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Abstract

Foot ulceration is a major complication of diabetes mellitus, which results in significant human suffering and a major
burden on healthcare systems. The cause of impaired wound healing in diabetic patients is multifactorial with contri-
butions from hyperglycaemia, impaired vascularization and neuropathy. Patients with non-healing diabetic ulcers may
require amputation, creating an urgent need for new reparative treatments. Delivery of stem cells may be a promising
approach to enhance wound healing because of their paracrine properties, including the secretion of angiogenic,
immunomodulatory and anti-inflammatory factors. While a number of different cell types have been studied, the
therapeutic use of mesenchymal stromal cells (MSCs) has been widely reported to improve delayed wound healing.
However, topical administration of MSCs via direct injection has several disadvantages, including low cell viability and
poor cell localization at the wound bed. To this end, various biomaterial conformations have emerged as MSC delivery
vehicles to enhance cell viability and persistence at the site of implantation. This paper discusses biomaterial-based
MSCs therapies in diabetic wound healing and highlights the low conversion rate to clinical trials and commercially

available therapeutic products.
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Introduction

Diabetic foot ulcers are the main cause of amputation in
patients with diabetes mellitus, resulting in high health-
care costs, reduced quality of life and increased mortality.
The 10th edition of the International Diabetes Federa-
tion Atlas has reported that the number of patients suf-
fering from diabetes mellitus in 2021 was 536.6 million,
and there will be approximately 783.2 million adults
with diabetes by 2045 [1]. The global health expenditure
on diabetes mellitus is estimated to reach US$ 1,054 bil-
lion by 2045, increasing 9.1% from US$ 966 billion in
2021 [2]. The global epidemiology of diabetic foot ulcers
has been reported to have a prevalence of 6.3%, which
was higher in males than females, and in patients with
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type 2 diabetes mellitus than in those with type 1 (6.4%
vs 5.5%) [3]. From a global perspective, the prevalence
of diabetic foot ulcers in North America, Asia, Europe,
Africa and Oceania was 13.0%, 5.5%, 5.1%, 7.2% and 3.0%,
respectively [3]. It is estimated that approximately 25% of
patients with diabetes mellitus will develop a foot ulcer
during their lifetime [4], and around 14-24% of patients
with foot ulcers will ultimately require an amputation [5].
In the UK, the number of patients with chronic wounds
was estimated to be 2.1 million, increasing at the rate
of 12% annually with annual health care expenditure of
approximately £5 billion [6]. In the United States, approx-
imately 6.5 million people experience diabetic foot ulcers
with the cost for wound care management in the range
of US$ 28.1 to US$ 96.8 billion [7, 8]. Therefore, diabe-
tes mellitus and the complication of foot ulceration have
major human, societal and economic costs.

To date, numerous approaches have been developed for
chronic wound management and treatment, such as gene
therapy, growth factor therapy, stem cell therapy, and
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use of biomaterials. Current treatment methods for dia-
betic wound healing are not always effective [9, 10]. The
basic care of neuropathic foot ulcers consists of wound
debridement and off weight bearing, while ischemic
ulcers require revascularization. It has been well-estab-
lished in the literature that MSCs secrete growth factors,
cytokines, and chemokines which may contribute to the
therapeutic potential in the context of diabetic wound
healing [11-13]. In addition, MSCs impact each phase
of the wound healing process via modulation of immune
responses, and promotion of angiogenesis and tissue
remodelling [13, 14].

Current cell-based treatments are mainly focused on
cell injections either delivered systemically or intrader-
mally. MSCs administrated via the systemic route have
shown that the majority of cells entrap in the lung, and
only a small portion of cells travel to the wound site [15],
whereas intradermally injecting MSCs into the wound
edges significantly improved the wound healing process
[16]. However, the therapeutic effect of MSCs can still be
compromised by poor cell localisation and impaired cell
viability at the site of injury [17]. To overcome these prob-
lems, the use of scaffolds has been advocated as a means
to increase cell viability and retention at the wound bed
and provide a three-dimensional structure for cell migra-
tion, proliferation and differentiation [18]. Herein, we
summarize the underlying mechanism of MSC mediated
diabetic wound healing, along with significant advances
and shortfalls of biomaterial-based MSC therapies in dia-
betic wound healing in preclinical and clinical settings.

MSC mediated diabetic wound healing

Normal wound healing progresses through four overlap-
ping phases: haemostasis, inflammation, proliferation,
and remodelling. Diabetic wounds are characterised by
a delayed inflammatory phase, and therefore take a long
time to heal [19]. In most patients, the underlying etiol-
ogy of diabetic wounds is mainly due to a combination of
factors such as peripheral neuropathy, peripheral artery
disease and impaired immune response [20]. Neuropa-
thy results in impaired sensory, motor, and autonomic
nerves leading to inability to detect external stimuli such
as pressure, heat and the creation of wounds [21, 22].
Peripheral artery disease results in ischemia and micro-
circulatory dysfunction, leading to a decrease in local
angiogenesis [23]. Some patients also show a reduced
immune response to infections which inhibits wound
healing [24]. Collectively, multiple factors contribute to
the prolonged inflammatory phase, including the exist-
ence of persistent infection, the infiltration of inflamma-
tory cells (neutrophils, monocytes/macrophages, mast
cells and T cells), the excessive levels of proinflamma-
tory cytokines, chemokines, proteases, reactive oxygen
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species and senescent cells, as well as the release of ECM
degradation enzymes such as matrix metalloproteases
and collagenases [25, 26]. The underlying pathophysi-
ological mechanisms relate to increased oxidative stress,
diminished cell recruitment and proliferation, deficiency
of growth factors, impaired formation of collagen matrix,
and, most importantly, impaired angiogenesis and/or
neovascularization [23, 27-31].

In the quest for the ideal treatment, the use of MSCs
has been advocated, considering their role in wound
healing and their overall self-renewable, immunomodu-
latory, anti-inflammatory, anti-fibrotic, angiogenic and
therapeutic capacities [32-34]. The main molecular
mechanism in MSC-mediated diabetic wound healing
is that MSCs secrete angiogenic growth factors, immu-
nomodulatory factors, remodelling molecules, and extra-
cellular vesicles (EVs) to enhance re-epithelialization,
granulation tissue formation, and neovascularization
in the diabetic wound bed [35]. Rat adipose derived
MSCs (AD-MSCs) were found to secrete angiogenic
factors (vascular endothelial growth factor (VEGF),
hepatocyte growth factor (HGF), and basic fibroblast
growth factor (bFGF)) in vitro and in vivo, resulting in
an increased neovascularization and enhanced wound
closure in diabetic rat model [36]. MSCs can migrate
and home to the wound area and adhere to endothelial
cells via interferon gamma, tumour necrosis factor-a
(TNF-a), C—C chemokine receptor type 7, intercellular
adhesion molecule-1(ICAM-1), vascular cell adhesion
molecule 1, and Akt-dependent mechanisms [37-39].
At the wound area, MSCs stimulate neovasculariza-
tion, through interaction with VEGEF, endothelial nitric
oxide synthase and hypoxia-inducible factor (HIF) path-
ways [38], and immunomodulation, via interaction with
T and B cells, macrophages and natural killer cells [40].
Intradermally injecting MSCs around diabetic wounds
accelerated the wound closure, re-epithelialization and
granulation tissue formation via secretion of chemokines,
inflammatory cytokines and immune factors including
TNF-q, interleukin (IL)-1, IL-6, IL-8, MCP-1, PEG2 and
IL-10 [41-44]. MSCs inhibit the expression of matrix
metallopeptidase(MMP)-1 and upregulate MMP-9 to
suppress the degradation of collagen matrix and facili-
tate fibroblast and keratinocyte proliferation and migra-
tion across the wound bed [45]. EVs secreted by MSCs,
containing proteins, microRNAs, coding RNAs and
non-coding RNAs, and mitochondria, demonstrated a
positive effect on diabetic wound healing as well. MSC-
derived EVs containing long noncoding RNA HI19
stimulate diabetic wound healing process through sup-
pressing the apoptosis and inflammation of fibroblasts
via miR-152-3p-mediated PTEN axis [46]. EVs derived
from MSCs containing miR-126 activate the PI3K/AKT
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signalling pathway via downregulating PTEN, resulting in
enhanced wound healing and angiogenesis in diabetic rat
wounds [47]. EVs derived from MSCs containing either
let-7b [48] or miR-211-3p [49], target TRL4/NF-xB/
STAT3/AKT pathway and AKT/eNOS pathway, respec-
tively, modulating immune response, inflammation and
angiogenesis in diabetic preclinical wound models.
Although MSCs have been shown to improve wound
healing, their short time in the wound bed prevents the
full realization of their therapeutic potential and has
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triggered investigations of the optimal MSC carrier sys-
tem (Fig. 1, Table 1).

Hydrogel scaffolds for MSC delivery in diabetic
models

Hydrogels are three-dimensional networks comprised
of natural, synthetic or combinations of polymers that
have the ability to swell and hold a significant frac-
tion of water within their structure (Fig. 1). Hydrogels
have received considerable attention in therapeutic
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Fig. 1 Summarized representations of various scaffolds used for MSC delivery. Enhanced delivery of MSC can be achieved using scaffolds and
grafts that mimic or retain the architecture of natural human tissue, providing a favourable microenvironment for MSCs to attach, proliferate, and
retain their secretome, as well as guide the host cell migration. The secretome of MSCs stimulate the infiltration and migration of immune cells
(macrophages, lymphocytes, and neutrophil) that will modulate the inflammation and immune response in the wound bed, thus promoting
angiogenesis and improving wound healing. From left to right, we depicted the main cell carriers used to delivery MSCs in diabetic wound healing
studies. Hydrogel scaffolds hold a high fraction of water within its structure; sponge scaffolds exhibit highly uniform interconnected pore network;
fibrous scaffolds consist of fibres at microscale or nanoscale level; and decellularized grafts retain their native ECM elements and anatomical
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Table 1 Fabrication method, benefits and limitations of different scaffolds for cell delivery

Scaffold formation Fabrication method Benefits

Limitations

Hydrogel scaffold Physical/chemical cross-linking

Polymerization grafting
Radiation cross-linking

Sponge scaffold Freeze-drying

transition
Gas foaming

Highly biocompatible and biodegradable

The swelling capacity of scaffold influence

Natural hydrogels do not have strong
mechanical strength, require combining
with synthetic ones. Batch-to-batch vari-
ation

Low cytotoxicity

Similarity to physiological environment in
human tissue
The uniform interconnected pore network The surface and pore structures require to

provides suitable microenvironment for
cell attachment, migration, and nutrient

be adjusted based on cell types and host
tissue

The fabrication procedure is time consum-

cell behaviour and allow absorption of the ing

Fibrous scaffold

Decellularized graft

Porogen leaching
Electrospinning

Fibre bonding

Needle punch
Physical methods (freezing, force etc.)

Chemical methods (acid, Triton etc.)

exudate in the wound

Mimic the micro- or nano- structure of
human tissue

High surface-area-to-volume ratio is
suitable for cell adhesion, proliferation,
migration, and differentiation

Flexible mechanical properties

Retained native ECM component and
structure are favourable for cell attach-
ment, migration, and differentiation

Higher mechanical strength

Small pore size of fibrous scaffolds may

hamper cellular migration, restricting tissue

ingrowth

Complete decellularization is essential to
avoid immune response

Enzymatic methods (Trypsin, pepsin
etc)

approaches to wound healing, due to their ability to
maintain cell viability at the implantation site and flex-
ibility of fabrication [50, 51]. The naturally derived
hydrogels have shown several advantages: biocompat-
ibility, biodegradability, intrinsic cellular interactions,
and structural similarity to the natural human tissue
[52]. In contrast, the limitations of natural hydrogels
include a narrow range of mechanical properties and
batch variability [53]. Therefore, natural and synthetic
hydrogels are often combined to create composite
hydrogels with controlled structure and function [54].
Composite hydrogel scaffold designs have attracted sig-
nificant attention since their properties of being able
to be engineered with controllable shape, size, surface
competence, biodegradation and biocompatibility,
which suit the mechanical and biomedical require-
ments for wound healing and skin regeneration [55].
Several hydrogel systems have been assessed as MSC
carriers in diabetic wound healing models (Table 2).
In spite of this extensive literature, which is reviewed
here, progression to the clinic is limited. As clinical
translation is the goal of preclinical research, in this
section, studies conducted using MSCs from different
species were summarised separately to demonstrate the

current research status based on the species of origin of
the transplanted cells.

Hydrogel scaffolds for mouse-MSC delivery

A few studies investigated the therapeutic effect of
mouse-MSCs delivered via different composited hydro-
gels to diabetic mouse wound models. It should be noted
that delivery of mouse cells to mice will avoid any poten-
tial xenogeneic response when human derived cells are
used. However, from a translational perspective this may
create problems as the final product will use human cells
which will not then be studied. There will be a need to
show that the animal cells are identical to the human
cells. Collagen is the most abundant protein in skin and
has been considered as the first choice cell delivery plat-
form for diabetic wound healing. Mouse bone marrow-
derived MSCs (BM-MSCs) and AD-MSCs delivered with
a type I rat tail collagen hydrogel enhanced wound heal-
ing in a diabetic mouse model by increasing growth fac-
tor expression (e.g. VEGF), and recruiting macrophages
to modulate immune and inflammatory responses in the
wound bed [56, 57]. The wound closure rate was signifi-
cantly increased compared with the collagen alone group,
suggesting that collagen hydrogel successfully delivered
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MSCs to the wound bed and enhanced the therapeutic
outcome. Gelatin is a matrix metalloproteinase sensitive
biodegradable biomacromolecule that is derived from
collagen. When gelatin was combined with poly(ethylene
glycol) (PEG), the hydrogel demonstrated a tuneable deg-
radation speed depending on cell number and material
concentration; when the right conditions were defined,
the degradation process took place in parallel with the
wound healing process [58]. Mouse AD-MSCs deliv-
ered by a gelatin hydrogel crosslinked by hyperbranched
poly(ethylene glycol) diacrylate (PEGDA), demonstrated
excellent cell attachment and maintained cell prolif-
eration, cell viability and metabolic activity for 3 weeks.
After injecting the AD-MSC-hydrogel on the wound sur-
face of db/db diabetic mouse, cell retention in the wound
bed was significantly improved, resulting in enhanced
wound closure and neovascularization and reduced
inflammation compared with no-treatment, cell alone
and hydrogel alone controls [59]. In addition, mouse
BM-MSCs were delivered via a biodegradable n-isopro-
pylacrylamide-based, thermosensitive hydrogel to treat
wounds in a db/db mouse model, resulting in enhanced
extracellular matrix (ECM) deposition, neovasculariza-
tion, re-epithelialization and granulation tissue formation
via modulation of the polarization of M1 and M2 mac-
rophages in the wound bed compared with no-treatment
and hydrogel alone controls [60]. This thermosensi-
tive hydrogel has been shown to promote the secretion
of transforming growth factor-p (TGFp)-1 and bFGF in
BM-MSCs in vitro, which maybe the underlying mecha-
nism of MSCs promoting diabetic wound healing.

Hydrogel scaffolds for rat-MSC delivery

Pluronic F-127, a synthetic and biocompatible hydro-
gel, has been extensively investigated in the applications
of drug delivery and controlled release in the past dec-
ade [61]. The unique characteristic of thermosensitivity,
enables Pluronic F-127 hydrogel to easily encapsulate
large numbers of cells and be delivered to the wound bed.
Rat AD-MSCs encapsulated in Pluronic F-127 hydro-
gel significantly accelerated wound closure by enhanced
angiogenesis and cell proliferation at the wound site in
a streptozotocin (STZ) induced diabetic rat model [62].
Compared to no treatment, cell alone and hydrogel alone
control groups, relative mRNA expression levels of key
angiogenic (VEGF), and wound healing growth factors
(TGE-P1) were upregulated in the MSC-hydrogel treated
wounds, suggesting that MSC-hydrogel engraftment pro-
moted wound healing via paracrine mechanisms. Rat
AD-MSCs engrafted in silk-fibroin/chitosan hydrogel sig-
nificantly improved re-epithelialization and granulation
tissue formulation and capillary formation in diabetic
rat wound bed after 7 days of treatment compared with
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the no-treatment and scaffold alone groups [63]. After
14 days of hydrogel-MSC treatment, the protein expres-
sion level of epidermal growth factor (EGF), TGF-f and
VEGF in the wound bed were significantly increased
compared with the non-treatment and scaffold alone
groups. In addition, rat BM-MSCs delivered by a hydro-
gel consist of N-chitosan and HA to the wound bed of
diabetic rats, inhibited chronic inflammation, promoted
granulation tissue formation, collagen deposition and
nucleated cell proliferation, and stimulated neovasculari-
zation, which resulted in enhanced diabetic wound heal-
ing. In vitro assessment revealed this HA-based hydrogel
promoted the secretion of TGF-B1, VEGF and bFGF of
BM-MSC [64].

Hydrogel scaffold for rabbit-MSC delivery and others
Rabbit BM-MSCs delivered by a nitric-oxide-releasing
hydrogel significantly improved wound healing rate, re-
epithelialization, collagen deposition and upregulated
the gene-expression of VEGF and stromal cell-derived
factor(SDF)-1a in the wound bed of a diabetic rab-
bit model compared with no-treatment, cell alone and
hydrogel alone controls [65].

In another study, AD-MSCs (unknown species) deliv-
ered by hyaluronic acid (HA) based composite hydrogel
to diabetic rat wound, promoted the reconstruction of
blood vessels, hair follicles and dermal collagen matrix,
via the maintenance of stemness of MSC and upregula-
tion of the gene expression of HIF-1a and connexin 43
in the wound bed compared with no-treatment, MSC
alone and hydrogel alone controls [66, 67]. However, it is
important to acknowledge the importance of specifying
the species of MSC used in pre-clinical research in order
to understand the full implications of the results. More-
over, this is key to consider the potential translation in
clinical settings from early stages of experimental design
and product development.

Hydrogel scaffold for human-MSC delivery

In terms of hydrogel mediated human MSC delivery,
subcutaneous injection of human AD-MSC micro-
hydrogel prepared by HA improved wound healing in db/
db mouse and resulted in faster wound epithelialization
with thicker dermis formation compared with no-treat-
ment, and hydrogel alone groups [68]. In this AD-MSC-
hydrogel construct, the expression of stemness markers
(NANOG, OCT3/4, SOX-2 and SSEA-3) at the protein
level were significantly up-regulated compared with cells
in monolayer culture, suggesting that this hydrogel mim-
icked a physiological microenvironment that promoted
cell growth and induced a stemness-like phenotype [68,
69]. Human AD-MSCs have also been delivered through
a combination of HA and gellan gum hydrogel for the
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treatment of diabetic mouse wounds. In this study, an
improved impact on the neovascularization of diabetic
wounds was observed and the epidermis of the healed
diabetic wound was shown to be thicker and more dif-
ferentiated than no-treatment control [70]. Decellular-
ized adipose matrix, after freeze-drying, digestion with
pepsin and neutralization, can also serve as a hydrogel
for human AD-MSC delivery [71]. This thermosensitive
hydrogel presented similar structural and biochemical
complexity of native ECM, supported human AD-MSCs
survival and proliferation, increased the MSC paracrine
secretion (HGF), eventually enhanced the wound clo-
sure and neovascularization compared to local injection
of AD-MSCs in a diabetic mouse model. On the other
hand, researchers have applied engineered VEGFA-
hypersecreting human BM-MSCs to db/db mouse
wound bed by either direct injection or embedding cells
in HyStem®-HP hydrogel. The results showed that both
cell delivery methods improved wound healing rate, with
a significant difference observed from 7-9 days after
treatment, and the cells delivered by the hydrogel group
showed similar healing kinetics compared to the direct
injection group [72]. Another study reported that encap-
sulating a mixture of human BM-MSCs and rat insulin
secreting cells (ISCs) in a PEGDA hydrogel promoted
diabetic wound healing almost 3 times faster than con-
trol group (14 vs.~40 days), without intermediate scab
or scar, through increased secretion of insulin, VEGE,
TGF-B1 and the viability and function of MSC improved
due to activation of the PI3K-Akt/PKB pathway [73]. This
observation suggests that a combination of different cell
types may further enhance the therapeutic effects in the
diabetic wound.

Sponge scaffolds for MSC delivery in diabetic
models

Sponge scaffolds are fabricated by natural or synthetic
polymers via various techniques (e.g. porogen leaching,
gas foaming and freeze-drying methods) and exhibit high
porosity and a uniform interconnected pore network
(Fig. 1) [74, 75]. Sponge scaffolds for tissue engineering
can be described using several criteria, including pore
size, porosity, water uptake and retention capacity [76].
The major difference between sponge and hydrogel scaf-
folds is the fabrication method which results in a differ-
ence in the percentage of water content in the scaffold.
Compared to hydrogel, the fabrication procedure of
sponge scaffolds is time consuming, and the surface and
structure require to be adjusted depending on cell type
and host tissue. Sponge scaffolds hold several potential
advantages for skin wound healing. The highly porous
structure of sponge scaffolds mimics the architecture of
ECM supporting cells to migrate to the site of the defect
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[77]. The water uptake and retention capacity of sponge
scaffolds allows them to absorb the exudate in the wound
bed and provides a favourable environment for cell
migration and proliferation [78].

In terms of utilisation of sponge scaffolds in diabetic
wound healing applications, collagen and chitosan-based
sponge scaffolds are the most commonly used MSC car-
riers. O’Loughlin, et al. have developed a collagen sponge
scaffold using a freeze-drying method. Compared to
no-treatment control, the topical administration of allo-
geneic BM-MSCs through a collagen sponge scaffold aug-
mented wound closure and increased angiogenesis after
transplantation for 7 days in the diabetic rabbit wound
[79]. A collagen-chitosan sponge scaffold was con-
structed using cross-linking and a freeze-drying method,
resulting in a 100 um network pore configuration and a
suitable swelling ratio and appropriate biodegradabil-
ity for BM-MSC delivery [80]. This sponge scaffold pro-
vided a microenvironment whereby hypoxia pre-treated
rat BM-MSCs secreted higher levels of proangiogenic
factors such as VEGF and platelet-derived growth factor
(PDGF) and upregulated the expression of key transcrip-
tion factors such as HIF-1a, while maintaining cell viabil-
ity. Transplantation of this BM-MSC-scaffold construct
to a STZ-induced diabetic rat wound model, resulted in
improved wound closure, increased angiogenesis and
decreased inflammation (enhanced gene and protein
expression of anti-inflammatory cytokine IL-10 at 7 and
14 days) in the wound bed compared to scaffold alone
group. In addition, researchers developed a chitosan-col-
lagen scaffold containing simvastatin that exhibited high
porosity (pore size in a range of 20-200 pum), suitable
mechanical strength with similar elasticity as human skin
(83.3+34.9 MPa) [81] and a controlled release of simvas-
tatin. Rat epidermal-derived MSCs delivered by this scaf-
fold resulted in increased wound closure rate, promoted
vascularization, enhanced viability and proliferation of
MSCs in diabetic rat wound compared to no-treatment
control and scaffold alone group [82]. In another study,
sponge scaffold consisting of glycol chitosan and polyu-
rethane delivering rat AD-MSCs to STZ-induced diabetic
rat wound, and combined with acupuncture produced
synergistic immunomodulatory effects, resulted in
improved wound closure (90.34+2.3%) and complete
re-epithelialization in 8 days than AD-MSC alone group
[83]. The secretion of cytokines SDF-1 and TGF B-1 were
upregulated and proinflammatory cytokines TNF-a
and IL-1B were downregulated in the wound bed after
8 days treatment. Furthermore, sponge scaffolds can
also conjugate with growth factors as a cell delivery sys-
tem. Chitosan-alginate sponge scaffolds conjugated with
EGF delivering BALB/c mouse BM-MSCs, resulted in
enhanced cell viability and expression of transcription
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factors associated with the maintenance of pluripotency
and self-renewal (OCT34, SOX2, and Nanog) in vitro,
and showed significant improvement of wound closure,
by increasing granulation tissue formation, collagen dep-
osition and angiogenesis in diabetic rat wound as com-
pared to no-treatment control and MSC alone groups
[84].

Fibrous scaffolds for MSC delivery in diabetic
models

Fibrous scaffolds are mainly developed by an electrospin-
ning method to create three-dimensional constructs con-
sisting of fibres at microscale or nanoscale level to mimic
the architecture of natural human tissue (Fig. 1) [85-87].
Electrospinning is a technique that has been investigated
for decades, by using electrostatic forces to produce con-
tinuous fibres from biocompatible materials [88]. The
alignment of a fibrous scaffold can be random or aligned
depending on the requirements for application. Other
techniques, such as fibre bonding and needle punch, have
also been used for fabrication of fibrous scaffolds [89].
Fibrous scaffolds have been employed in various tissue
engineering fields, including bone, cartilage, skin, vas-
cular and neural tissue engineering [90]. The high sur-
face-area-to volume ratio of fibrous scaffolds allows cell
adhesion, however small pore size may hinder cell migra-
tion and need to be adjusted based on cell type [91]. In
recent years, there has been an increasing number of
publications using fibrous scaffolds in wound healing
applications due to their ability to serve as a structural
template, improve cell-cell and cell-matrix interactions,
and to direct cell behaviour and function (e.g. cell mor-
phology, cell proliferation, differentiation) [77, 90].

In terms of cell delivery, fibrous scaffolds have been
used as MSC carriers for diabetic wound healing. Chen
et al. have developed a three-dimensional scaffold using
polycaprolactone, pluronic-F-127 and gelatin to deliver
mouse BM-MSC. Compared with no-treatment and scaf-
fold alone controls, this fibrous scaffold-MSC construct
resulted in enhanced granulation tissue formation, angi-
ogenesis and collagen deposition in the wound bed of
diabetic mouse, through modulating the polarization of
macrophages and expression of inflammatory cytokines
[92]. This radially and vertically aligned fibrous scaffold
has size and shape characteristics which can be tailored
to be suitable for various wounds. In addition, a hybrid
electrospinning nanofiber scaffold containing 80% poly-
lactic acid, 10% silk and 10% collagen was developed as a
cell carrier to deliver HO-1-overexpressing human BM-
MSC:s to the diabetic mouse wound bed, resulting in sig-
nificantly enhanced angiogenesis and wound healing via
Akt signalling pathways [93]. Researchers have also used
this platform to deliver brain-derived neurotrophic factor
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activated human BM-MSCs to the wound bed in a dia-
betic mouse model. Significantly accelerated wound clo-
sure and enhanced blood vessel formation on the wound
bed was observed with the underlying mechanism poten-
tially related to milieu-dependent differentiation [94].
Moreover, a fibrous scaffold made of aloe vera and poly-
caprolactone was developed to deliver human umbilical
cord-derived MSCs (UC-MSCs) or their conditioned
medium to the db/db mouse wound bed, with both treat-
ments showing rapid wound closure, re-epithelialization
and increased number of sebaceous glands and hair fol-
licles after transplantation to the wounds for 28 days,
no significant difference was observed between the two
treatments throughout the study period [95]. After both
treatments the wound showed positive keratinocyte
markers and increased cytokine expression of ICAM-1,
tissue inhibitor matrix metalloproteinase 1 (TIMP-1),
and VEGF-A at day 14 and 28. Furthermore, a silk fibroin
(SF) scaffold delivering human AD-MSCs to a db/db
mouse wound model, resulted in complete wound clo-
sure at 10 days versus 15-17 days for controls [96]. The
same therapeutic effects were observed even after remov-
ing MSCs from the SE-MSC bio-complex, indicating that
the MSC secretions stored in the scaffold play a key role
in improving the wound healing process.

Decellularized grafts for MSC delivery in diabetic
models

Decellularized grafts are mainly derived from tissues or
organs through mechanical (freezing, force etc.), chemi-
cal (acid, Triton etc.) or enzymatic (trypsin, pepsin etc.)
decellularization procedures to remove cellular com-
ponents [97]. Commonly used tissue or organs include
skin [98], Wharton’s jelly [99] adipose tissue [100] and
in vitro cultured cells [101]. Compared to other synthetic
scaffolds, decellularized grafts are non-immunogenic
and retain their native ECM elements (e.g. collagen,
elastin, laminin and fibronectin), and anatomical struc-
ture (Fig. 1) [100-102]. These advantages are essential
in identifying and developing scaffolds for implantation
in diabetic wounds. Applications of decellularized grafts
can replace the impaired ECM of diabetic wounds, pro-
viding ECM proteins such as collagen, glycosaminogly-
cans, proteoglycans and glycoproteins, allowing host cells
to infiltrate, modulate the immune response and pro-
mote angiogenesis and the formation of granulation tis-
sue [103, 104]. There are several commercially available
decellularized grafts for wound healing, Integra (John-
son & Johnson) [105], Oasis (Cook Biotech) [106], Allo-
derm (Allergan) [107], Primatrix (TEI Bioscience) [108].
Their manufacturing methods vary resulting in different
mechanical properties of each product and the ability to
support skin regeneration [109, 110].
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Several studies have investigated the use of decellu-
larized grafts as a MSC delivery platform. One of these
studies has shown that rat AD-MSCs seeded on a decel-
lularized graft secreted various cytokines (e.g. HGF,
VEGE, TGFP, bFGF) that stimulated the migration
and proliferation of fibroblasts, eventually resulting in
improved wound closure (13+0.37 days compared with
20+£0.71 days in scaffold alone group and 27 +0.44 days
in no-treatment group) in a diabetic rat model [111].
In another study, mouse BM-MSCs were delivered by a
graft that was decellularized from normal mouse skin.
After transplanting this bio complex into a full-thickness
cutaneous wound site in the diabetic mouse, the wound
demonstrated an increased percentage of wound closure
and significantly accelerated angiogenesis and reepitheli-
alisation compared with no-treatment controls. The syn-
thesis of collagen type I fibres was seen to be increased
during diabetic wound healing, monitored using a novel
multiphoton microscopy, indicating a potential mecha-
nism of wound healing [98]. Decellularized dermal
matrix incorporating reduced graphene oxide as a cell
delivery platform has shown high stability and strong
mechanical properties. This decellularized graft has been
used to deliver mouse BM-MSCs to a diabetic mouse
wound model resulting in a microenvironment for stem
cell attachment, migration and proliferation, with robust
vascularization and collagen deposition during wound
healing [112]. Furthermore, human UC-MSCs deliv-
ered by a decellularized dermal matrix to the diabetic rat
wound showed that the proliferation and differentiation
of human UC-MSCs on the decellularized dermal matrix
were regulated by activated Wnt signalling pathway,
ultimately promoting the healing of the diabetic wound
[113].

Clinical trials using scaffold-mediated delivery

of MSCs for diabetic wound healing

Currently, 13 clinical trials using scaffold-based delivery
of MSCs to treat diabetic patients with foot ulcers are
registered with ClinicalTrials.gov (Table 3). 11 of these
trials are using a hydrogel scaffold for MSC delivery, and
2 are using a sponge scaffold. In spite of the very large
pre-clinical dataset available and the 13 registered clinical
trials of scaffold mediated MSC delivery, only one clinical
study has been published to our knowledge. In this phase
2 clinical trial (No. NTC02619877), an allogeneic AD-
MSC hydrogel sheet has been developed and approved
to be a commercial product by Food and Drug Admin-
istration of Korea (study code ALLO-ASC-DFU-201).
59 patients with diabetic foot ulcers were enrolled in
this trial for a maximum of 12 weeks. Patients treated
with this MSC-hydrogel sheet reached 82% of complete
wound closure at week 12 compared to 53% of complete
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wound closure in patients without treatment. No adverse
effects were observed after treatment, indicating hydro-
gel delivered AD-MSCs is efficient, effective and safe in
the treatment of diabetic wounds [114]. An important
feature of this MSC-hydrogel graft was the ability to cry-
opreserve and store while maintaining, stability for long
periods of time [114]. In another case study, placenta
derived MSCs (cell number: 1 x 10° cells/cm?) encapsu-
lated in a sodium alginate hydrogel was topically admin-
istrated to the foot ulcer of a patient with type 2 diabetes
mellitus. The wound healed completely after 3 weeks of
treatment, with improved foot pain, no toxicity and no
relapse during the subsequent 6 months follow-up visit
[115]. However, this is only a case study and further eval-
uation is needed. In addition, there is one clinical study
reported which evaluated the effect of a collagen sponge
scaffold delivering MSC-like dermal autologous micro-
grafts (obtained from mechanical disaggregation of
small pieces of skin tissue) to diabetic patients with foot
ulcers. These dermal micro-grafts express MSCs markers
(CD34, CD73, CD90 and CD105) in vitro and maintained
their viability and proliferative property in the collagen
scaffold. After applying this dermal micrograft-collagen
scaffold bio-complex to the site of ulcers, the skin sam-
ples express increased level of insulin-like growth factor
and TNEF-f and decreased level of EGF, PDGF and their
receptors compared with healthy skin samples. Treat-
ment of these ulcers with this bio-complex resulted in
improved wound closure and better quality of life for the
patients [116].

Interestingly, 9 out of the 13 clinical trials used AD-
MSC:s as a cell source despite a large number of pre-clinical
studies reporting therapeutic benefits with the use of the
three major sources (bone marrow, adipose and umbilical
cord) [65, 95, 111]. This could be related to the feasibility
of clinical translation, where all of them show advantages
and disadvantages. BM-MSCs showed great therapeutic
potential in wound healing and are suitable for autologous
transplantation [117]. However, their isolation requires an
invasive procedure and low cell numbers, limiting their
clinical translation [118]. In recent years, UC-MSCs have
gained more attention in the field as an alternative source;
they can be easily isolated using non-invasive procedures
and yield a large number of cells from a young donor [119].
Moreover, they have shown interesting therapeutic abilities
due to their low immunogenicity and immuno-regulatory
properties [120]. Akin to BM-MSCs, AD-MSCs have been
shown to be ideal for autologous application; adipose tissue
can be obtained with less invasive procedures and vyield a
higher number of cells, easily meeting clinical needs [121].
However, both sources are isolated from adult tissues and
donor health status or other intrinsic factors, such as the
site of tissue collection in the case of AD-MSC, could result
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Table 3 Current clinical trials using scaffolds delivering MSCs for diabetic foot ulcer (from clinicaltrials.gov, 7th January 2022)

Identifier

Trial name

Study phase Cell type

Cell delivery
method

Recruitment
status

Sponsor

Location

NCT02394886

NCT02619877

NCT03183726

NCT03183804

NCT03370874

NCT03754465

NCT04497805

NCT04569409

NCT04464213

NCT03865394

NCT03248466

Safety of ALLO-
ASC-DFU in the
patients with dia-
betic foot ulcers

Clinical study to
evaluate efficacy
and safety of
ALLO-ASC-DFU in
patients with dia-
betic foot ulcers

A follow-up study
to evaluate the
safety of ALLO-
ASC-DFU in ALLO-
ASC-DFU-101
clinical trial

A follow-up study
to evaluate the
safety of ALLO-
ASC-DFU in ALLO-
ASC-DFU-201
clinical trial

Clinical study to
evaluate efficacy
and safety of ALLO-
SC-DFU in patients
with diabetic foot
ulcers

Clinical study of
ALLO-ASC-SHEET
in subjects with
diabetic foot ulcers

Clinical study of
ALLO-ASC-SHEET
in subjects with
diabetic wagner
grade Il foot ulcers

Clinical study to
evaluate efficacy
and safety of
ALLO-ASC-DFU

in patients with
diabetic wagner
grade 2 foot ulcers

Human placental
Mesenchymal stem
cell treatment on
diabetic foot ulcer

Treatment of
chronic wounds
in diabetic foot
syndrome with
autologous
adipose derived
mesenchymal
stem cells (TABC)
PRG combined
with autologous
BMMSCs for treat-
ment of diabetic
foot ulcer

Phase 1

Phase 2

Phase 1

Phase 2

Phase 3

Phase 2

Phase 2

Phase 3

Phase 1

Phase 1
Phase 2

Early phase 1

Allogeneic AD-
MSCs

Allogeneic AD-
MSCs

Allogeneic AD-
MSCs

Allogeneic AD-
MSCs

Allogeneic AD-
MSCs

Allogeneic AD-
MSCs

Allogeneic AD-
MSCs

Allogeneic AD-
MSCs

Placental MSCs

Autologous AD-
MSCs

Autologous BM-
MSCs

Hydrogel scaffold

Hydrogel scaffold

Hydrogel scaffold

Hydrogel scaffold

Hydrogel scaffold

Hydrogel scaffold

Hydrogel scaffold

Hydrogel scaffold

Hydrogel scaffold

Hydrogel scaffold

Hydrogel scaffold

Completed

Completed

Completed

Unknown

Active, not recruit-

ing

Recruiting

Recruiting

Recruiting

Recruiting

Completed

Unknown

Anterogen Co,, Ltd

Anterogen Co,, Ltd

Anterogen Co,, Ltd

Anterogen Co, Ltd

Anterogen Co, Ltd

Anterogen Co,, Ltd

Anterogen Co,, Ltd

Anterogen Co,, Ltd

Beijing Tongren
Hospital

Medical University
of Warsaw

Third Military
Medical University

Korea

Korea

Korea

Korea

Korea

United states

United states

Korea

China

Poland

China
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Identifier Trial name Study phase Cell type

Cell delivery
method

Recruitment Location

status

Sponsor

NCT03259217 Clinical application  Phase 1
of mesenchymal

stem cells seeded

in chitosan scaffold

for diabetic foot

ulcers

AD-MSCs

NCT02672280 Phase 1

Phase 2

Safety and explora- UC-MSCs
tory efficacy
study of collagen
membrane with
mesenchymal
stem cells in the
treatment of skin

defects

Sponge scaffold

Sponge scaffold

Unknown Assiut University Korea

South China
Research Centre
for Stem Cell and
Regenerative
Medicine

Unknown China

in underlying effects upon cellular characteristics that hin-
der their therapeutic potential [119]. Future studies should
consider in-depth investigation of head-to-head biologi-
cal and therapeutic differences among these sources and
whether these differences have implications in the context
of diabetic wound management.

Besides defining optimal cell source, there are many other
bottlenecks hindering the translation of results obtained
at the laboratory bench to the clinic and ultimately to the
marketplace. These include the absence of a globally shared
standard manufacturing process and the high level of regu-
latory diversifications across countries which create crucial
challenges for international clinical trial collaborations and
cross-country marketing procedures [122]. In addition,
the mainstream widely accepted treatment of neuropathic
diabetic foot ulcers is debridement and off weight bear-
ing and clinical trials do not always include state of the art
current clinical treatment in the control group. This also
leads to poor uptake by medical practitioners of advanced
therapies. Finally, re-imbursement issues and cost of
goods impact on the utilization of these advanced therapy
products in standard clinical practice. It would be useful
if researchers interested in clinical application consider
the translational requirements from the earliest stages of
research so that experiments can be designed in a manner
suitable for inclusion in a regulatory dossier when apply-
ing for approval to undertake a clinical trial. There is also a
need for careful clinical trial design as outlined previously
by experts in the field [123, 124]. Partnerships with indus-
try will also be crucial to enable translation.

Conclusions

MSC:s are attractive therapeutic agents for use in diabetic
wound healing, whilst biodegradable scaffolds provide
a physiologically relevant three-dimensional environ-
ment for their optimal growth and localisation at wound

bed. Pre-clinical studies have demonstrated that deliver-
ing MSCs via a variety of different scaffolds to diabetic
wounds accelerates healing and enhances skin regenera-
tion. In spite of this, there is limited clinical trial data
available on the use of scaffold-based MSC delivery for
treatment of diabetic wounds. Issues regarding safety,
efficacy and cost of the MSC-scaffold graft in clinical
applications should be considered from an early stage of
research and properly addressed. Therefore, an interdis-
ciplinary approach involving biomedical scientists, cli-
nicians, biomaterial engineers, industry and regulators
will be necessary to develop a scaffold-based cell therapy
product suitable for clinical application.
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