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Abstract 

Background:  It is generally accepted that colorectal cancer (CRC) originates from cancer stem cells (CSCs), which 
are responsible for CRC progression, metastasis and therapy resistance. The high heterogeneity of CSCs has precluded 
clinical application of CSC-targeting therapy. Here, we aimed to characterize the stemness landscapes and screen for 
certain patients more responsive to immunotherapy.

Methods:  Twenty-six stem cell gene sets were acquired from StemChecker database. Consensus clustering algo-
rithm was applied for stemness subtypes identification on 1,467 CRC samples from TCGA and GEO databases. The 
differences in prognosis, tumor microenvironment (TME) components, therapy responses were evaluated among 
subtypes. Then, the stemness-risk model was constructed by weighted gene correlation network analysis (WGCNA), 
Cox regression and random survival forest analyses, and the most important marker was experimentally verified.

Results:  Based on single-sample gene set enrichment analysis (ssGSEA) enrichments scores, CRC patients were clas-
sified into three subtypes (C1, C2 and C3). C3 subtype exhibited the worst prognosis, highest macrophages M0 and 
M2 infiltrations, immune and stromal scores, and minimum sensitivity to immunotherapies, but was more sensitive 
to drugs like Bosutinib, Docetaxel, Elesclomol, Gefitinib, Lenalidomide, Methotrexate and Sunitinib. The turquoise 
module was identified by WGCNA that it was most positively correlated with C3 but most negatively with C2, and five 
hub genes in turquoise module were identified for stemness model construction. CRC patients with higher stemness 
scores exhibited worse prognosis, more immunosuppressive components in TME and lower immunotherapeutic 
responses. Additionally, the model’s immunotherapeutic prediction efficacy was further confirmed from two immu-
notherapy cohorts (anti-PD-L1 in IMvigor210 cohort and anti-PD-1 in GSE78220 cohort). Mechanistically, Gene Set 
Enrichment Analysis (GSEA) results revealed high stemness score group was enriched in interferon gamma response, 
interferon alpha response, P53 pathway, coagulation, apoptosis, KRAS signaling upregulation, complement, epithe-
lial–mesenchymal transition (EMT) and IL6-mediated JAK-STAT signaling gene sets.
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Introduction
The morbidity and mortality of colorectal cancer 
(CRC) patients are both estimated to rank third world-
wide, which pose a grave threat to human health [1]. 
Although CRC might be cured by radical surgery com-
bined with chemo- and radiotherapy, drug resistance, 
recurrence and metastasis are still the main causes of 
CRC-associated mortality after R0 resection. Mount-
ing evidence has demonstrated that CRC originates 
from cancer stem cells (CSCs) [2–4], which account 
for a small subpopulation of tumor mixture and are 
characterized by self-renewal, unrestrictive prolifera-
tion, multidirectional differentiation and tumorigenesis 
initiation [2, 5, 6]. CSCs are capable of forming dis-
seminated metastatic tumors owing to their expansive 
proliferative capability [7], and it is well acknowledged 
that CSCs are principally responsible for CRC progres-
sion, metastasis and therapy resistance [8, 9], which 
make them as promising therapeutic targets [10].

While several CSCs biomarkers have been identified 
for CRC [11, 12], unfortunately, CSCs are functionally 
and phenotypically heterogeneous populations that 
extending reversibly from pluripotent to differentiated 
cells and existing both between patients and within 
a single tumor [13–15], which have precluded clini-
cal application of CSC-targeting therapy. In addition, 
tumor microenvironment (TME) could interactively 
influence CSCs through intricate intercellular cross-
talking, and CSCs are characterized by low immuno-
genicity and suppressed immune response in CRC 
[16–18]. Studies have reported that more TGF-β was 
secreted by breast [19] and glioblastoma [20] CSCs as 
compared to regular tumor cells. Colon cancer CSCs 
could produce IL-4 to induce anti-apoptosis of CSCs 
and undermine CD8+ T cell-mediated antitumor 
immune response [21, 22]. Under inflammatory condi-
tions, immune cells would also release various inflam-
matory cytokines like IL-1, IL-4, IL-6, IL-8, IL-10 
and TGF-β [23], which generate a positive feedback 
inflammatory loop through the bilateral activations of 
Stat3/NF-κB pathways to sustain a chronic inflamma-
tory state and stimulate the self-renewal of CSCs [24]. 
Therefore, a comprehensive depiction of the highly 
heterogeneous CSCs and their adaptable and dynamic 

cross-talks with the TME landscape would aid in the 
exploration of CSC-targeted therapeutic strategies as 
well as sensitization of current immunotherapies.

In this study, based on public 26 stemness gene sets, 
single-sample gene set enrichment analysis (ssGSEA) 
algorithm was applied to portray an expansive outlook 
about the stemness landscape from gene expression 
profiles of bulk CRC samples, and three stemness sub-
types with discrete stemness and TME features were 
identified by unsupervised clustering method. Subse-
quently, genes highly correlated with stemness subtypes 
and prognosis were identified by weighted gene corre-
lation network analysis (WGCNA). The stemness-risk 
model was then constructed based on Cox regression 
and random survival forest analyses, and its correla-
tions with prognosis, TME patterns, molecular func-
tions and chemotherapy/immunotherapy efficacies 
in CRC were further investigated. Conclusively, we 
established the stemness-risk score to characterize 
the stemness landscapes, which could robustly predict 
prognosis and response to immunotherapy for CRC 
patients.

Materials and methods
CRC datasets acquisition and pre‑processing
A total of 1,467 CRC samples datasets with corre-
sponding clinical and survival annotations were pro-
cured form five cohorts: TCGA-COAD, TCGA-READ, 
GSE39582, GSE17536 and GSE103479. The gene 
expression data (fragments per kilobase per million 
mapped reads (FPKM) standardized data) of TCGA-
COAD and TCGA-READ were downloaded from the 
GDC hub of UCSC Xena browser (https://​gdc.​xenah​
ubs.​net) [25] and transformed to transcripts per mil-
lion (TPM) values, as TPM modifies the inconsist-
ency of gene lengths and qualifies for comparisons 
among samples [26]. The other three RNA‐Seq data-
sets (GSE39582 [27], GSE17536 [28] and GSE103479 
[29]) were obtained from the Gene Expression Omni-
bus (GEO, http://​www.​ncbi.​nlm.​nih.​gov/​geo/) database 
and preprocessed through Robust Multichip Average 
algorithm [30]. The Combat function of sva R package 
(v3.35.2) was implemented to eliminate batch effects in 
these high-throughput experiments [31].

Conclusions:  Our study characterized three stemness-related subtypes with distinct prognosis and TME patterns in 
CRC patients, and a 5-gene stemness-risk model was constructed by comprehensive bioinformatic analyses. We sug-
gest our stemness model has prospective clinical implications for prognosis evaluation and might facilitate physicians 
selecting prospective responders for preferential use of current immune checkpoint inhibitors.

Keywords:  Colorectal cancer, Stemness, Bioinformatics, Tumor microenvironment, Immunotherapy
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Stemness signatures collection and consensus clustering 
for CRC stemness subtypes
Firstly, we recruited 26 stemness gene sets from a web-
based tool: StemChecker (http://​stemc​hecker.​sysbi​olab.​
eu/) [32], which was based on the most comprehensive 
and updated collection of published stemness signa-
tures defined by gene expression profiles, RNAi screens, 
transcription factor (TF) target gene sets, literature and 
computational summaries (Additional file 2: Supplemen-
tary Table 1). Then, ssGSEA was implemented to quanti-
tatively elucidate the stemness enrichment scores of the 
26 stemness gene sets in each CRC sample via GSVA R 
package (v1.34.0) [33]. Subsequently, based on each sam-
ple’s ssGSEA scores, we performed consensus clustering 
algorithm for unsupervised classification of CRC samples 
through ConsensusClusterPlus R package (v1.50.0) [34]. 
K-means (km) cluster method upon Euclidean distance 
was applied in this analysis and was repeated for 1000 
iterations to ensure dependability.

Tumor microenvironment (TME) infiltrations exploration
CIBERSORT deconvolution algorithm could robustly 
quantify the relative proportions of 22 immune cells from 
normalized bulk sample’s gene expression profiles [35]. 
We quantified the TME fractions of each CRC sample via 
“CIBERSORT” R script with the LM22 leukocyte gene 
signature and 1,000 permutations. Samples with CIBER-
SORT P value less than 0.05 were screened. In addition, 
we also used ESTIMATE algorithm to calculate immune 
and stromal scores of each CRC sample via estimate 
R package (v1.0.13), which were representative of the 
immune and stromal cellular infiltrations in each sample 
[36].

Chemotherapy sensitivity and immunotherapy response 
predictions
The half-maximum inhibitory concentration (IC50) 
values of several drugs (Bleomycin, Bosutinib, Camp-
tothecin, Cisplatin, Cytarabine, Docetaxel, Elesclomol, 
Etoposide, Gefitinib, Gemcitabine, Lapatinib, Lenalido-
mide, Methotrexate, Paclitaxel, Sunitinib) in each CRC 
sample were computed for the prediction of chemi-
cal sensitivity via pRRophetic R package (v0.5), which 
was based on Genomics of Drug Sensitivity in Cancer 
(GDSC) (https://​www.​cance​rrxge​ne.​org/) by using ridge 
regression [37, 38]. And tenfold cross-validation was 
applied for the prediction accuracy evaluations. In addi-
tion, Tumor Immune Dysfunction and Exclusion (TIDE), 
a reliable online algorithm (http://​tide.​dfci.​harva​rd.​edu/) 
qualified for immunotherapeutic response predictions, 
was employed to estimate immunotherapeutic responses 
of each CRC patient [39]. Moreover, we also downloaded 

and analyzed two real-world immunotherapeutic 
cohorts: the IMvigor210 dataset from http://​resea​rch-​
pub.​gene.​com/​IMvig​or210​CoreB​iolog​ies, which contains 
the microarray, survival and anti-PD-L1 immunotherapy 
data of metastatic urothelial cancer patients [40], and 
GSE78220 cohort contains transcriptional data of meta-
static melanoma patients treated with anti-PD-1 therapy 
[41].

WGCNA and candidate hub genes identification
The WGCNA R package (v1.68) was employed to identify 
co-expressed gene networks that were representative of 
diverse stem cell subtypes in GSE39582 dataset [42]. The 
median absolute deviation (MAD) top 5000 genes were 
screened for network constructions, and co-expression 
similarity matrix (sij) was computed by the Pearson’s cor-
relation coefficient between any two genes (xi and xj):

Then, a weighted adjacency matrix (aij) was calculated 
by raising sij to a soft thresholding power β = 7 (Fig. 4a):

Subsequently, a topological overlap matrix (TOM) and 
correlative dissimilarity matrix (1-TOM) were built from 
the adjacency matrix to cluster highly interconnected 
genes into various gene modules (minModuleSize was 
set as 30) [43]. Later, module eigengene (ME) was calcu-
lated, which represented the first principal component 
of each module, and the associations of modules with 
each stemness subtype, TNM stage and survival status 
were determined. Parameters of hub genes of the specific 
module were set as gene significance (GS, Pearson’s cor-
relation between each gene and clinical trait) > 0.4 and 
module membership (MM, correlation between each 
gene and module) > 0.8. Afterward, Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analyses of hub genes in the co-expression module were 
performed by clusterProfiler R package (v3.14.3) [44].

Prognostic stemness model construction and validation
Univariate Cox regression analysis was employed to 
screen overall survival (OS)-associated hub genes 
(P < 0.05) of the interested module in GSE39582 data-
set. Afterward, we created random survival forest (RSF) 
model for model reduction by using rfsrc function of 
randomForestSRC R package (v2.9.3). We preferred 
this model in that random forest could robustly quan-
tify the relative significance of each variable, and genes 
with relative importance > 0.5 were incorporated. Next, a 
gene combination with the optimal log-rank P value was 
identified for the signature construction: stemness-risk 

sij = |cor
(

xi, xj
)

|

aij = sij
β

http://stemchecker.sysbiolab.eu/
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http://research-pub.gene.com/IMvigor210CoreBiologies
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score = Ʃ (βi * Expi), where βi was the ith gene’s Cox 
coefficient, and Expi was the ith gene’s expression value. 
The prognostic value of the stemness-risk score was then 
validated in TCGA-COAD, TCGA-READ, GSE17536, 
GSE103479, the entire CRC patients and IMvigor210 
cohort patients.

Messenger RNA expression‑based stemness index 
(mRNAsi) calculation
The transcriptional mRNAsi of each CRC sample (ranges 
from zero to one) was computed following the method of 
Malta et al. using one-class logistic regression machine-
learning algorithm (OCLR) based on pluripotent stem 
cell samples, which strongly correlated with stem cell 
features and could be applied for cancer stemness pre-
dictions [45]. The prognostic value of mRNAsi indices as 
well as the Spearman correlation between stemness-risk 
score and mRNAsi indices was analyzed in all 1,467 CRC 
patients.

Hallmark gene sets enrichment analyses
The total 1,467 CRC patients were separated into high 
and low stemness-risk groups according to the median 
stemness-risk score. Gene set enrichment analy-
sis (GSEA) was performed to explore the functionally 
enriched pathways and hallmark gene sets related to sub-
groups via clusterProfiler R package [44] [46], and the 
hallmark (h.all.v7.3) gene sets were downloaded from the 
Molecular Signatures Database (MSigDB, http://​softw​
are.​broad​insti​tute.​org/​gsea/​msigdb/). P < 0.05 was con-
sidered as significantly enriched.

Cell culture and siRNA transfection
Human CRC cell lines SW480, SW620, Caco-2 and 
HCT116 were purchased from the Cancer Institute 
of the Chinese Academy of Medical Sciences. SW480, 
SW620 and Caco-2 cells were cultured in Dulbecco’s 
modified Eagle’s medium (DMEM, Biological Indus-
tries, Israel). HCT116 was cultured in McCoy’s 5A 
Medium (Biological Industries, Israel). All cells were 
supplemented with 10% fetal bovine serum (FBS, Bio-
logical Industries, Israel) and 1% penicillin–strep-
tomycin (Biological Industries, Israel) and cultured 
in 5%CO2 incubator at 37  °C. Small interfering RNA 
(siRNA) against COLEC12 (si-COLEC12) and the cor-
responding negative control (NC) were synthesized by 
GenePharma (Jiangsu, China), and sequences of siRNA 
were as follows: si-COLEC12-1 (sense 5′–3′): GCA​AUC​
UGC​AGA​ACC​AAA​UTT; si-COLEC12-2 (sense 5′–3′): 
GCG​AAU​CAA​GAA​CGA​CUU​UTT; si-COLEC12-3 
(sense 5′–3′): GCU​GAC​CAG​CAA​UCU​AAA​UTT; 
si-NC (sense 5′–3′):UUC​UCC​GAA​CGU​GUC​ACG​
UTT. Following the manufacturer’s instructions, CRC 

cells cultured in 6-well plates were transfected at 70%–
80% confluence using Lipofectamine 3000 (Invitrogen, 
USA), and the knockdown efficiency of COLEC12 pro-
tein expression was measured with goat anti-human 
COLEC12 polyclonal antibody (R&D Systems, USA) by 
western blotting (WB) after 48 h of cultivation.

Western blotting
Detailed WB protocol was previously described [47]. 
Briefly, CRC cell lines were lysed in RIPA lysis buffer. 
BCA assay kit (Beyotime, Shanghai, China) was uti-
lized for measuring protein concentration, and 30  μg 
of total protein was separated by 10% SDS-PAGE and 
electroblotted onto PVDF membranes (Millipore, Burl-
ington, MA, USA). The membranes were then blocked 
with 5% milk for 1  h at room temperature and incu-
bated with primary antibody at 4  °C overnight, fol-
lowed by incubated with secondary antibodies (1:8000, 
ZSGB-BIO, Beijing, China) for 1  h at room tempera-
ture. The following primary antibodies were utilized: 
anti-SOX2 (1:1000, Cell Signaling Technology), anti-
LGR5 (ab273092, 1:1000, Abcam), anti-OCT4 (C52G3, 
1:1000, Cell Signaling Technology), anti-Nanog 
(D73G4, 1:1000, Cell Signaling Technology), anti-CD44 
(156-3C11, 1:1000, Cell Signaling Technology), anti-
GAPDH (abs830030, 1:1000, UNIV).

Tumorsphere formation assay
Caco-2 cells (5 × 103 cells/well) were seeded into an 
ultralow-attachment six-well plate with 1.5 ml of sphere-
culturing medium containing DMEM-F12 medium 
(Gibco, Milan, Italy) with penicillin/streptomycin, 
L-glutamine (2  Mm, #7100, Stem cell), Insulin (5ug/ml, 
# P3376-100 IU, Beyotime), BSA (4 mg/ml, #ST025-5 g, 
Beyotime), Glucose (6  mg/ml), bFGF (10  ng/mL, 
PHG0024, Gibco) and Recombinant Human EGF (20 ng/
mL, PHG0311, Gibco). Tumorspheres were observed 
and photographed under microscope after 3–5  days of 
culture.

Statistical analyses
All statistical analyses were performed in R software 
(v3.6.3). Wilcoxon test was used for pairwise comparison 
between two groups, and Kruskal–Wallis test was used 
for multiple groups comparisons. Kaplan–Meier method 
and log-rank test were performed for survival analysis. 
The optimal cutoff value of the stemness-risk score was 
determined by the “surv_cutpoint” function of survminer 
R package (v0.4.6). A P value < 0.05 was regarded as sta-
tistically significant.

http://software.broadinstitute.org/gsea/msigdb/
http://software.broadinstitute.org/gsea/msigdb/
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Results
Landscape of stem cell gene sets enrichments 
and identification of three stemness subtypes 
with different survival outcomes and immune infiltrations
The overall construction scheme of stemness-enrichment 
patterns and stemness-risk signatures is displayed in 
Fig. 1. The enrichment scores of 26 stemness gene sets in 
each CRC sample were quantified by ssGSEA algorithm, 
and 13 prognostic stemness gene sets were firstly iden-
tified by univariate Cox analysis (P < 0.05) for the depic-
tion of prognostic stemness network, which exhibited 

the landscape of prognostic stemness gene sets interac-
tions, lineages and their impacts on OS for CRC patients 
(Fig.  2a). Next, based on the total 26 stemness gene 
sets ssGSEA scores, unsupervised clustering was con-
ducted through ConsensusClusterPlus package to cat-
egorize CRC patients into three distinct clusters (C1-3, 
Fig.  2b). The Spearman correlations of the 26 stemness 
ssGSEA scores are shown in Additional file  1: Supple-
mentary Fig.  1. Among the three stemness clusters, 
Cluster 1 (727 patients) had the widespread enrichment 
degree for most of the stemness gene sets; Cluster 2 (424 

Fig. 1  Work flow of this study

Fig. 2  a Prognostic stemness network landscape of 13 prognostic stemness gene sets interactions, lineages and their impacts on OS for CRC 
patients. The size of each gene set represents its prognostic impact by log-rank test. Skyblue dots indicate favorable variables and black dots 
represent risk factors. The red lines connecting stemness gene sets indicate positive Spearman correlations, and the blue lines are negative 
correlations, and the thickness of the lines represents the Spearman correlation strengths. b Consensus clustering identified three distinct clusters 
of CRC with different stemness gene sets enrichment scores. c Heatmap depicting the landscape of ssGSEA stemness scores in three clusters. d 
Box plot displaying the differences of 26 ssGSEA stemness scores between the three clusters by Kruskal–Wallis test.  ***P < 0.001. e Kaplan–Meier 
OS curves for CRC patients between different stemness subtypes. f Box plot showing the differences of 22 infiltrating immune cells, stromal and 
immune scores between the three clusters by Kruskal–Wallis test. ns, not significance, ∗P < 0.05, ∗∗P < 0.01,  ***P < 0.001. OS, overall survival; CRC, 
colorectal cancer

(See figure on next page.)
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patients) exhibited high enrichments of stemness gene 
sets with favorable prognosis like Hs_ESC_Wong, Hs_
SC_Shats and Plurinet; and Cluster 3 (316 patients) was 

significantly enriched in the adverse prognostic stemness 
gene sets like Hs_ESC_Chia, Hs_HSC_Toren, Hs_MaSC_
Pece, Hs_MSC_Huang and Hs_NSC_Huang (Fig. 2c, d). 

Fig. 2  (See legend on previous page.)
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Consistently, Kaplan–Meier analysis revealed that Clus-
ter 3 CRC patients experienced worse OS compared with 
the other two clusters (log-rank P = 0.014, Fig. 2e).

To further elucidate the TME landscape among 
stemness subtypes, we performed CIBERSORT and 
ESTIMATE analyses to compare the TME fractions as 
well as immune and stromal scores. A total of 893 quali-
fied CRC samples with CIBERSORT P < 0.05 were incor-
porated into the subsequent analysis. As shown in Fig. 2f, 
among the three stemness clusters, Cluster 3 exhibited an 
immunosuppressive subtype that was characterized by 
abundances of macrophages M0 and macrophages M2, as 
well as higher immune and stromal scores; Cluster 2 dis-
played higher anti-tumor TME components like CD8+ T 
cells, activated memory CD4+ T cells, T cells follicular 
helper, activated NK cells and activated dendritic cells; 
and Cluster 1 showed moderate TME infiltrations like 
activated memory CD4+ T cells, T cells follicular helper, 
activated NK cells, macrophages M0, macrophages M2, 
activated dendritic cells and stromal score.

Chemotherapy sensitivity and immunotherapy response 
among stemness subtypes
Currently, surgery and systemic chemotherapy remains 
the conventional strategy for CRC patients. Therefore, 
we estimated IC50 values via pRRophetic algorithm for 
chemotherapy sensitivity evaluations of several chemo-
therapeutics drugs and compared among stemness 
clusters. As shown in Fig. 3a, the estimated IC50 values 
of Bosutinib, Docetaxel, Elesclomol, Gefitinib, Lena-
lidomide, Methotrexate and Sunitinib were significantly 
lower in Cluster 3, implying that Cluster 3 subtype might 
be more sensitive to these drugs. Cluster 1 and Cluster 
2 were more sensitive to Cytarabine and Lapatinib. Fur-
thermore, we assessed the immunotherapy responses of 
the three subtypes via TIDE algorithm. Consistent with 
the TME landscape that Cluster 2 comprised richer 
infiltrations of tumoricidal cells like CD8 T cells, 327 of 
424 patients (77.1%) in Cluster 2 were estimated to ben-
efit from immunotherapy, which was significantly higher 
than Cluster 1 (271 of 727, 37.3%) and Cluster 3 (92 of 

Fig. 3  a Box plots for the estimated IC50 of chemotherapy drugs between three stemness subtypes. b Distributions of responder and 
non-responder to immunotherapy among distinct stemness clusters estimated by TIDE algorithm
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316, 29.1%) (Fig.  3b). Yet increased immunosuppressive 
M2 macrophages and decreased M1 macrophages as well 
as CD8 T cells might account for the minimal response 
rate in Cluster 3.

WGCNA to identify stemness Cluster 3‑accosiated module 
and hub genes
As Cluster 3 CRC patients experienced the least benefit 
from immunotherapy and the worst survival, we further 
performed WGCNA to determine typical genes of this 
subtype in GSE39582 cohort. Firstly, the optimal soft-
threshold power β was set as 7 to ensure the scale-free 
network constructions (scale-free R2 = 0.9) (Fig.  4a). 
Then, the least number of genes of each module was set 
as 30, and the clustering dendrogram manifested that 
genes with similar expression patterns were clustered 
into 15 modules (Fig.  4b). Among the 15 modules, the 
turquoise module revealed the strongest positive corre-
lation with Cluster 3 subtype (ME = 0.56, P = 3e−47) as 
well as the most negative association with Cluster 2 sub-
type (ME = − 0.66, P = 3e−71) and moderately correlated 
with survival status (ME = 0.11, P = 0.01) and TNM stage 
(ME = 0.16, P = 2e−04) (Fig.  4c). Hence, the turquoise 
module was chosen as the hub module, from which 138 
intersectant candidate hub genes were filtered for fur-
ther analyses with the filtration criteria of MM > 0.8 and 
GS > 0.4 (Fig. 4d).

Furthermore, to explore the biological functions of 
the hub genes in turquoise module, GO and KEGG 
pathway annotation analyses were performed. The prin-
cipal enriched GO terms for biological process (BP), 
cellular component (CC) and molecular function (MF) 
were extracellular matrix organization and extracellular 
structure organization, collagen-containing extracellu-
lar matrix, extracellular matrix structural constituent. In 
addition, KEGG analysis revealed the turquoise module 
was mainly involved in focal adhesion, PI3K-Akt sign-
aling pathway, proteoglycans in cancer, tight junction, 
regulation of actin cytoskeleton and leukocyte transen-
dothelial migration.

Construction and validation of prognostic stemness 
signature based on hub genes of turquoise module
Firstly, univariate Cox regression analysis was performed 
on GSE39582 cohort, and we identified 59 genes that 
were significantly correlated with OS (P < 0.05). Then, 
random forest survival analysis was implemented to 
further filter out genes with low importance on OS, and 
10 genes (COLEC12, AKT3, EFEMP2, STON1, MRAS, 
MXRA8, COX7A1, JAM3, TCEAL7 and C14orf132) 
with relative importance > 0.5 were selected (Fig.  5a). 
Subsequently, we assembled the 10 genes into 1023 
(210–1) alignment assemblies, followed by log-rank 

tests for the prognostic model evaluations. Figure  5b 
displays the -log10 (log‐rank P) values of top 20 ranking 
models, from which the top-rank signature comprised 
of five genes (COLEC12, EFEMP2, STON1, TCEAL7 
and C14orf132) was extracted for the stemness-risk 
model construction: Risk score = (0.243 * expression of 
COLEC12) + (0.183 * expression of EFEMP2) + (0.243 
* expression of STON1) + (0.211 * expression of 
TCEAL7) + (0.297 * expression of C14orf132). Using this 
formula, the stemness-risk score of each CRC patient 
was calculated. Notably, stemness C3 had the high-
est stemness-risk score, while the stemness-risk score 
was lowest in stemness C2 (Kruskal− Wallis analysis, 
P < 0.0001) (Fig. 5c). Kaplan–Meier analysis showed that 
patients with high stemness-risk score experienced sig-
nificantly worse prognosis in comparison with those 
with low stemness-risk score (log-rank test, P = 0.008) 
(Fig. 5d). Next, we validated the OS prediction ability of 
the stemness-risk model on other cohorts, and Kaplan–
Meier survival curves showed that except for GSE103479 
cohort (log-rank test, P = 0.147), high stemness-risk score 
CRC patients had shorter OS time than low stemness-
risk score patients in GSE17536 (log-rank test, P = 0.004), 
TCGA-COAD (log-rank test, P = 0.017), TCGA-READ 
(log-rank test, P = 0.037) (Fig.  5e). By choosing the 
median stemness-risk score as cutoff for all 1,467 CRC 
patients from the five cohorts, patients in high stemness-
risk group also had worse OS than low stemness-risk 
group patients (log-rank test, P = 0.015) (Fig. 5f ), and the 
distribution of these patients in three stemness clusters 
was displayed in Sankey diagram (Fig. 5g).

Correlation between stemness‑risk signature and TME 
infiltration patterns
After running CIBERSORT and ESTIMATE, 893 sam-
ples with CIBERSORT  P < 0.05 were obtained, and the 
proportion of 22 immune cells as well as immune and 
stromal scores in each CRC sample were calculated and 
visualized via heatmap (Fig. 6a), from which we observed 
that with the increase of stemness-risk scores, the frac-
tions of M2 macrophages and M0 macrophages, as well 
as immune and stromal scores increased, while frac-
tions of activated NK cells, CD8 T cells and T cells fol-
licular helper decreased. Consistently, Wilcoxon analysis 
revealed that the fractions of B cells naïve, M0 mac-
rophages, M2 macrophages, neutrophils, immune and 
stromal scores were more abundant in high stemness-
risk group. In contrast, several antitumor immune cells 
were richer in low stemness-risk group, including CD8 
T cells, activated memory CD4 T cells, T cells follicular 
helper, activated NK cells and activated dendritic cells 
(Fig. 6b), indicating that low stemness-risk group patients 
might be more sensitive to immunotherapy. The average 
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TME distributions in each group are also displayed in 
Fig.  6c–d. The low stemness-risk group exhibited an 
anti-tumor immune immunity, while high stemness-risk 

group was characterized by higher immunosuppressive 
cells, and M2 macrophages and M0 macrophages were 
the most abundant cell types. Meanwhile, we observed 

Fig. 4  Identification of hub genes by WGCNA for CRC stemness subtypes on GSE39582 dataset. a Scale independence and mean connectivity 
of multiple soft-thresholding powers (β) from 1 to 30. b The cluster dendrogram developed by the weighted correlation coefficients, genes with 
similar expression patterns were clustered into co-expression modules, and each color represents a module. c Heatmap of the correlation between 
module eigengenes (MEs) and clinical traits as well as stemness subtypes. d Scatter plot displaying relationship of module membership (MM) in 
turquoise module with gene significance for Cluster C3 (GS). e Top ten enriched biological process (BP), cellular component (CC) and molecular 
function (MF) GO terms of Cluster 3-associated module genes. f KEGG analysis of Cluster 3-associated module genes
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M2 polarization regulators were highly expressed in 
high stemness-risk group (Fig. 6e). Taken together, these 
results suggest that high stemness-risk group patients 
might be less sensitive to immunotherapy owing to the 
stromal and M2 macrophage-mediated immunosuppres-
sion effects.

The value of stemness‑risk score in chemotherapy 
sensitivity and immunotherapy response predictions
Our aforementioned results have revealed that stemness 
Cluster C3 was more sensitive to several chemical drugs 
(Fig.  3a) but less sensitive to immunotherapy response 
(Fig. 3b). Similarly, we observed that high stemness-risk 
group was more sensitive to not only these C3-sensitive 

drugs like Bosutinib, Docetaxel, Elesclomol, Lenalido-
mide, Methotrexate and Sunitinib, but also Bleomycin, 
Camptothecin, Cisplatin, Cytarabine, Etoposide, Gemcit-
abine, Lapatinib and Paclitaxel (Fig. 7a). Subsequently, we 
analyzed the correlation of the stemness-risk model and 
immunotherapy response predicted by TIDE method. 
As shown in Fig. 7b, the stemness-risk score was signifi-
cantly lower in responder patients than non-responders 
(Wilcoxon test, P < 0.001),  and the ratio of immunother-
apy responders in the low-risk group was more than two 
and a half times than that in the high-risk group (67.3 
versus 26.74%, Chi-square test, P < 0.001).

Moreover, to further test the capability of our model 
on immunotherapeutic benefit prediction, we applied 

Fig. 5  a Ten hub genes with relative importance > 0.5 were selected by random survival forest algorithm. b Top 20 gene signatures from 1023 
(210–1) gene alignment assemblies evaluated by log-rank tests, which were displayed as the −log10 (log‐rank P) values, and the 5-gene signature 
marked in dark blue was chosen as the final model. c The distribution of stemness-risk score among different stemness subtypes; ****p < 0.0001. d 
Kaplan–Meier analysis for overall survival difference between high and low stemness-risk score CRC patients in GSE39582. e Kaplan–Meier analysis 
for overall survival difference between high and low stemness-risk score CRC patients in GSE17536, TCGA-COAD, TCGA-READ and GSE103479 
cohorts. f Kaplan–Meier analyses for overall survival difference between high and low stemness-risk score CRC patients in all CRC patients. g Alluvial 
diagram of distributions for all CRC patients with different stemness clusters, stemness-risk scores and survival outcomes
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Fig. 6  a Heatmap manifesting the relationship between TIME infiltration and stemness-risk score as well as clinical pathological parameters. b The 
fraction of TIME cells (z-score transformed) in high and low stemness-risk groups. Wilcoxon test, ns, not significance; *p < 0.05; **p < 0.01; ***p < 0.001. 
TIME, Tumor immune microenvironment. c–d Radar charts showing the immune cell infiltration abundances in low (c) and high (d) stemness-risk 
groups. e Comparison of markers associated with M2 macrophages polarization between high and low stemness-risk groups
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our model to two real-world immunotherapy cohorts 
(anti-PD-L1 in IMvigor210 cohort and anti-PD-1 in 
GSE78220 cohort). As shown in Fig.  7c, in IMvigor210 
cohort, patients with complete response (CR) and par-
tial response (PR) to anti-PD-L1 therapy had significantly 
lower stemness-risk scores than stable and progressive 
diseases (SD, PD) patients (Wilcoxon test, P = 0.021),  and 

patients in the high stemness-risk group underwent sig-
nificantly less therapeutic benefits than low stemness-risk 
group (17.45 versus 28.19%, Chi-square test, P = 0.0384). 
In addition, the survival time of high stemness-risk group 
was significantly shorter than that of the low stemness-
risk group (HR = 1.449, 95%CI:1.083–1.983, log-rank 
P = 0.012) (Fig.  7d). Similarly, in GSE78220 cohort, 

Fig. 7  a Box plots of the estimated IC50 values of several chemotherapy drugs between high and low stemness-risk groups. Wilcoxon test, ns, 
not significance; ***p < 0.001. b TIDE results of the differences of stemness-risk score in the respond and non-respond groups and distributions of 
responder and non-responder in distinct stemness-risk groups. c Differences of stemness-risk score in SD/PD and CR/PR groups and distributions of 
anti-PD-L1 therapeutic response in distinct stemness-risk groups in IMvigor210 cohort. d Kaplan–Meier survival analysis revealed high stemness-risk 
score correlated with a worse prognosis in IMvigor210 cohort. e Differences of stemness-risk score in PD and CR/PR groups and distributions of 
anti-PD-1 therapeutic response in distinct stemness-risk groups in GSE78220 cohort
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patients who benefited from anti-PD-1 showed lower 
stemness-risk scores (Wilcoxon test, P = 0.022), and the 
frequency of CR/PR was also significantly higher in low 
stemness-risk group (78.57 versus 28.57%, Chi-square 
test, P = 0.0229) (Fig.  7e). These findings indicated that 
CRC patients with low stemness-risk score might be sen-
sitivity to immunotherapy.

mRNAsi was higher in Cluster 3 and negatively correlated 
with stemness‑risk score
By applying OCLR algorithm, mRNAsi of each CRC 
patients was calculated based on the gene expres-
sion profiles, and we then examined the correlations 
between mRNAsi and the stemness subtypes. As dis-
played in Fig. 8a, by ranking mRNAsi from low (left) to 
high (right), we observed that stemness Cluster 3 was 
mainly concentrated in low mRNAsi regions, while 
stemness Cluster 2 had the highest mRNAsi, which 
was confirmed by the comparison analysis (Fig.  8b). 
Similarly, mRNAsi was significantly higher in low 

stemness-risk group (Wilcoxon test, P < 0.001) (Fig. 8c), 
and mRNAsi was highly and negatively correlated with 
the stemness-risk score (Spearman correlation = − 0.71, 
P < 0.001) (Fig. 8d). Furthermore, Kaplan–Meier analy-
sis indicated that CRC patients with low-mRNAsi expe-
rienced longer OS than high-mRNAsi patients (Fig. 8e).

GSEA analysis for differences of hallmark gene sets 
between high and low stemness‑risk groups
GSEA was performed to investigate the differentially 
enriched hallmark gene sets between high and low 
stemness-risk groups. As shown in Fig. 9, genes highly 
expressed in high stemness-risk group were signifi-
cantly enriched in several hallmark gene sets, including 
interferon gamma response, interferon alpha response, 
P53 pathway, coagulation, apoptosis, KRAS signaling 
upregulation, complement, epithelial–mesenchymal 
transition (EMT) and IL6-mediated JAK-STAT signal-
ing gene sets.

Fig. 8  a The overview of correlation between mRNAsi and clinical features as well as stemness clusters and risk scores. b–c Box plot of the 
comparison of the mRNAsi between three stemness Clusters (b) and stemness-risk groups (c); ****p < 0.0001. d The Spearman correlation of 
stemness-risk score with mRNAsi. e Kaplan–Meier survival analysis revealed high mRNAsi correlated with a better prognosis in CRC patients
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Knockdown of COLEC12 attenuates CSC traits of CRC cells
Among all the 5 genes in the signature, COLEC12 was 
identified as the most significant one via random for-
est survival analysis, and we therefore functionally veri-
fied the potential role of COLEC12 in promoting CSC 
properties. As shown in Fig.  10a, western blot assay 
revealed the protein level of COLEC12 was significantly 
higher in Caco-2 cell line than that in others, and spe-
cific siRNAs were then utilized to successfully inhibit 
COLEC12 expression in Caco-2 cells (si-COLEC12-2 
and si-COLEC12-3; Fig.  10b). Following, sphere forma-
tion assay was performed to assess the stemness traits 
of COLEC12, and the results indicated that the sphere 
numbers and sizes were markedly attenuated after si-
COLEC12-2 and -3 transfections in Caco-2 cells and sug-
gested a suppression of CRC cells that exhibit stemness 
properties (Fig. 10c). In addition, we examined the pro-
tein expressions of stem cell markers LGR5, CD44, 
SOX2, NANOG and OCT4 by western blot, and results 

indicated the LGR5, CD44, SOX2 and NANOG protein 
levels were decreased after si-COLEC12-2 and -3 trans-
fections (Fig. 10d), indicating that COLEC12 affected the 
CSC traits of CRC cells.

Comparison of the stemness‑risk score with other CRC 
stemness models
Based on the stemness index (mRNAsi), Wang et  al. 
[48] and Wei et  al. [49] both performed WGCNA 
and, respectively, identified 15-mRNA- and 3-mRNA 
mRNAsi-related signature. To determine whether our 
stemness subtype-related five-gene signature is supe-
rior to these models, we firstly compared the pre-
dictive capability of the three models in predicting 
immunotherapy response estimated via TIDE analysis 
on the entire 1467 CRC patients. The receiver operat-
ing characteristic (ROC) curve revealed the predic-
tive performance of our 5-gene stemness model (area 

Fig. 9  Gene set enrichment analysis (GSEA) of hallmark gene sets between high and low stemness-risk groups
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under the curve (AUC) (95%CI): 0.78 (0.758–0.803)) 
was significantly better than models from Wang (AUC 
(95%CI): 0.71 (0.683–0.735)) and Wei (AUC (95%CI): 
0.548 (0.52–0.578)) (both P < 0.001) (Fig.  11a). Subse-
quently, we performed Spearman correlation analy-
sis between each model and mRNAsi, and as noted 
earlier in this paper, our model was highly and nega-
tively correlated with the mRNAsi (Spearman correla-
tion = − 0.71, P < 0.001) (Fig. 8d), while the correlation 
coefficient was moderate in Wang’s model (Spearman 
correlation = − 0.59, P < 0.001) (Fig.  11b) and weak in 
Wei’s model (Spearman correlation = − 0.21, P < 0.001) 
(Fig.  11c), which further indicated our model could 

serve as a robust predictor in reflecting stemness of 
CRC samples.

Discussion
CSCs are highly heterogeneous cell populations that 
exist in dynamic equilibrium with their intricate intrin-
sic and ambient microenvironments [50]. Phenotypic 
characterization of CSC properties would contribute to 
the design of molecular agents targeting both CSCs and 
unfavorable TME [51]. Here, this study presents the first 
systematic bioinformatic analyses to uncover the molec-
ular characteristics of 26 CSCs gene sets on large-scale 
cohorts of multicenter CRC patients. We suggest that 
precise molecular subtyping of stemness characteristics 

Fig. 10  a Western blot analysis of COLEC12 protein levels in four kinds of CRC cell lines. b COLEC12 protein expression was successful inhibited by 
specific siRNA against COLEC12 (si- COLEC12-2 and -3) compared with negative control (NC). c Representative images of Caco-2 cell spheres after 
transfection with NC and si-COLEC12-1, -2, and -3 for 5 days, respectively. d Western blot showed the expression of stem-related markers LGR5, 
CD44, SOX2 and NANOG was down-regulated in si- COLEC12-2 and -3 transfected Caco-2 cells
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would prospectively stratify CRC patients with differ-
ent prognosis, TME infiltration patterns and therapeutic 
responses; characterization of CSCs subtype-related gene 
expression pattern could be novel strategy for the guid-
ance of more efficient patient-specific therapy.

Among the three diverse stemness subtypes identified 
via unsupervised clustering based on ssGSEA scores of 
26 stemness gene sets, C2 subtype was characterized by 
higher enrichment levels in CSCs gene sets with favora-
ble prognosis, richer infiltrations of antitumor TME 
patterns like CD8+ T cells, activated memory CD4+ T 
cells, T cells follicular helper and activated NK cells, and 
greater sensitivity to immunotherapies. Conversely, the 
stemness cluster 3 enriched highly in CSCs gene sets with 
adverse prognosis and presented an immunosuppressive 
phenotype with higher infiltrations of M2 macrophages 
and stromal scores and thus had the lowest sensitivity 
to immunotherapies. To further elucidate the genomics 
characteristics of the stemness subtypes, we performed 
the in-depth WGCNA analysis for the recognition of co-
expressed, stemness cluster-related gene modules, and 
the turquoise module, which was most positively relevant 
to stemness C3 but negatively correlated with stemness 
C2, was identified as the most crucial module for further 
analysis. GO analysis revealed top biological processes 
of turquoise module were extracellular matrix organiza-
tion, and extracellular structure organization, collagen-
containing extracellular matrix and extracellular matrix 
structural constituent were main terms for cellular com-
ponents and molecular functions. Studies have reported 
that mild changes in ECM composition would aggra-
vate the invasive features of tumor cells through mech-
ano-transduction [52, 53] and facilitate stemness and 
metastasis [54, 55]. Then, univariate Cox and random 
forest survival analyses were performed for the mining of 

prognostic hub genes in turquoise module, and through 
the 1023 combinations of ten hub genes, a stemness 
prognostic signature comprising five genes (COLEC12, 
EFEMP2, STON1, TCEAL7 and C14orf132) was con-
structed to quantify the stemness pattern. Consistently, 
stemness C3 had the highest stemness-risk score, and 
higher stemness-risk score correlated with worse prog-
nosis for CRC patients.

In terms of TME patterns, advances in the recognition 
of interactions between CSCs and TME could provide 
novel insights for the understanding  of CSC-mediated 
immunomodulation and design of CSC-based therapies 
[56, 57]. Currently, chimeric antigen receptor (CAR)-
T-cell-based immunotherapies targeting CSCs have 
achieved promising efficacy for hematological patholo-
gies but not for solid tumors like CRC [58]. Solid cellu-
lar barrier, immunosuppressive microenvironment and 
lack of tumor-specific antigens have hindered the clini-
cal application of CAR-T in solid tumors [58]. Schofield 
firstly proposed the existence of stem cell niches, as rep-
resented by specific microenvironments, that are essen-
tial for the self-renew and differentiate of CSCs [59], 
and this TME niche recruited immunosuppressive cells 
like cancer-associated fibroblasts, Tregs and M2 mac-
rophages to augment their pro-tumorigenic activities 
[60]. Along this line, accumulating evidence revealed that 
both cell-intrinsic modifications and microenvironmen-
tal perturbations propelled the reversible and dynamical 
shift of CSCs between stem-like and differentiated sta-
tus [61]. Thus, molecular features with respect to CRC 
stemness remain uncovered, and a common and reli-
able signature reflecting stemness feature is still lacking. 
Simultaneously, additional investigations to interfere with 
stemness, enhance immune cell penetration and affect 
the suppressive TME components would make therapies 

Fig. 11  a The ROC curves of our 5 gene, Wang-15 gene and Wei-3 gene signatures to predict immunotherapy response in the entire CRC cohort. b 
The Spearman correlation of Wang-15 gene signature with mRNAsi. c The Spearman correlation of Wei-3 gene signature with mRNAsi
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like CAR-T more promising in solid tumors, reaching 
the levels observed in blood cancers. In our analysis, we 
found that low stemness-risk CRC patients were charac-
terized by antitumor immunity with high infiltrations of 
NK cells, CD8 T cells and T cells follicular helper, while 
the immunosuppressive M2 macrophages and stromal 
components were richer in high stemness-risk group. We 
also found that M0 macrophages and M2 macrophages 
were the most plentiful cell types in high stemness-risk 
group, suggesting that M2-oriented polarizations might 
play main roles in mediating immunosuppression and 
enhancing aggressiveness of the tumor [62, 63]. Notably, 
we observed elevated levels of M2 polarity factors (TGF-
β, IL-6 and IL-10) in high stemness-risk group. Recent 
studies showed that CSCs promoted the polarization of 
M2 macrophages and the recruitment of tumor-associ-
ated neutrophils (TANs), myeloid-derived suppressor 
cells (MDSCs) by inducing the abnormal expression of 
MHC-I molecules and the secretion of immunosuppres-
sive cytokines, which were conducive to the formation of 
tumor immunosuppressive microenvironment [64, 65]. 
Tumor-associated macrophages (TAMs) are the princi-
pal source of these pro-inflammatory cytokines, which 
in turn drive macrophages into M2-polarized subtype 
[66] that interactively contribute to the EMT and CSCs 
transition [67–69] as well as immunosuppression and 
therapy resistance [70]. With respect to immunotherapy 
guidance, TIDE analysis revealed that a lower stemness-
risk score correlated with a higher immunotherapy 
response for CRC patients. When applying our model to 
the IMvigor210 and GSE78220 trials, synonymous results 
were obtained that low stemness-risk patients received 
better clinical benefits following anti-PD-L1 and anti-
PD-1 therapies, which affirmed the predictive validity of 
our stemness model.

Based on dataset of pluripotent stem cell and their pro-
genitors [71, 72], Malta et  al. designed transcriptional 
stem cell index (mRNAsi) via OCLR method to quanti-
tatively evaluate CSCs activities and malignant cells dedi-
fferentiation of around 12,000 tumor samples in TCGA 
[45]. As TCGA solid tumors presented distinct levels of 
stemness features [45], our findings were consistent with 
previous studies that CRC patients with higher mRNAsi 
indices experienced better prognosis [48, 73], although 
the general recognitions of CSCs are their mediations of 
tumorigenesis, metastasis and recurrence. However, con-
siderable heterogeneity exists among CSCs with regard 
to markers and models that describe cancers [74]. Alter-
natively, we identified three stemness clusters based on 
multi CSCs gene sets and designed stemness-risk model, 
which displayed a strong negative correlation with 
mRNAsi (cor = -0.71). In GSEA, besides the enrichment 
in immune-related hallmarks, high stemness-risk group 

was also enriched in P53 pathway, coagulation, apoptosis, 
KRAS signaling and EMT. EMT has been regarded as the 
initiator that underlies the acquisition of malignant fea-
tures by carcinoma cells [75], mounting evidence proves 
the trigger of EMT is closely associated with the acquisi-
tion of CSCs traits by both normal and neoplastic cells 
[76, 77], and non-CSCs are also generated with many 
CSCs features during the EMT evolvements [78, 79]. To 
sum up, we speculate our model was capable of reflecting 
the stemness characteristics in CRC.

For the five stemness model genes identified in this 
study, COLEC12 has been suggested as a prospective 
biomarker for anaplastic thyroid cancer [80], and Li et al. 
reported that knockdown of COLEC12 could promote 
apoptosis and enhance inflammation through TLR4 
in osteosarcoma [81]. EFEMP2 has been regarded as 
an auspicious biomarker for CRC early detection [82], 
and knockdown of EFEMP2 could inhibit the prolifera-
tion and invasion of CRC cells via ERK1/2 pathway [83]. 
Huang et  al. reported malignant glioma samples with 
higher EFEMP2 expressions were more prone to exhibit 
M0 macrophages features [84]. High expressions of 
STON1 and C14orf132 were correlated with worse prog-
nosis in bladder urothelial carcinoma [85] and CRC [86], 
respectively. Mao et al. performed WGCNA and identi-
fied TCEAL7 as hub gene correlated with unfavorable 
prognosis and stemness features in gastric cancer [87], 
while TCEAL7 has been regarded as a tumor suppressor 
in glioblastoma [88] and ovarian cancer [89].

Inevitably, several limitations need to be illustrated in 
this study. First, the data in our research were acquired 
from the public databases rather than our database; 
although there were sufficient CRC samples as the verifi-
cation set to support the conclusions of our research, we 
need to further validate the prognostic and therapeutics 
effects of this model with large sample size from our own 
center in the future. Second, the model genes associated 
with CRC stemness were identified based on bioinfor-
matics, and further functional experiments are necessi-
tated for the investigation of their biological mechanisms 
on stemness and TME landscape, as well as their capa-
bilities as targets to improve immunotherapy and chemo-
therapy efficacy. Third, since public transcriptomic data 
of CRC patients receiving immunotherapy are currently 
very limited, the actual relationship between stemness 
subtypes as well as stemness-risk groups and immuno-
therapy responsiveness in CRC needs to be evaluated in 
an immunotherapy cohort in the future.

Conclusion
Taken together, through unsupervised cluster on stem 
cell gene sets, three stemness-associated subtypes 
with diverse prognosis, TME patterns and therapy 
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responses were systematically identified for the first 
time. By applying WGCNA, Cox and random survival 
forest analyses, a five-gene stemness-associated risk 
model was constructed and validated in large cohorts 
of CRC patients. We suggest our stemness model has 
prospective clinical implications for prognosis evalua-
tion and might facilitate physicians selecting prospec-
tive responders for preferential use of current immune 
checkpoint inhibitors.
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