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Abstract 

Background:  Stemness is defined as the potential of cells for self-renewal and differentiation. Many transcriptome-
based methods for stemness evaluation have been proposed. However, all these methods showed low negative 
correlations with differentiation time and can’t leverage the existing experimentally validated stem cells to recognize 
the stem-like cells.

Methods:  Here, we constructed a stemness index for single-cell samples (StemSC) based on relative expression 
orderings (REO) of gene pairs. Firstly, we identified the stemness-related genes by selecting the genes significantly 
related to differentiation time. Then, we used 13 RNA-seq datasets from both the bulk and single-cell embryonic stem 
cell (ESC) samples to construct the reference REOs. Finally, the StemSC value of a given sample was calculated as the 
percentage of gene pairs with the same REOs as the ESC samples.

Results:  We validated the StemSC by its higher negative correlations with differentiation time in eight normal 
datasets and its higher positive correlations with tumor dedifferentiation in three colorectal cancer datasets and four 
glioma datasets. Besides, the robust of StemSC to batch effect enabled us to leverage the existing experimentally 
validated cancer stem cells to recognize the stem-like cells in other independent tumor datasets. And the recognized 
stem-like tumor cells had fewer interactions with anti-tumor immune cells. Further survival analysis showed the 
immunotherapy-treated patients with high stemness had worse survival than those with low stemness.

Conclusions:  StemSC is a better stemness index to calculate the stemness across datasets, which can help research-
ers explore the effect of stemness on other biological processes.
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Background
Stemness is defined as the self-renewal and differentia-
tion potential of cells [1]. Cancer progression is accom-
panied by the acquisition of this feature [2]. Besides, 
quantification of stemness is very helpful to reconstruct 
cellular differentiation trajectories and explore the role 

of stemness in tumor tissues [3]. As reported, by using 
the stemness index, pervasive negative associations were 
found between cancer stemness and anticancer immu-
nity [4].

With the increasing number of RNA-seq data, many 
transcriptome-based methods for stemness evaluation 
have been proposed, such as mRNAsi [5]. However, this 
method was only trained from bulk data, which limited 
its performance in single-cell data [3]. Gunsagar S. Gulati 
has proposed a more suitable method for single cells, 
named CytoTRACE [3], which showed better perfor-
mance than all the currently known methods. However, 
the average correlation between this stemness index and 
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differentiation time was only about 0.6. What’s more, the 
xenotransplantation assay has become the gold stand-
ard assay to define cancer stem cells (CSCs) in tumor 
cells [6], which is laborious, costly and rare. Lack of the 
experimentally validated stem cells makes the transcrip-
tome-based methods can’t recognize stem-like cells by 
comparison because these transcriptome-based meth-
ods were too vulnerable to batch effect [7] to make use 
of the existing CSC samples. Therefore, it is necessary to 
construct a stemness index that is highly correlated with 
differentiation time and could be evaluated for single-cell 
samples across datasets.

In our previous studies, we have identified many sig-
natures based on relative expression orderings (REOs) 
of gene pairs [8–10], which were not sensitive to batch 
effects and can be robustly applied to independent vali-
dation sets. Based on these unique advantages, we con-
structed a REO-based stemness index based on bulk 
samples [7], which showed a high correlation with differ-
entiation time. However, the lack of single-cell samples in 
its training sets limited its performance in the collected 
single-cell samples of this study.

In this study, we constructed a REO-based stemness 
index for single-cell samples, StemSC, which can be 
used across datasets. Then, we validated StemSC by its 
higher negative correlations with differentiation time and 
higher positive correlations with tumor dedifferentiation 
than CytoTRACE in eight independent datasets and the 
merged datasets. By using StemSC, we recognized the tis-
sue-specific stem genes and constructed cell differentia-
tion trajectories automatically. Especially for tumor cells, 
StemSC can leverage the existing transcriptome data of 
the experimentally validated CSCs to recognize the stem-
like cells in other independent datasets. Finally, cell–cell 
communication analysis showed that the recognized 
stem-like cells had fewer connections with each other 
and the immune cells than the common tumor cells. Fur-
ther survival analysis showed that, for the immunother-
apy-treated patients, the high-stemness group had worse 
overall survival than the low-stemness group.

Methods
Data and preprocessing
In this study, we downloaded the gene expression 
data of 11 human embryonic stem cell (ESC) data-
sets to reveal the high stability of REOs (Additional 
file 1: Table S1). We also downloaded six datasets with 
differentiation time (Additional file  1: Table  S2) for 
identifying stemness-related genes and 13 datasets 
(Additional file  1: Table  S3) for the development of 
StemSC. Five independent datasets with differentiation 
time were downloaded to validate the performance of 
StemSC (Additional file  1: Table  S4). Three colorectal 

cancer datasets and four glioma datasets were also 
downloaded to validate the performance of StemSC in 
tumor cells (Additional file  1: Table  S4). We excluded 
the samples of distant metastatic tumor to focus on the 
corresponding cancer type. Especially for the glioma 
dataset GSE117891, we excluded the cells from the 
normal tissues because these cells were limited to few 
patients.

For the RNA-seq expression data of both the bulk 
and single-cell samples, we directly downloaded the 
processed RPKM, TPM or count data from the Gene 
Expression Omnibus [11] (GEO, https://​www.​ncbi.​
nlm.​nih.​gov/​geo/), Sequence Read Archive (SRA, 
https://​www.​ncbi.​nlm.​nih.​gov/​sra/), and Progenitor 
Cell Biology Consortium [12] (PCBC, https://​www.​
synap​se.​org/#​!Synap​se:​syn17​73109/​wiki/​54962). Count 
data were turned to the RPKM data with the corre-
sponding reference genomes of the datasets. Due to 
the filtered genes in GSE57872, we downloaded raw 
single-cell RNA sequencing data from SRA accession 
SRP042161 [13]. To retrieve the transcriptomic profiles 
of GSE57872, we built a reference transcriptome based 
on the GENCODE v19 annotation [14] and mapped the 
paired-end 25 bp reads to the reference transcriptome 
by using HISAT2 [15] (version 2.1.0, with parameters 
-q -p 1 -5 0 -3 0 -k 5 –min-intronlen 20 –max-intronlen 
500000 –phred33). The RPKM data of GSE57872 were 
calculated by using featureCount [16] (with parameters 
-t exon -g gene_id –primary). Then, for each RNA-
seq expression dataset, we mapped the Ensembl gene 
ID or gene symbol to the Entrez gene ID by using the 
reference downloaded from HUGO Gene Nomencla-
ture Committee (HGNC, https://​www.​genen​ames.​org/​
downl​oad/​custom/). Dataset PRJNA482620 was pre-
processed in the same way. Especially, we removed the 
low-quality cells with less than 2000 detected genes for 
single-cell data.

Consistency evaluation of REOs between datasets
In this study, we calculated the REOs by using the over-
lapping genes among the datasets with more than three 
samples. Pairwise comparisons were performed for the 
expression level of the above genes for each sample. For 
each gene pair (Gi, Gj), we retained the gene pair with 
certain REO (Gi > Gj or Gi < Gj) in all samples of the data-
set, which we called stable REO. The consistency of stable 
REOs between two datasets was calculated as s/n, where 
n was the number of shared gene pairs between the sta-
ble REOs of two datasets and s was the number of shared 
gene pairs with the same REOs. The significance of con-
sistency was determined by the cumulative binomial dis-
tribution model as follows:

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/sra/
https://www.synapse.org/#!Synapse:syn1773109/wiki/54962
https://www.synapse.org/#!Synapse:syn1773109/wiki/54962
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https://www.genenames.org/download/custom/
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where P0 is the probability that gene pairs showed same 
REO pattern (Gi > Gj or Gi < Gj) in two datasets by chance 
(P0 = 0.5).

Development of the StemSC
The stemness index for single-cell data, StemSC, was 
constructed by calculating the similarity of REOs 
between target cells and ESC samples. Firstly, we iden-
tified the stemness-related genes by selecting the genes 
significantly related to differentiation time in all five data-
sets (Additional file  1: Table  S2). Then, due to the lack 
of single-cell data, we used 13 RNA-seq datasets from 
both the bulk and single-cell ESC samples to construct 
the reference REOs (Additional file 1: Table S3). We fur-
ther identified the stable REOs in all above ESC samples 
as reference REO. Finally, the StemSC value of a given 
sample was calculated as k/n, where n was the number 
of the referenced REOs contained in this sample and k 
was the number of the gene pairs with same REOs as the 
reference REOs. Additionally, scripts and codes for the 
StemSC are available for download (https://​github.​com/​
Zhao-​Wenyu​an/​StemSC).

Construction of the cellular differentiation trajectories
Here, we provided a method to construct the cellular dif-
ferentiation trajectories by combining StemSC and Mon-
ocle 2 [17]. Firstly, to select the highly variable genes for 
trajectory inference, we removed the genes detected in 
less than ten cells and selected the top 5000 genes with 
the largest product of the coefficient of variation square 
and mean values. Then, the states and branches were 
detected using the Monocle v2.16.0 R package. Finally, 
the root of the differentiation process was automatically 
identified by choosing the state with the highest mean 
StemSC values.

Identification of normal cells and the further cell types
Firstly, we downloaded the corresponding normal sam-
ples from the GTEx [18] as the reference, unless the orig-
inal dataset contains peritumoral cells. Next, we used the 
inferCNV v1.7.1 R package (https://​github.​com/​broad​
insti​tute/​infer​CNV) to infer the copy number variations 
(CNV) of all tumor tissue cells by taking these samples 
as the control. Then, the hierarchical cluster was used 
to divide these cells into tumor cells with CNV and the 
normal cells without obvious CNV. We further used Sin-
gleR [19] to identify immune cell types for the identified 
normal cells. In this study, the cell types with less than 
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50 cells were removed to avoid huge difference in cell 
numbers.

Cell–cell communication analysis
The intercellular communication analysis was performed 
by using CellPhoneDB, a python-based tool [20]. We 
used CellPhoneDB v2.1.1 python package to analyze the 
potential interaction networks of the stem-like tumor 
cells, other common tumor cells and the major types of 
immune cells.

Enrichment analysis
The pathway enrichment analyses based on the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) were 
conducted and visualized using clusterProfiler v3.16.1 R 
package [21]. We also used this package to calculate the 
normalized enrichment score and p value for the enrich-
ment of each gene set.

Statistical analysis
In this study, we used Spearman correlation analysis 
to evaluate the relationship between StemSC and dif-
ferentiation time. We also used hypergeometric test to 
assess the significance of enrichment of the differentially 
expressed genes in the stem signatures and student T-test 
to assess the differences of the StemSC values between 
two types of samples. The Benjamini–Hochberg method 
was utilized to control the false discovery rate (FDR) in 
the multiple tests. All statistical analyses were carried out 
with the R 4.0.2 software package (http://​www.r-​proje​ct.​
org/).

Results
High stability of REOs in single‑cell samples
REOs are the features that describe the relative expres-
sion orders of gene pairs within a sample. One attribute 
of their features is that the REOs of RPKM won’t change 
after within-sample normalization, such as TPM or log 
transformation. Indeed, the REOs of RPKM showed 
100% overlap with those after TPM or log transformation 
in 11 public human ESC datasets (Fig.  1A, Additional 
file 1: Table S1). Another attribute is that the REOs sta-
bly showing same pattern in the same type of samples, 
which we called stable REOs (see “Methods” section), 
could be retained in other independent bulk datasets, 
even in paraffin-embedded bulk samples with relative 
low gene expressions [22]. Thus, we inferred that the sta-
ble REOs could also be stably retained in the single-cell 
samples with low gene expressions. Indeed, we found 
that the stable REOs recognized in each of the 11 single-
cell datasets exhibited high consistency among datasets, 
which was similar for bulk datasets (consistency, 0.99 
for single-cell datasets and 0.92–0.96 for bulk datasets, 

https://github.com/Zhao-Wenyuan/StemSC
https://github.com/Zhao-Wenyuan/StemSC
https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV
http://www.r-project.org/
http://www.r-project.org/
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Fig. 1B). Besides, there was also a high consistency of sta-
ble REOs between single-cell datasets and bulk datasets 
(consistency, 0.97–0.99, Fig.  1B). In addition, we found 
that increasing the number of datasets can improve the 
stability of REOs in independent datasets (Fig. 1C). The 
larger the number of the merged datasets, the more sta-
ble the stable REOs are.

Considering that the previous REO-based stemness 
index did not approach the set value 1 in single-cell ESC 
samples (Additional file 1: Figure S1), it was necessary to 
add single-cell data to train a signature more suitable for 

single-cell data. All above results inspired us to add bulk 
samples to the single-cell samples to build a stemness 
index that is more suitable for single-cell samples and 
more robust to batch effects.

Development and validation of StemSC
The development procedure of StemSC is shown in Fig. 2. 
We collected both bulk and single-cell datasets as train-
ing sets because of the shortage of single-cell data and 
the high consistency of REOs between bulk and single-
cell datasets (Fig. 1B). Firstly, to reduce redundant REOs, 

Fig. 1  Stability of REOs in both bulk and single-cell ESC samples. A The number of stable REOs identified from RPKM, TPM and log transformation 
data. B The consistency of stable REOs among 11 ESC datasets. C The correlation between the number of merged datasets for identifying stable 
REOs and recovery rate of REOs in the remaining datasets

Fig. 2  Overall methodology of StemSC
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we identified 437 stemness-related genes by choosing 
the genes which were significantly associated with dif-
ferentiation time in all five datasets with different differ-
entiation directions (Spearman, FDR < 0.05, Additional 
file  1: Table  S2). Naturally, these genes showed signifi-
cant enrichment in the pathways related to cell renewal 
and differentiation, such as cell cycle, Ribosome biogen-
esis in eukaryotes (Additional file  1: Figure S2). Then, 
we, respectively, identified 19,937 and 50,827 gene pairs 
with stable REOs in 92 single-cell and 47 bulk ESC sam-
ples from 13 datasets (Additional file 1: Table S3). For the 
16,848 shared gene pairs of the above two gene pair lists, 
99.9% (16,839/16,848) of them had the same REOs, which 
showed the high consistency of REOs between single-cell 
and bulk samples again. Finally, the stemness index val-
ues of the given human single cells, StemSC, were calcu-
lated by the percentage of gene pairs with the same REOs 
as ESC samples in 16,839 gene pairs (see “Methods” 
section).

In all five independent validation datasets (Fig.  3A, 
Additional file 1: Table S4), there were strong negative 
correlations between StemSC values and differentia-
tion time (Spearman correlation; |r|, 0.43–0.85, Fig. 3B, 

D–H), which was greatly higher than that between 
CytoTRACE and differentiation time (Spearman corre-
lation; |r|, 0.14–0.84, Fig.  3B). Further, the robustness 
of StemSC to batch effect was showed in three follow-
ing aspects. Firstly, the median StemSC values of ESCs 
were all centered around the 1 in two independent vali-
dation datasets (median StemSC, 0.990 for GSE85066 
and 0.984 for GSE109979). Secondly, after combining 
the two batches of dataset GSE102066, the correlation 
between StemSC and differentiation time was higher 
in the merged data than in one of the single batch data 
(Fig.  3C, I), but not for CytoTRACE. Thirdly, StemSC 
showed negative correlations with the differentiation 
time in all validation sets, but CytoTRACE showed a 
positive correlation in the dataset GSE109979 (Fig. 3B). 
In addition, to demonstrate that our method can be 
applied to the cells with different origins, we deleted 
the ESC samples from the above two datasets with 
ESCs (GSE85066 and GSE109979). Results showed that 
there was still a higher negative correlation between 
the StemSC values and differentiation time than 
CytoTRACE (r, -0.798 and -0.583 for StemSC; -0.761 
and 0.864 for CytoTRACE). This feature could allow 

Fig. 3  Validation of the StemSC in the single-cell datasets with differentiation time. A The general information of validation sets. B The correlations 
between differentiation time and stemness index (StemSC and CytoTRACE) in all validation sets. C The changes of correlations between 
differentiation time and stemness index (StemSC and CytoTRACE) after combining the two batches of GSE102066. D–I The high correlations 
differentiation time and StemSC in each validation set. *Differentiation state of dataset GSE85066 was provided in Additional file 1: Table S5
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the StemSC to be used in the cancer cells with multiple 
origins.

The ability of the StemSC to identify stemness‑associated 
genes and construct cellular differentiation trajectories
Given the high correlation between StemSC values and 
differentiation time, we next explored the ability of the 
StemSC to identify the stem makers or differentiation 
factors. Firstly, by ranking all genes according to their 
correlations with StemSC, we found the enrichment of 
the stemness-associated genes (the top 100 genes posi-
tively correlated with differentiation time) in the posi-
tive region and differentiation-associated genes (the top 
100 genes negatively correlated with differentiation time) 
in the negative region in all the validation sets (Fig. 4A). 
Besides, the majority of the most positive or negative 
genes showed their role in stemness or differentiation 
(Fig. 4B, Additional file 1: Table S6). For example, L1TD1, 
the most positively correlated gene with stemness, was 
reported to be a marker for undifferentiated human ESCs 
[23]. For another example, CDH2, the gene trigging the 
endodermal germ-layer formation [24], showed the most 
negative correlation with stemness in the endodermal 
differentiation samples. All above results showed the 
potential of StemSC to recognize the tissue-specific and 
stemness-associated genes.

Cell lineage trajectory can be determined by using tran-
scriptome-based branch detection tools, such as Mono-
cle 2 [17]. However, users need to enter the starting point 
of the biological processes. For example, when applied 
to the dataset GSE109979, Monocle 2 constructed seven 

possible cell trajectories with different roots (Fig. 4C). On 
the contrary, our method could identify the correct root 
by choosing the state with the largest average of StemSC 
values (Fig.  4C), which was similar to time-based line-
age trajectory (Fig. 4D). However, CytoTRACE chose the 
wrong root in this dataset. Similarly, StemSC recognized 
the correct roots in the four remaining validation sets 
(Additional file  1: Figure S3). The above results showed 
a better method to automatically construct cellular dif-
ferentiation trajectories by combining StemSC and the 
branch detection tools Monocle 2.

StemSC can evaluate the stemness of tumor cells
As reported, Tathiane M. Malta et al. showed the appli-
cability of stemness index in tumor tissues by its posi-
tive correlation with oncogenic dedifferentiation [5]. 
In this study, we used the similar method to study if 
StemSC can evaluate the stemness of tumor cells at 
single-cell level, which took the single-cell data of colo-
rectal cancer and glioma (Additional file  1: Table  S4) 
as examples. For three single-cell datasets of colorectal 
cancer, we found that the 437 stemness-related genes 
used in StemSC retained their status in colorectal 
cancer by showing their significant enrichment in the 
gene list ranked by their correlations with the referen-
tial stem values, the sum of expression values of the 30 
known intestinal stem markers [25] (Spearman, p < 0.05, 
Additional file  1: Figure S4A). Besides, 120 of the 437 
genes were significantly correlated with the referen-
tial stem values across all three datasets (Spearman, 
p < 0.05). For example, HMGA1, whose expression was 

Fig. 4  Abilities of StemSC to Identify the stemness-related genes and cellular differentiation trajectories. A The enrichment of the top 100 
stemness-associated or differentiation-associated genes (the top 100 genes positively or negatively correlated with differentiation time) in the 
StemSC-ranked gene list. B Genes most positively or negatively correlated with StemSC. C Construction of lineage trajectory by combining Monocle 
2 and StemSC. D The time-based lineage trajectory



Page 7 of 12Zheng et al. Stem Cell Research & Therapy          (2022) 13:115 	

significantly correlated with ESC differentiation and 
the referential stem values of colorectal cancer in our 
study, is also reported to be highly expressed in human 
ESCs and poorly differentiated, stem-like cancers [26]. 
Above results showed the basis of StemSC to evaluate 
the colorectal cancer stemness. Further, the 30 intes-
tinal stem markers were significantly enriched in the 
gene list ranked by their correlations with the StemSC 
values (Fig. 5A–C, Additional file 1: Table S7) and the 
StemSC values were significantly correlated with the 
sum of expression values of these 30 markers (Spear-
man, p < 0.05, Fig.  5D–F). What’s more, many of the 
stem markers showed significantly positive correlations 
with the StemSC values (Fig.  5G–I). Especially, histo-
logical grade reflects the dedifferentiation of cancer 
tissue. For the dataset GSE81861 with grade informa-
tion, significantly higher StemSC values were found not 
only in the 290 tumor tissue cells than the 170 normal 
tissue cells but also in the 230 low differentiation cells 
(grade 2) than the 60 high differentiation cells (grade 1) 
(student T-test, p = 6E−9, Fig. 5J, K), which was more 
significant than the values calculated by CytoTRACE 
(student T-test, p = 0.007, Fig. 5L).

Similarly, for four single-cell datasets of glioma (Addi-
tional file  1: Table  S4), we firstly derived stem markers 
from dataset GSE57872 by choosing the top 200 genes 
with the largest log fold change (FC) values between 
Glioblastoma stem-like cells and the differentiated cells 
(edgeR, FDR < 0.05, Additional file 1: Table S7). Then, we 
found the 437 stemness-related genes used in StemSC 
also retained their status in glioma by showing their sig-
nificant enrichment in the gene list ranked by their cor-
relations with the sum of expression values of the 200 
stem genes (Spearman, p < 0.05, Additional file 1: Figure 
S4B). For example, HMGA1 was not only high expressed 
in human ESC, but also can reduce stemness of glioblas-
toma stem cells by its silence [26, 27]. Besides, the 200 
genes were not only enriched in the StemSC-ranked gene 
list (Fig.  6A–D) but also correlated with StemSC values 
(p < 0.05, Fig.  6E–L) in both the dataset GSE57872 and 
the other three independent datasets. Further, for the 
dataset GSE117891 with grade information, significantly 
higher StemSC values were not only in the cells with label 
Grade IV than those with label Grade III–IV but also 
in the tumoral cells than the peritumoral cells (student 
T-test, p < 0.05, Fig. 6M, N).

Fig. 5  Validation of StemSC in colorectal cancer. A–C Enrichment of the 30 intestinal stem cell markers in the StemSC-ranked gene list. D–F The 
correlation between StemSC and the sum of gene expression values of the 30 intestinal stem cell markers. G–I The correlations between the 
StemSC and the gene expression values of 30 intestinal stem cell markers. J The significant difference of StemSC between tumor and normal tissue 
cells. The difference of stemness index between cells with different grades by using StemSC (K) and CytoTRACE (L)
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StemSC can recognize the stem‑like cells
CSCs are a small subset of tumor cells with the unlim-
ited differentiation ability [28]. And the xenotransplanta-
tion assay has become the gold standard assay to define 
the CSCs in tumor cells [28355176]. However, few study 
provided such experimentally validated CSCs. In this 
study, the robust of StemSC to batch effect was showed 
above, which enables us to leverage the existing experi-
mentally validated CSC samples as the reference to rec-
ognize the stem-like cells in other independent datasets. 
Firstly, we found the StemSC values of the 134 CSCs 
which were experimentally validated by xenotransplanta-
tion were significantly higher than those of the 563 dif-
ferentiated tumor cells (student T-test, p < 0.05, Fig. 6O) 
in dataset GSE57872, which showed the potential of 

StemSC to recognize the tumor stem-like cells at the 
level of stemness. Then, in order to set the proper thresh-
old of StemSC to recognize the stem-like cells, we used 
the dataset GSE57872, the only dataset with both the 
CSCs and differentiated tumor cells. And we found the 
lower limit 0.862 can be used to recognize the stem-like 
group with the max percentage of CSCs (Additional 
file  1: Figure S5). Finally, it is necessary to validate that 
this threshold can divide the samples into two groups 
with significant difference in stemness. On one hand, 
we recognized the stem-like cells in the 563 differenti-
ated tumor cells of dataset GSE57872 by the lower limit 
0.862. And the stemness markers showed a marginally 
significant enrichment in the gene sets ranked by the log 
FCs between stem-like and other cells (Fig. 6P, p = 0.07), 

Fig. 6  Validation of StemSC in glioma. A–D Enrichment of the 200 glioma stem markers in the StemSC-ranked gene list. E–H The correlation 
between StemSC and the sum of gene expression values of the 200 glioma stem markers. I–L The correlations between the StemSC and the gene 
expression values of the 200 glioma stem markers. The significant difference of StemSC between (M) different grades (N) tumor and normal tissue 
cells (O) CSCs and differentiated cells. P Enrichment of the 200 glioma stem markers in the gene sets ranked by the log FCs between stem-like and 
other common tumor cells
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which showed the difference of stemness between the 
two groups at the transcriptome level. On the other hand, 
similar result was validated in other independent datasets 
before we used the recognized stem-like cells in the fol-
lowing part.

The effect of stemness on tumor immune 
microenvironment
Cancer progression is accompanied by the acquisition of 
stemness, which greatly affects the immune response of 
the tumor cells. As reported, the resistance to immune-
mediated destruction was shown to be an intrinsic 
property of CSCs [29]. Similarly, at the bulk tissue level, 
pervasive negative associations were found between can-
cer stemness and anticancer immunity [4]. However, at 
the single-cell level, the effect of stemness on the interac-
tion between tumor cells and tumor microenvironment 
remains incompletely understood.

Here, we further divided the cells into different kinds of 
immune cells, stem-like tumor cells, and other common 

tumor cells in the above four glioma datasets except 
dataset GSE57872, which only has tumor cells. For data-
set GSE117891, we used inferCNV (see “Methods” sec-
tion) to infer the copy number variations (CNV) of all the 
4623 tumor tissue cells. Further, we divided these cells 
into 2724 tumor cells and the 1899 normal cells without 
obvious CNV by using the hierarchical cluster (Fig. 7A, 
see “Methods” section). For the identified normal cells, 
we used SingleR [19] to identify the four immune cell 
types with more than 50 cells, which was further con-
firmed by the corresponding cell markers (Fig.  7B). For 
the identified tumor cells, we used the above thresh-
old 0.862 to classify these cells into 664 stem-like and 
2060 other common tumor cells, which was confirmed 
by the enrichment of the 200 stemness markers in the 
FC-ranked gene sets between the two groups (Fig.  7C). 
Further, cell–cell communication analysis (see “Meth-
ods” section) showed that, the stem-like cells had fewer 
connections with each other and fewer interactions 
with the four types of immune cells than other common 

Fig. 7  Effect of stemness on tumor immune microenvironment. A The hierarchical cluster of the inferred copy number variation in the tumoral 
tissue cells of dataset GSE117891. B The expressions of the corresponding markers for the four types of immune cells in the dataset GSE117891. 
C–E The enrichment of the 200 stemness markers in the gene sets ranked by the log FCs between stem-like and other common tumor cells. F–H 
Interaction networks among immune cells, stem-like and other common tumor cells. I The higher median StemSC values in the non-responders 
than in the responders. J The Kaplan–Meier curves of overall survival in the high- and low-stemness groups. K The correlations between StemSC 
and the expressions of the 10 metastasis-associated genes in glioma
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tumor cells (Fig. 7F). A similar result could be found in 
the two additional glioma datasets (Fig.  7D, E, G, H), 
which implied the resistance of high-stemness cells to the 
immunotherapy. To validate this result, we further col-
lected the bulk RNA-seq samples of 13 immunotherapy-
treated patients as the mean values of single-cell samples 
(dataset PRJNA482620). And we found that the median 
StemSC values of non-responders were significantly 
higher than those of responders (student T-test, p < 0.05, 
Fig. 7I). Besides, we used the median values to divide the 
13 samples into high- and low-stemness groups. Survival 
analysis showed that the high-stemness group had mar-
ginally significantly worse overall survival than the low-
stemness group (HR = 6.49; C-index = 0.74; p = 6.96E−2, 
Fig.  7J), which validated the negative effect of stemness 
on immunotherapy. Further, due to the lack of other 
prognostic factors in dataset PRJNA482620, such as 
metastasis, we used the expression of top 10 genes which 
are significantly associated with the metastasis of glioma 
[30] to study the independent prognostic role of StemSC 
in the immunotherapy-treated patients. Results showed 
that all 10 genes were significantly positively correlated 
with StemSC (Pearson, p < 0.05, Fig.  7K), which implied 
that the prognostic role of stemness may be closely 
dependent on metastasis.

Discussion
Stemness, which describes the differentiation potential 
of cells, can be a potential index to construct the cellu-
lar differentiation trajectories [1, 3]. Here, we developed 
a REO-based stemness index called StemSC which could 
be well applied to single-cell samples across datasets. In 
addition to the high correlation with differentiation time, 
StemSC can be combined with Monocle 2 to construct 
the cellular differentiation trajectories automatically. 
Besides, the insensitivity of StemSC to batch effects ena-
bles it to leverage the existing experimentally validated 
stem cells to identify the stem-like cells in independent 
datasets. Finally, we found that the recognized stem-like 
cells had fewer interactions with the immune cells than 
the common tumor cells. And the immunotherapy-
treated patients with higher stemness had worse overall 
survival than those with lower stemness.

REO is the feature that transforms the continuous 
expression values into discrete values. Thus, using REOs 
instead of the absolute values of gene expression can 
effectively avoid overfitting and outliers in the train-
ing process. Besides, the larger the numbers of training 
datasets, the more stable the REO-based signatures are. 
However, due to the insufficiency of the datasets with 
differentiation time information and the single-cell sam-
ples of ESCs, we chose the limited datasets for train-
ing StemSC. When testing the application of StemSC, 

we found that StemSC can only recognize the stem-like 
cells instead of CSCs, which may result from the mixed 
stemness between CSCs and other common tumor cells 
(Fig. 6O). If the datasets of the experimentally validated 
CSCs are sufficiency enough, it is possible to build a 
REO-based classifier to identify the CSCs individually. 
Besides, the tumor datasets we collected had limited 
clinical features. We extracted the metastasis information 
from tumor stage by taking the stage IV samples (distal 
metastasis) as the metastatic tumor. Only one dataset 
with both the metastatic and non-metastatic primary 
tumor was collected for both colorectal cancer and gli-
oma. And we found that the relationships between tumor 
stemness and metastasis were different for the two tumor 
types (Additional file 1: Figure S6). Such result was simi-
lar to the finding that, although stemness was higher in 
metastatic samples than primary tumors in most cases (6 
of the 9 tumor types), there were still some tumor types 
with the contradictory relationships [5]. On the other 
hand, different relationships may result from the limited 
samples and datasets. Thus, more comprehensive data-
sets are needed to make the conclusion. Besides, in this 
study, we only showed the applicability of StemSC in ESC 
differentiation and tumor cells, but its applicability in 
other samples is still unknown. Thus, it should be verified 
before StemSC is used in other samples.

In the future work, it is hopeful to recognize the CSCs 
individually when there are enough single-cell samples 
of CSCs. Besides, the development of StemSC can help 
other researchers to study the cell differentiation tra-
jectories. When applying StemSC to tumor tissue cells, 
we found that the stem-like tumor cells had fewer con-
nections with immune cells. The deeper investigations 
of this phenomenon may reveal new mechanisms of 
immune cell regulation and provide a new direction for 
immunotherapy.

Conclusion
We constructed a REO-based stemness index for the 
single-cell samples, StemSC, which showed high corre-
lations with the differentiation time of embryonic stem 
cells and high correlations with tumor dedifferentiation. 
In addition to its ability to construct cellular trajectories, 
StemSC could also be used to recognized the stem-like 
tumor cells across datasets and reveal that the recognized 
stem-like cells had fewer connections with anti-tumor 
immune cells.

Abbreviations
StemSC: Stemness index for single-cell samples; CSC: Cancer stem cell; REOs: 
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variations; FDR: False discovery rate; KEGG: Kyoto Encyclopedia of Genes and 
Genomes.
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