS MIDAS software [41]. Due to the fact that 

numerous MDs are computed with this program yielding 
a high-dimensional space, then strategies for data reduc-
tion are necessary. In this sense, the following workflow for 
each set of indices calculated for each chemical dataset was 
performed only considering the training set compounds:

• • The 1000 MDs with best variability behavior accord-
ing to their Shannon’s Entropy values [29] were 
retained by using the IMMAN software [30].

• • The MDs with values represented as power of 10 
(scientific notation) and whose exponents are greater 
or lesser than ±5 were removed.

• • Filters for removing the MDs with correlation equal 
or greater than 0.95 and standardized entropy lesser 
than 0.3 were applied.

• • The statistical method Multiple Linear Regression 
(MLR) implemented in the STATISTICA software 
was employed in order to select the MDs included in 
the model by using Forward Stepwise and Backward 
Stepwise selection procedures.

• • The MDs retained after applying the previous steps 
and computed for the same compounds were merged 
into a single dataset.

Table 2  Measures used to compute the ternary (A) and quaternary (B) relations (multi-metrics) among atoms of a mol‑
ecule

Measure Formula

(A) Ternary measures (TXYZ)

 Perimeter (M19–M20) TXTZ = dxy + dyz + dzx

 Triangle area (M21–M22)
TXYZ =

√

s(s− dXY )(s− dYZ )(s− dZX )

s =
dXY + dYZ + dZX

2

 Sides summation (M25–M26) TXTZ = dxy + dyz

 Bond angle (angle between sides) (m27–m28) AX , AY , AZ coordinates of three atoms of a molecule

U = AX − AY , V = AZ − AY

TXYZ = α = arccos

(

U ∗ V

|U| ∗ |V |

)

(B) Quaternary measures (TXYZ)

 Perimeter (M19–M20) QXTZW = dXY + dYZ + dZW + dWX

 Volume (M23–M24) AX , AY , AZ , AW coordinates of four atoms of a molecule

QXYZW =
1

6





AY1 − AX1 AZ1 − AX1 AW1 − AX1
AY2 − AX2 AZ2 − AX2 AW2 − AX2
AY3 − AX3 AZ3 − AX3 AW3 − AX3





 Sides summation (M25–M26) QXTZW = dXY + dYZ + dZW

 Dihedral angle (M29–M30) AX , AY , AZ coordinates of three atoms of a molecule in the plane A

BW , BY , BZ coordinates of three atoms of a molecule in the plane B

UA = (AX − AY )×
(

AZ − Ay
)

UB = (BW − AY )×
(

BZ − Ay
)

QXYZW = α = arccos

(

UA ∗ UB

|UA| ∗ |UB|

)
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With the reduced data matrices for each chemi-
cal datasets, QSAR models were built with the MLR 
technique to determine the relationship between the 
response (activity) and predictor variables (MDs). The 
MLR technique is coupled with the Genetic Algorithm 
(GA) meta-heuristic as the variable selection method 
[48]. This strategy (MLR + GA) is implemented in the 
MobyDigs software (version 1.0) which was utilized to 
carry out this study [49]. In this sense, to perform the 
search process several populations with 100 3D N-linear 
MDs each were created, while the following configura-
tions were used for the GA procedure: Number of itera-
tions equal to 500,000, Population size equal to 100, 
Reproduction/mutation trade-off equal to 0.5, Selection 
bias was initially set to 0 (indicative of random selec-
tion) until achieving the 80 % of the maximum number 
of iterations and was later set to 1 (indicates tournament 

selection) in order to increase the selection pressure. 
The values of the previous parameters were selected 
according to the study performed by Todeschini et al. in 
Ref. [49].

The search process was carried out by using the Q2
loo 

(“leave-one-out” cross validation) statistical parameter 
as the fitness function. Once the exploration in each 
population was completed, then the MDs included in the 
built 9-variable models were retained with the purpose 
of creating new populations until 100 MDs. This process 
is repeated until achieving an only one population with 
100 MDs as maximum. Finally, from the final population 
and for each compound dataset, 3–9 variable regression 
models were built for the corresponding biological activ-
ity. However, as the MobyDigs software generates a set of 
MLR models then the choice of the most suitable model 
was performed according to the following steps:

Table 3  (A) Chemical structure of Chloro(methoxy)methane and its labeled molecular scaffold, (B) examples of two-tuple 
total spatial-(dis)similarity matrices for k = 1 (order) calculated from different (dis-)similarity metrics, (C) example of three-
tuple total spatial-(dis)similarity matrix for k = 1 (order) calculated from bond angle ternary measure

(A) 3D molecular structure

C1 C2 O3 Cl4 C1 C2 O3 Cl4

(B) Two-tuple total spatial-(dis)similarity matrices, G1

 G1 based on Euclidean metric G
1 based on Lance-Williams metric

  C1 0.000 2.408 1.439 3.939 0.000 1.000 0.973 1.000

  C2 2.408 0.000 1.438 1.757 1.000 0.000 0.954 0.293

  O3 1.439 1.438 0.000 2.598 0.973 0.954 0.000 0.973

  Cl4 3.939 1.757 2.598 0.000 1.000 0.293 0.973 0.000

 G1 based on Soergel metric G
1 based on Angular Separation metric

  C1 0.000 1.158 1.003 1.709 0.000 1.354 0.558 1.875

  C2 1.158 0.000 1.234 1.359 1.354 0.000 0.318 0.237

  O3 1.003 1.234 0.000 2.235 0.558 0.318 0.000 0.952

  Cl4 1.709 1.359 2.235 0.000 1.875 0.237 0.952 0.000

(C) Three-tuple total spatial-(dis)similarity matrix, GT
1

 GT
1 slide 1ij GT

1 slide 2ij

  C1 0.000 0.000 0.000 0.000 0.000 0.000 0.578 0.281

  C2 0.000 0.000 0.578 2.470 0.000 0.000 0.000 0.000

  O3 0.000 1.985 0.000 2.682 1.985 0.000 0.000 0.697

  Cl4 0.000 0.390 0.163 0.000 0.390 0.000 0.553 0.000

 GT
1 slide 3ij GT

1 slide 4ij

  C1 0.000 0.578 0.000 0.297 0.000 0.281 0.297 0.000

  C2 0.578 0.000 0.000 1.892 2.470 0.000 1.892 0.000

  O3 0.000 0.000 0.000 0.000 2.682 0.697 0.000 0.000

  Cl4 0.163 0.553 0.000 0.000 0.000 0.000 0.000 0.000
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• • The “best” 50 models according to the Q2
loo parameter 

were retained.
• • To each model retained the validation methods 

“bootstrapping” [50] 
(

Q2
boot

)

 and “Y-scrambling” [51] 
(a(Q2)) were applied in order to assess the predic-
tive power and the possible chance correlation with 

respect to the modeled biological activity, respec-
tively. The former randomly creates training sets 
(with repeated objects) of the same size as the origi-
nal and the objects left out constitute the test set, 
while the latter randomly changes the true response 
variables to determine the quality of the model. 
Both procedures were repeated 5000 and 300 times, 
respectively. These methods were applied due to the 
fact that Q2

loo procedure does not suffice to validate 
the stability of a predictive model [52].

• • For each model the function 
f (x) =

(

1− Q2
boot

)

+
∣

∣a
(

Q2
)
∣

∣ was computed, which 
takes into account the results obtained with the two 
validation procedures employed and the model with 
the smallest f(x) value constitutes the “best” regres-
sion model.

• • The “best” regression model was assessed by using 
“external validation” 

(

Q2
ext

)

 procedure in the corre-
sponding test set in order to measure its generaliza-
tion ability.

Results and discussion
Assessment of the QuBiLS‑MIDAS models versus other 
approaches
In this section the performance of the QuBiLS-MIDAS 
models for the chemical datasets described in section 
“Methods” is compared with respect to 16 QSAR meth-
odologies (or descriptor sets) reported in the literature. 
The Table  6 shows the statistical parameters and equa-
tions of the best regression model based on total and 
local-fragment QuBiLS-MIDAS indices corresponding 
to each chemical dataset used in this report. In general 
sense, it can be observed that the bootstrapping valida-
tion coefficient 

(

Q2
boot

)

 calculated for each model presents 
a value greater than 0.6, indicative of the good predic-
tive power of the built models. Also, the coefficients 

Table 4  (A) Two-tuple total spatial-(dis)similarity matrix 
for k = 1, G1, computed from 3D coordinates of the mole‑
cule Chloro(methoxy)methane (see Table 1A), (B) examples 
of  two-tuple local-fragment spatial-(dis)similarity matrices, 
G1

F
, obtained with different chemical fragments

C1 C2 O3 Cl4

(A) Two-tuple total spatial-(dis)similarity matrices, G1

 C1 0.000 2.408 1.439 3.939

 C2 2.408 0.000 1.438 1.757

 O3 1.439 1.438 0.000 2.598

 Cl4 3.939 1.757 2.598 0.000

(B) two-tuple local-fragment spatial-(dis)similarity matrices, G1
F

 G1
F based on halogens fragment

  C1 0.000 0.000 0.000 1.969

  C2 0.000 0.000 0.000 0.878

  O3 0.000 0.000 0.000 1.299

  Cl4 1.969 0.878 1.299 0.000

 G1
F based on methyl groups fragment

  C1 0.000 1.204 0.719 1.969

  C2 1.204 0.000 0.000 0.000

  O3 0.719 0.000 0.000 0.000

  Cl4 1.969 0.000 0.000 0.000

 G1
F based on heteroatoms fragment

  C1 0.000 0.000 0.719 1.969

  C2 0.000 0.000 0.719 0.878

  O3 0.719 0.719 0.000 2.598

  Cl4 1.969 0.878 2.598 0.000

Table 5  Example of  probabilistic transformations on  the non-stochastic two-tuple total spatial-(dis)similarity matrix 
for  k =  1, nsG1, computed from  3D coordinates of  the Chloro(methoxy)methane compound (see Table  1A) by  using the 
Euclidean metric

C1 C2 O3 Cl4 C1 C2 O3 Cl4

Non-stochastic matrix, nsG1 Simple-stochastic matrix, ssG1

C1 0.000 2.408 1.439 3.939 0.000 0.309 0.185 0.506

C2 2.408 0.000 1.438 1.757 0.430 0.000 0.257 0.314

O3 1.439 1.438 0.000 2.598 0.263 0.263 0.000 0.475

Cl4 3.939 1.757 2.598 0.000 0.475 0.212 0.313 0.000

Double-stochastic matrix, dsG1 Mutual probability matrix, mpG
1

C1 0.000 0.387 0.246 0.368 0.000 0.089 0.053 0.145

C2 0.387 0.000 0.368 0.246 0.089 0.000 0.053 0.065

O3 0.246 0.368 0.000 0.387 0.053 0.053 0.000 0.096

Cl4 0.368 0.246 0.387 0.000 0.145 0.065 0.096 0.000
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computed from scrambling tests (a(Q2)) have in all cases 
values inferior to 0.4, indicating reduced propensity to 
chance correlation. Lastly, the values achieved in the 
external prediction 

(

Q2
ext

)

 suggest that the models based 
on QuBiLS-MIDAS MDs have appropriate generaliza-
tion ability, given that all Q2

ext parameters present values 
superior to 49 % of the total variance even when outlier 
compounds are retained in the validation set.

On the other hand, the Tables 7 and 8 show the com-
parisons with respect to other approaches reported in 
the literature, as well as the results obtained by the mod-
els based on total QuBiLS-MIDAS MDs exclusively (see 
Additional file  1: Table S4 for information related with 
the best models from 3 to 9 variables). In this manner, the 
importance of considering local-fragments (atom-types 
or group) in the calculation of the QuBiLS-MIDAS MDs 
and subsequently in the building of QSAR models can be 
analyzed. As can be observed in both tables, the perfor-
mance of the QuBiLS-MIDAS models is superior when 

local-fragments are considered with respect to those 
QuBiLS-MIDAS models that do not use them. Particu-
larly, it can be noted that in 6 of the 8 datasets studied the 
Q2
loo parameter is rather comparable, while better perfor-

mances are attained according to Q2
ext. Both parameters 

for the COX2 dataset present the best improvements, 
achieving in the external prediction a value greater than 
49 % of the total variance, while no other QSAR proce-
dure outperforms this threshold. On the other hand, only 
in the DHFR and GPB datasets does the utilization of the 
local-fragment QuBiLS-MIDAS MDs not influence the 
performance of the developed QSAR models. It can thus 
be stated that considering a mixture of total and local-
fragment QuBiLS-MIDAS MDs in building of QSAR 
models contributes to the improvement of the predictive 
ability. 

Also, it can be observed from Table 7 that the cross-val-
idation performances achieved by the QuBiLS-MIDAS 
models have comparable-to-superior behavior with 

Scheme 1  General workflow for calculating the QuBiLS MIDAS molecular descriptors. (1) Computation of the molecular vectors according to 
selected atomic properties; (2) Computation from 3D Cartesian coordinates of each atom of a molecule the non-stochastic two-tuple, three-tuple or 
four-tuple total spatial-(dis)similarity matrices for k = 1; (3) Consideration of atom-types or local-fragments (optional); (4) Computation of the simple-
stochastic, double-stochastic and mutual probability matrices, as well as to determine the kth matrices through Hadamard product until the k value 
selected; (5) Splitting the calculated matrices into atom-level matrices; (6) Computation of the atom-level indices (descriptors) using the molecular 
vectors calculated in the step (1); and (7) Application of the selected aggregation operators over vector of atom-level descriptors
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respect to the approaches reported in the literature. Until 
now, the best Q2

loo value for the datasets ACE, ACHE, 
BZR, COX2, GPB, THER and THR had been attained 
by the procedures HQSAR (and 2.5D) [Q2

loo  =  0.72], 
SAMFA-RF (Q2

loo = 0.58), All-Shortest Path [ASP] Finger-
print (Q2

loo = 0.56), COMSIA extra (Q2
loo = 0.57), HQSAR 

(and SAMFA-RF) [Q2
loo = 0.66], O3A/O3Q (Q2

loo = 0.67) 
and COMSIA extra (Q2

loo =  0.72), respectively, by using 
PLS, Random Forest (RF) or Support Vector Machine 
(SVM) techniques. However, all these previous results 
are clearly outperformed by the QuBiLS-MIDAS mod-
els [(ACE, Q2

loo  =  0.7756), (ACHE, Q2
loo  =  0.6574), 

(BZR, Q2
loo  =  0.6931), (COX2, Q2

loo  =  0.6313), (GPB, 
Q2

loo  =  0.8124), (THER, Q2
loo  =  0.7530) and (THR, 

Q2
loo = 0.8149)], which were built with MLR that is a sim-

pler method than those employed in the reported results. 
In the specific case of the DHFR dataset, although the 
attained value (Q2

loo = 0.7055) with the QuBiLS-MIDAS 
approach is not better than the current best result (ASP 
fingerprint, Q2

loo =  0.76), the former is superior to the 
remaining QSAR procedures. However, it is important to 
remark that the best model (ASP fingerprint + SVM) for 
the DHFR dataset does not have the external prediction 

value (Q2
ext) reported and thus the corresponding Q2

loo 
could be overoptimistic.

According to the external predictions, it can be observed 
in the Table 8 that the models based on QuBiLS-MIDAS 
indices yield comparable-to-superior performances with 
respect to the results reported in the literature. Specifically, 
the models for ACE (Q2

ext = 0.7422), BZR (Q2
ext = 0.5692), 

COX2 (Q2
ext  =  0.4932), GPB (Q2

ext  =  0.8283), THER 
(Q2

ext = 0.7248) and THR (Q2
ext = 0.7674) test sets outper-

form the best results reported up to date for each dataset 
previously mentioned, which correspond to COSMOs-
ar3D (Q2

ext = 0.43) in COX2 and to the 2D-FPT method-
ology in the other datasets [(ACE, Q2

ext =  0.713), (BZR, 
Q2

ext = 0.378), (GPB, Q2
ext = 0.667), (THER, Q2

ext = 0.649) 
and (THR, Q2

ext = 0.737)]. The 2D-FPT models were devel-
oped by using SQS framework that determines linear and 
non-linear models (see Table  8), while the model corre-
sponding to COSMOsar3D is based on the PLS technique. 
Even so, the obtained MLR models have better predictive 
accuracy, even when these are compared with respect to 
more complex or similar procedures.

As for the ACHE and DHFR datasets, the pre-
dictive power obtained for models built with the 

Scheme 2  General workflow for the calculation of a two-linear descriptor based on the linear algebraic form, Euclidean metric, non-stochastic matrix 
approach, atomic mass as property and Manhattan aggregation operator. (1) Computation of the non-stochastic matrix for k = 1 

(

G
1
)

 from the 3D 
coordinates matrix and using the Euclidean metric; (2) Computation of the molecular vector based on the atomic mass property, X̄m; (3) Splitting 
of the G1 matrix into “n” (number of atoms) atom-level matrices, Ga,1, where “a” is an atom of the molecule; (4) Computation of the atom-level 
descriptors and saving them into vector L; and (5) Application of the Manhattan aggregation operator over the entries of the vector L, being this 
value the molecular descriptor
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QuBiLS-MIDAS approach is inferior to the best results 
reported so far in the literature. In the former dataset, the 
methods 2D-FPT (Q2

ext = 0.714), O3Q (Q2
ext = 0.67) and 

O3A/O3Q (Q2
ext = 0.65) offer better predictions than the 

proposed model (Q2
ext = 0.6309), albeit this can be con-

sidered as suitable (explains 63 % of total variance). Addi-
tionally, when the DHFR test set is taken into account 
the 2D-FPT approach (Q2

ext = 0.683) has more predictive 

Table 6  Statistical parameters and equations of the best models developed for each chemical dataset analyzed

a  See Additional file 1: Table S7 for nomenclature of the QuBiLS-MIDAS descriptors

Size R2 (

Q2

loo

) (

Q2

boot

)

a(Q2)
(

Q2
ext

)

SDEPext Modelsa

ACE dataset

 6 0.814 0.7756 0.765 −0.169 0.7422 1.078 Act = 1.576 (±1.283) + 0.132 (±0.018) SD
NS2

TrC
M20(M4)
e  − 17.977 (±3.649) RA

SS2
BM1
a−c + 2.135  

(±0.398) RA
SS0

Ba−e − 3.900 (±0.772) RA
SS1

FM1
a  + 0.034 (±0.013) 

[

AC[3]_K

NS3
TrC

M20(M16)
c

]D
 − 0.114 

(±0.071) 
[

RA
MP1

QuQdM29
e

]X

ACHE dataset

 8 0.738 0.6574 0.626 −0.213 0.6309 0.784 Act = 7.622 (±0.564) − 0.010 (±0.004) i50
SS4

TrQB
M21(M3)
e−v  − 0.204 (±0.046) 

K
NS4

Tr
M21(M1)

a−e−h
 + 3.311 (±0.673) i50

SS1
BM1
a−h

 − 111.324 (±30.793) i50
MP2

FM1
a  − 0.413 (±0.156) 

ES_SD
SS7

TrB
M21(M13)
a−e  − 0.647 (±0.201) TS[2]_K

NS4
BM4
a−v + 0.022 (±0.011) 

[

K
NS4

Tr
M21(M1)

a−e−h

]A

 − 1.747 

(±0.699) 
[

i50
SS1

BM1
a−h

]P

BZR dataset

 9 0.754 0.6931 0.669 −0.170 0.5692 0.631 Act = 8.589 (±0.592) + 0.160 (±0.024) TS[4]_K
SS7

Tr
M19(M11)

a−e−h
 + 0.416 (±0.076) RA

SS1
BM2
c−v + 0.018 

(±0.006) i50
SS2

TrB
M19(M16)
e−v  + 0.092 (±0.034) TS[7]_K

NS2
TrM27

a−h−c
 + 0.030 (±0.010) 

AC[1]_K

NS2
BM2
c−e − 7.940 (±2.981) TS[4]_i50

SS0
Ba−c − 0.009 (±0.005) 

[

AC[4]_K

SS4
TrB

M20(M13)
e−v

]D
 + 0. 

(±0.) 
[

AM
NS4

QuQd
M26(M8)
v

]C
 + 0. (±0.) 

[

AM
NS4

QuQd
M26(M8)
v

]P

COX2 dataset

 9 0.670 0.6313 0.615 −0.091 0.4932 1.038 Act = –94.390 (±8.607) + 1.759 (±0.150) ES_N1
MP3

BM3
v−e − 0.032 (±0.007) AC[1]_K

NS4
BM13
a−e + 0.317 

(±0.070) ES_i50
SS0

Bh−e + 0.005 (±0.002) SD
SS2

TrQB
M20(M16)

v−h
 + 0.021 (±0.005) 

TS[5]_K

NS4
BM11
a−c + 0.081 (±0.017) AC[1]_K

NS2
BM8
c−e − 17.442 (±3.695) 

[

SD
SS4

QuCB
M26(M8)

h−c

]D

 − 14.761 

(±2.510) 
[

SD
SS4

QuCB
M26(M8)

h−c

]M

 + 122.311 (±50.893) 
[

SD
MP1

Tr
M20(M16)

a−h−c

]X

DHFR dataset

 9 0.732 0.7055 0.697 −0.077 0.6405 0.826 Act = 3.127 (±0.519) + 0.019 (±0.005) RA
SS1

TrB
M21(M2)
e−v  + 0.050 (±0.007) 

GV [4]_K

NS6
BM4
c−e − 15.592 (±3.530) TS[2]_i50

MP4
QuQd

M25(M3)
m  − 0.067 (±0.007) 

GV [3]_K

NS2
BM1
a−c + 0.471 (±0.034) GV [1]_K

NS3
BM3
h−c

 − 0.325 (±0.037) TS[4]_N1
NS1

BM1
c−e + 55.107 

(±10.603) GV [5]_SD
NS1

BM3
c−e + 0.044 (±0.008) TS[3]_SD

NS2
BM4
v−e − 0.933 (±0.331) N1

MP4
Qu

M26(M3)

e−v−h−c

GPB dataset

 8 0.893 0.8124 0.774 −0.394 0.8283 0.499 Act = 2.073 (±0.351) + 0.334 (±0.078) TS[4]_K
SS3

TrB
M20(M8)

e−h
 + 0.147 (±0.051) 

AC[3]_K

NS2
FM8
e  + 0.046 (±0.009) AC[4]_N1

SS3
BM12
c−v + 55.958 (±10.078) AC[2]_N1

SS2
BM8
a−c + 0.050 

(±0.039) N1
SS4

Tr
M19(M12)
e−v−c  + 0.078 (±0.055) GV [2]_K

NS3
FM11
a  + 1.322 (±0.427) 

SD
MP0

QuQTr
e−v−h

 − 0.309 (±0.108) SD
MP4

QuQTr
M26(M3)

e−v−h

THER dataset

 7 0.815 0.7530 0.723 −0.260 0.7248 1.197 Act = –11.296 (±3.486) + 126.508 (±41.628) GV [5]_N1
NS1

BM8
a−c + 0.016 (±0.003) 

GV [7]_i50

NS1
QM8
e  − 4.265 (±0.851) N1

SS1
Tr

M20(M3)

v−h−c
 + 0.718 (±0.171) RA

SS3
TrC

M20(M3)
e  + 0.016 

(±0.009) RA
SS4

TrBM27
e−v − 0.027 (±0.029) 

[

RA
SS4

TrBM27
e−v

]A
 + 0.042 (±0.027) 

[

RA
SS4

TrBM27
e−v

]X

THR dataset

 9 0.866 0.8149 0.789 −0.286 0.7674 0.540 Act = 5.251 (±0.605) − 2120.900 (±253.086) TS[1]_i50
MP2

Tr
M19(M2)

a−h−c
 − 0.0001 (±0.) 

TS[5]_i50

NS0
Tr

e−v−h
 + 0.060 (±0.013) AC[2]_K

SS1
TrQBM27

a−c + 0.022 (±0.004) RA
NS3

Tr
M20(M2)

e−v−h
 + 1.415 

(±0.222) RA
NS2

TrQB
M20(M8)
a−c  + 0.958 (±0.293) GV [4]_PN

NS2
BM8
c−v + 0.107 (±0.041) 

K
SS4

Tr
M21(M8)

e−v−h
 + 0.029 (±0.012) AC[7]_K

MP4
Tr

M19(M13)
a−e−c  − 0.058 (±0.022) 

[

AC[2]_K

SS1
TrQBM27

a−c

]C
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Table 7  Comparison of  the cross-validation statistic parameter 
(

Q2

loo

)

 obtained from  the QuBiLS-MIDAS models 
with respect to the performance achieved by 15 QSAR procedures

a  Q2
loo

 values corresponding to the best model reported considering total and local-fragment QuBiLS-MIDAS indices (see Table 6)
b  Q2

loo
 values corresponding to the best model reported considering only total QuBiLS-MIDAS indices (see Additional file 1: Table S4)

Italic values correspond to the best results reported in the literature and those obtained by the QuBiLS-MIDAS 3D-MDs

ACE ACHE BZR COX2 DHFR GPB THER THR

QuBiLS-MIDASa 0.7756 0.6574 0.6931 0.6313 0.7055 0.8124 0.7530 0.8149

QuBiLS-MIDASb 0.7713 0.6521 0.6886 0.6064 0.7055 0.8124 0.7495 0.8047

CoMFA [23] 0.68 0.52 0.32 0.49 0.65 0.42 0.52 0.59

COMSIA basic [23] 0.65 0.48 0.41 0.43 0.63 0.43 0.54 0.62

COMSIA extra [23] 0.66 0.49 0.45 0.57 0.65 0.61 0.51 0.72

EVA [23] 0.70 0.42 0.40 0.45 0.64 0.58 0.48 0.47

HQSAR [23] 0.72 0.34 0.42 0.50 0.69 0.66 0.49 0.50

2D [23] 0.68 0.32 0.36 0.49 0.51 0.31 0.62 0.62

2.5D [23] 0.72 0.31 0.35 0.55 0.53 0.46 0.66 0.52

SAMFA-RF [43] 0.69 0.58 0.43 0.38 0.70 0.66 0.52 0.53

SAMFA-SVM [43] 0.52 0.29 0.38 0.39 0.57 0.53 0.18 0.39

SAMFA-PLS [43] 0.65 0.54 0.49 0.40 0.68 0.61 0.60 0.56

Fingerprints Library [44] 0.69 0.57 0.56 0.55 0.76 0.53 0.53 0.58

O3Q [45] 0.69 0.52 0.42 0.48 0.70 0.55 0.48 0.59

O3QMFA [46] 0.65 0.41 0.41 0.43 0.69 0.30 0.47 0.65

O3A/O3Q [45] 0.71 0.55 0.46 0.46 0.66 0.50 0.67 0.68

COSMOsar3D [46] 0.71 0.53 0.45 0.54 0.69 0.61 0.58 0.74

Table 8  Comparison of the external predictive accuracy 
(

Q2

ext

)

 attained by the QuBiLS-MIDAS models with respect to the 
generalization ability achieved with 12 QSAR procedures

a  Q2
ext values corresponding to the best model reported considering total and local-fragment QuBiLS-MIDAS indices (see Table 6)

bQ2
ext values corresponding to the best model reported considering only total QuBiLS-MIDAS indices (see Additional file 1: Table S4)

L  2D-FPT-based linear models
N  2D-FPT-based non-linear models

Italic values correspond to the best results reported in the literature and those obtained by the QuBiLS-MIDAS 3D-MDs

ACE ACHE BZR COX2 DHFR GPB THER THR

QuBiLS-MIDASa 0.7422 0.6309 0.5692 0.4932 0.6405 0.8283 0.7248 0.7674

QuBiLS-MIDASb 0.7255 0.5989 0.5459 0.4660 0.6405 0.8283 0.7061 0.7498

CoMFA [23] 0.49 0.47 0.00 0.29 0.59 0.42 0.54 0.63

COMSIA basic [23] 0.52 0.44 0.08 0.03 0.52 0.46 0.36 0.55

COMSIA extra [23] 0.49 0.44 0.12 0.37 0.53 0.59 0.53 0.63

EVA [23] 0.36 0.28 0.16 0.17 0.57 0.49 0.36 0.11

HQSAR [23] 0.30 0.37 0.17 0.27 0.63 0.58 0.53 −0.25

2D [23] 0.47 0.16 0.14 0.25 0.47 −0.06 0.14 0.04

2.5D [23] 0.51 0.16 0.20 0.27 0.49 0.04 0.07 0.28

O3Q [45] 0.69 0.67 0.17 0.32 0.60 0.50 0.51 0.67

O3QMFA [46] 0.45 0.61 0.13 0.37 0.59 0.29 0.49 0.60

O3A/O3Q [45] 0.54 0.65 0.24 0.28 0.53 0.41 −0.18 0.30

COSMOsar3D [46] 0.62 0.61 0.13 0.43 0.58 0.63 0.59 0.66

2D-FPT [47] 0.713L 0.714N 0.378L 0.329N 0.683N 0.667L 0.649L 0.737N



Page 12 of 16García‑Jacas et al. J Cheminform  (2016) 8:10 

ability than the corresponding QuBiLS-MIDAS model 
(Q2

ext = 0.6405), but the latter is superior to the remain-
ing methodologies. Nonetheless, it is important to 
highlight that the procedures O3Q and O3A/O3Q are 
alignment dependent and thus their use is generally 
restricted to congeneric datasets [45]. In the specific case 
of the 2D-FPT methodology for ACHE and DHFR data-
sets, the achieved results are based on non-linear models 
while the proposed outcomes are determined with linear 
models.

The obtained results evidence that the QuBiLS-MIDAS 
MDs properly codify structural information of the mol-
ecules considering interactions among N (N =  2, 3, 4) 
atoms and thus are suitable for developing QSAR models 
that contribute to the prediction of biological activity in 
novel structures. However, notwithstanding the compa-
rable-to-superior predictions achieved by the proposed 

models, it is important to statistically validate these 
results.

Statistical analysis of the external predictive accuracy
To perform this analysis the values corresponding to 
the external predictions (Q2

ext) obtained by the QuBiLS-
MIDAS models were taken into consideration as well 
as the ones reported in the literature over the exter-
nal compounds belonging to each dataset (see Table  8). 
Firstly, a descriptive analysis through boxplot graphics 
was performed (with SPSS software) and the obtained 
results are represented in Fig.  1. As can be observed, 
the QuBiLS-MIDAS and 2D-FTP models tend to have 
a similar behavior and superior to the remaining pro-
cedures. Also, it can be noted that the highest predic-
tion among all procedures analyzed is achieved by the 
QuBiLS-MIDAS models. In addition, taking into account 
the graphics corresponding to the QuBiLS-MIDAS and 
2D-FPT approaches, it can be concluded that the predic-
tions obtained by the former are less scattered than those 
attained by the latter and thus, the QuBiLS-MIDAS mod-
els have a more suitable external predictive ability irre-
spective of the chemical dataset analyzed. However, these 
results are not enough to state that the models based on 
QuBiLS-MIDAS MDs are statistically the best.

Therefore, an exploratory study was performed to ana-
lyze the normality of the data by using Kolmogorov–
Smirnov (K–S) test corrected by Lilliefors [53] and the 
Shapiro–Wilk test [54]. This was done in order to guar-
antee that the variable Q2

ext is not normally distributed, 
at least for one model, and so to ensure that the non-par-
ametric tests are the proper choice. As can be observed 
in Additional file 1: Table S5, the null hypotheses of nor-
mality can only be rejected with a high certainty for 
Q2

ext values in the 2D-FTP and COSMOsar3D models, 
although with Shapiro–Wilk test the rejection of the null 

Fig. 1  Boxplot graphic for the external predictive accuracy achieved 
by each QSAR methodology considered in this manuscript

Table 9  Wilcoxon signed-rank test for pairwise multiple hypothesis tests by using BH as adjustment method for control‑
ling FDR. It shows the one-tailed p-values for the greater alternative

Italic values indicate statistically significant differences of the QuBiLS-MIDAS models with respect to the other QSAR methodologies

2D 2.5D EVA COMSIA basic HQSAR O3QMFA CoMFA O3A/O3Q COMSIA extra COSMO sar3D O3Q 2D-FPT

2.5D 0.115 – – – – – – – – – – –

EVA 0.138 0.402 – – – – – – – – – –

COMSIA basic 0.137 0.115 0.323 – – – – – – – – –

HQSAR 0.203 0.380 0.197 0.402 – – – – – – – –

O3QMFA 0.046 0.046 0.138 0.241 0.312 – – – – – – –

CoMFA 0.051 0.089 0.115 0.241 0.367 0.703 – – – – – –

O3A/O3Q 0.089 0.089 0.277 0.556 0.402 0.654 0.727 – – – – –

COMSIA extra 0.031 0.051 0.045 0.051 0.164 0.427 0.249 0.272 – – – –

COSMOsar3D 0.027 0.022 0.036 0.022 0.051 0.054 0.027 0.068 0.015 – – –

O3Q 0.015 0.022 0.022 0.015 0.186 0.051 0.042 0.051 0.203 0.698 – –

2D-FPT 0.015 0.015 0.015 0.015 0.015 0.022 0.015 0.015 0.022 0.068 0.015 –

QuBiLS MIDAS 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.022 0.015 0.015 0.022 0.138
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hypothesis is achieved for COMSIA basic as well. There-
fore the non-parametric tests may be considered as suit-
able for this statistical analysis.

Subsequently, a Friedman test [55] for multiple com-
parisons was performed taking into consideration the 
results of all QSAR procedures. As can be seen in Addi-
tional file  1: Table S6A, there are global differences 
among the considered methods, with the QuBiLS-
MIDAS models being those with the best performance 
followed by the 2D-FPT, O3Q and COSMOsar3D 
approaches, respectively, with a Kendall’s  W [56] con-
cordance level of 0.607 (see Additional file 1: Table S6B). 
In order to determine the specific statistical differences a 
Wilcoxon signed-ranks test [57] was carried out (with R 
software) by using Benjamini and Hochberg [58] (BH) as 
the adjustment method (one-tailed p values calculation) 
for controlling the false discovery rate (FDR). The results 
of this analysis are shown in Table 9, where a significant 
p value (p value <0.05) means that the row approach is 
superior to the corresponding column. So, it can be 
noted that the QuBiLS-MIDAS models yield statistically 

better predictions than the other methodologies consid-
ered, with the exception of the 2D-FPT approach.

Analysis of the predictive ability according to conformer 
generation methods
The conformer generation constitutes an important step 
when chemoinformatics tasks are performed, particularly 
in the computer-aided drug design, where the outcomes 
of a virtual screening process may depend on 3D struc-
tures employed to build the procedure to be used, e.g. a 
QSAR model [59]. Therefore, in this section an evalua-
tion of the sensibility of the QuBiLS-MIDAS MDs to the 
different conformer generation methods is performed in 
order to comprehend how these could affect in the per-
formance of the indices. To this end, the software FROG2 
[60], RDKit [61], BALLOON [62], OpenBabel [63] and 
Standardizer ChemAxon [64] were employed to generate 
the 3D structures, taking as starting point the SMILES 
representations corresponding to the eight compound 
datasets considered in this report.

Firstly, a study with the purpose of knowing if the mod-
els developed using the training structures generated with 
CORINA (see Table  6) are applicable to the test struc-
tures generated with the previously mentioned programs 
was performed. The external predictive abilities obtained 
after performing this study are graphically represented 
in Fig.  2. These results are significantly inferior to those 
achieved with the test sets based on CORINA (see Addi-
tional file  1: Table S8), with the exception of RDKIT. 
This demonstrates that QSAR models based on QuBiLS-
MIDAS MDs are not suitable to predict biological activity 
into compounds optimized with other procedure different 
from than used for the training structures. Thus, it can be 
stated that the performance of the QuBiLS-MIDAS MDs 
depend on 3D conformations from which are computed.

It is important to highlight that the previous results do 
not mean that CORINA software is the most suitable to 
generate the 3D structures to be used in the development 
of the QSAR models based on QuBiLS-MIDAS MDs. 
In this sense, in order to prove this assertion the fol-
lowing simple workflow was carried out considering the 

Fig. 2  Boxplot graphic for the external predictive accuracy achieved 
by the QSAR models reported in this manuscript (see Table 6) and 
fitted using structures generated by CORINA software, over the cor‑
responding test sets optimized by five different toolkits

Table 10  External predictive accuracy achieved by  QSAR models developed from  3D molecular structures generated 
with six different programs

ACE ACHE BZR COX2 DHFR GPB THER THR Rank average

BALLOON 0.3296 0.1943 0.3949 0.2451 0.3758 0.0000 0.0000 0.0000 4.5

CHEMAXON 0.5504 0.1343 0.4163 0.3361 0.2978 0.1687 0.0000 0.1386 3.375

CORINA 0.4133 0.0556 0.3628 0.2865 0.4288 0.2767 0.1915 0.2334 3.25

FROG2 0.4832 0.3535 0.3635 0.3393 0.3786 0.2712 0.3264 0.1457 2.125

OPENBABEL 0.3993 0.1306 0.1715 0.2775 0.3460 0.4742 0.2806 0.0803 4

RDKIT 0.4181 0.1770 0.3024 0.2189 0.5008 0.4511 0.0000 0.0710 3.75
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conformations generated by each previously mentioned 
program (including CORINA) for each chemical dataset:

• • 8640 two-linear algebraic indices (Additional file  1: 
Table S9) were computed.

• • CfsSubsetEval feature selection procedure, imple-
mented in WEKA software, was applied in order to 
retain those MDs with high correlation according 
to dependent-variable and with low intercorrelation 
among them.

• • The MLR-GA procedure implemented in MobyDigs 
software was employed to build 9-variable models 
performing 100,000 iterations and considering the 
tabu list options of removing MDs with correlation 
equal or greater than 0.95, fourth order moment 
greater than 8 and standardized entropy lesser than 
0.3. The fitness function used was the statistical 
parameter Q2

loo.
• • The model with the highest Q2

loo value was selected as 
the best model, to which the external predictive abil-
ity was determined.

Table 10 shows the external predictive power of the mod-
els developed from different 3D conformations, as well 
as the average of the rankings corresponding to the con-
former generation methods considered in this study. As 
can be observed, the best predictions are achieved by the 
models built from 3D molecular structures generated by 
FROG2 procedure, followed by the results obtained from 
the methods CORINA, CHEMAXON, RDKIT, OPENBA-
BEL and BALLOON, respectively. However, in Additional 
file 1: Table S10 is demonstrated through a Friedman test 
that there exists no global statistic differences among previ-
ous predictions, which proves, at least for this preliminary 
study that with QuBiLS-MIDAS MDs can be developed 
QSAR models with good predictive accuracy irrespective 
of the procedure used to obtain optimized structures.

Note that for the forthcoming version of QuBiLS-
MIDAS software, RDKIT program will be incorporated 
in the QuBiLS-MIDAS software as a built-in option for 
conformer generation. This is due to the fact that FROG2 
procedure can only be accessed using a web browser, 
while CORINA and CHEMAXON software are not 
freely available for use. In addition, according to a study 
performed in Ref. [65] in order to assess the quality of 
the conformations generated by several free methods, 
RDKIT tends to generate the most similar conformations 
to the experimental structures, in addition to being the 
second fastest among all toolkits analyzed.

Conclusions
In this report the predictive accuracy of the novel align-
ment-free geometric molecular descriptors based on 

N-linear algebraic maps (so called QuBiLS-MIDAS) has 
been examined. To this end, QSAR models for predict-
ing the biological activity in eight molecular datasets 
were developed by using MLR as statistical technique. 
The results obtained with the QuBiLS-MIDAS models 
were compared with respect to several QSAR procedures 
reported in the literature according to the correlation 
coefficients achieved with the leave-one-out cross-vali-
dation 

(

Q2
loo

)

 and external prediction 
(

Q2
ext

)

 methods, and 
generally superior performances were observed with this 
QuBiLS-MIDAS framework.

A few exceptions were observed: for the Q2
loo param-

eter, the QuBiLS-MIDAS approach is exclusively out-
performed by the ASP-based (fingerprint) method in the 
DHFR dataset, while for the Q2

ext parameter, the QuBiLS-
MIDAS method yields inferior results with respect to the 
2D-FPT methodology in the DHFR and ACHE test set, 
respectively. Also, inferior Q2

ext values are yielded by the 
QuBiLS-MIDAS approach with respect to the O3Q and 
O3A/O3Q procedures in the ACHE test set. However, 
these previous methodologies are based on techniques 
more complex than MLR and/or cannot be used in non-
congeneric datasets because are alignment-depend. Thus, 
considering the maximum parsimony principle (Ock-
ham’s razor), the QuBiLS-MIDAS approach seems to be 
more suitable than the other QSAR methods.

Additionally, several steps for statistically validating 
the obtained results are detailed. In this sense, the exter-
nal predictive ability of the developed models was com-
pared with respect to other methodologies by means of 
the multiple comparison tests. It was demonstrated that 
the QuBiLS-MIDAS models yield the best predictions, 
and that these are significantly superior in 11 of the 12 
methodologies compared. Therefore, it can be suggested 
that the 3D Algebraic N-linear molecular descriptors 
(also known as QuBiLS-MIDAS) are suitable for extract-
ing structural information of the molecules and thus, 
constitute a promissory alternative to build models that 
contribute to the prediction of pharmacokinetic, phar-
macodynamics and toxicological properties of novel 
compounds.
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