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Exosomes derived from human umbilical ®

cord blood mesenchymal stem cells
stimulate regenerative wound healing via
transforming growth factor-3 receptor

inhibition
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Abstract

Background: Scar formation is a common consequence of skin wound healing, and no effective treatment exists.
Umbilical cord blood mesenchymal stem cells (UCB-MSCs) can improve wound healing; however, the role of UCB-
MSCs remains unclear and whether they can ameliorate scar formation has not been fully elucidated.

Methods: To determine the function of UCB-MSCs, we examined and compared the therapeutic effects of UCB-
MSCs and UCB-MSC-derived exosomes (UCB-MSC-exo) on skin healing in rats. Moreover, UCB-MSC-exo-specific
miRNAs were identified and their effects in inhibiting the human dermal fibroblast (HDF) differentiation into
myofibroblasts were investigated.

Results: Both UCB-MSCs and UCB-MSC-exo accelerated wound closure; reduced scar formation; improved the
regeneration of skin appendages, nerves, and vessels; and regulated the natural distribution of collagen fibers in
wound healing. Additionally, UCB-MSC-exo suppressed the excessive formation of myofibroblasts and collagen |
and increased the proliferation and migration of skin cells in vivo and in vitro. Functional analysis showed that UCB-
MSC-derived miRNAs were closely related to the transforming growth factor-3 (TGF-{3) signaling pathway, which
could induce myofibroblast differentiation. We identified abundant miRNAs that were highly expressed in UCB-
MSC-exo. miR-21-5p and miR-125b-5p were predicted to contribute to TGF-f3 receptor type Il (TGFBR2) and TGF-f3
receptor type | (TGFBR1) inhibition, respectively. Using miRNA mimics, we found that miR-21-5p and miR-125b-5p
were critical for anti-myofibroblast differentiation in the TGF-31-induced HDF.
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growth factor beta, Wound healing

Conclusion: The effect of UCB-MSCs in stimulating regenerative wound healing might be achieved through
exosomes, which can be, in part, through miR-21-5p- and miR-125b-5p-mediated TGF-{3 receptor inhibition,
suggesting that UCB-MSC-exo might represent a novel strategy to prevent scar formation during wound healing.
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Background

Scar formation is a general consequence of wound heal-
ing after skin injury in adults [1-3], leading to psycho-
logical disorders and physical deformities. As there has
not been an effective treatment until now, preventing or
reducing scar formation is a significant problem in re-
generative esthetics that urgently needs to be addressed.
Pathogenesis of scar formation is assumed to occur via
the recruitment and maintained differentiation of myofi-
broblasts, leading to excessive deposition of connective
tissue (mainly collagen) [3, 4]. The differentiation of der-
mal fibroblasts in situ is the primary source of myofibro-
blasts, usually initiated by the TGF-f signaling pathway
[4, 5]. In the process of wound healing, activated fibro-
blast proliferation and macrophage infiltration produce
excess TGF-f [4, 5]. TGF-B binds to the TGF-f receptor
(TGFBR) of fibroblasts, thus activating downstream sig-
naling of TGF-P to induce myofibroblast differentiation,
which further leads to the expression and extension of
collagen fibers [2, 3, 6, 7]. In this regard, interfering with
the TGF-p signaling pathway might inhibit myofibro-
blast differentiation from reducing scar formation.

Of all available treatments for the anti-scar formation
and pro-ideal regeneration of skin appendages, mesen-
chymal stem cell (MSC) infusion has been considered a
promising alternative strategy in numerous trials and
clinical practices in the past few decades [8-10]. MSCs
have several advantages that are essential for tissue re-
pair, including relatively easy expansion in vitro, migra-
tion to the injured site, and differentiation into specific
cell types required for tissue repair [9, 11-13]. Among
the primary MSC sources that might be used for wound
healing and regeneration of injured skin are adult-
derived MSCs [9], fetal-derived MSCs [14], embryonic
stem cells (ESCs) [15], and induced pluripotent stem
cells [16]. Human umbilical cord blood-derived MSCs
(UCB-MSCs) have been used to improve wound healing,
and it has been reported that they could accelerate
wound closure of diabetic wounds and promote the ex-
pression of anti-scarring factors in mechanical wounds,
as well as stimulate the rejuvenation of human skin [17—
21]. Compared with adult-derived MSCs, UCB-MSCs
exhibit apparent advantages, including better-
documented self-renewal, more multipotent differenti-
ation properties, and lower immunogenicity [22, 23].
Compared with ESCs, UCB-MSCs are more easily

obtained, as there are fewer related ethical issues [23].
However, the definite role of UCB-MSCs in vivo and
their repair mechanisms in alleviating scar formation
have not yet been fully elucidated.

The effect of MSCs in stem cell-based therapy is
mainly via its secretion of paracrine pro-regenerative
factors, including exosomes [9, 10, 24, 25]. Exosomes
carry various cargo molecules, such as functional pro-
teins, miRNAs, and signal lipids [26, 27], which can me-
diate cell-to-cell communication by initiating a series of
biological responses in recipient cells. After these exo-
somes are secreted, the recipient cells take up these exo-
somes through phagocytosis/endocytosis or fusion,
thereby receiving cargo.

In this study, we evaluated the effects of UCB-MSCs
and UCB-MSC-derived exosomes (UCB-MSC-exo) on
scar formation during wound healing in rats. We re-
vealed that the therapeutic capacity of UCB-MSCs on
wound healing could be achieved by exosomes. Add-
itionally, we identified two specific miRNAs carried by
UCB-MSC-exo as essential factors that inhibit fibroblast
differentiation into myofibroblasts via inhibition of TGF-
B receptor activity. The results suggest that UCB-MSC-
exo might represent a novel strategy to prevent scar for-
mation and improve skin appendage regeneration during
wound healing in the clinic.

Materials and methods

Cell culture and characterization

Human UCB-MSCs were a gift from the Bethune First
Hospital of Jilin University and were used with informed
consent. The Medical Ethics Committee of Hospital of
Stomatology of Jilin University approved the research
about UCB-MSCs (2020[42]). The protocol for UCB-
MSC isolation was processed as previously described
[18]; briefly, umbilical cord blood was collected from de-
livered placentas using 50 ml syringes (contained 1000 U
of heparin) and then diluted with PBS. Mononuclear
cells were isolated by density gradient centrifugation
using Ficoll-Hypaque-Plus solution (Solarbio, China).
Freshly isolated mononuclear cells were suspended in
Dulbecco’s modified Eagle’s medium (Hyclone, USA)
containing 10% fetal bovine serum (Hyclone, USA) and
1% penicillin/streptomycin (Biological Industries, Israel)
and incubated at 37°C in 5% CO,. We continued the
cultures for another 7 days after fibroblast-like cells
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appeared on the bottom of the flasks. Then, these
fibroblast-like cells were collected and expanded. The
second to fifth passage cells were used for experiments.

UCB-MSCs were characterized by surface marker pro-
filing (CD73, CD90, and CD105) via flow cytometry
(FCM) and immunofluorescence (IF) staining, as previ-
ously described [28]. For FCM, the cell suspension was
stained with primary antibodies, washed three times with
PBS, stained with secondary antibodies, washed three
times with PBS, and quantitatively analyzed using a BD
FACSCelesta (BD Biosciences, USA). Table S1 lists the
antibodies used. The process of IF staining is described
in the following section. The multipotency of UCB-
MSCs was detected via inducing adipogenic (Oil Red-O
staining), osteogenic (Alizarin Red S staining), and chon-
drogenic (Alizarin Blue staining) differentiation.

The human dermal fibroblasts (HDFs) and epidermal
stem cells (EPSCs) were purchased commercially (Ding-
guo, Beijing, China). The cell lines used in this study
were all cultured in DMEM containing 10% fetal bovine
serum and 1% penicillin/streptomycin and incubated at
37°C in 5% CO,.

Exosome preparation

UCB-MSCs (passage 4 to passage 8) were seeded into
T175-cell culture flasks and allowed to reach 70% to
80% confluence. The media was then replaced by a
serum-free medium (Hyclone, USA), and the cells were
cultured for another 48 h. Next, the conditioned medium
was collected and centrifuged to remove the dead cells
and debris, and then, collected exosomes were washed
three times and stored at - 80°C (Fig. 1A). UCB-MSCs
were characterized using a NanoSight NS300 (Malvern
Instruments, UK), transmission electron microscopy,
and Western blot of CD9 and TSG101 [9].

In vivo wound generation and UCB-MSC-exo treatment

Female SD rats (6—8 weeks old; 220-250g) were pur-
chased from Liaoning Changsheng Biotechnology Co.,
Ltd. (Benxi, China). The animal experiment protocol
and procedure were approved by the Animal Experiment
Ethics Committee of Jilin University (approval no.:
S$Y202008010). Rats were randomly assigned to UCB-
MSC, UCB-MSC-exo, or control groups (10 rats/group).
All rats were anesthetized by 3% pentobarbital sodium
(30 mg/kg) before surgery. A 12-mm diameter excisional
wound was created on the dorsal region under sterile
surgical conditions. The rats were treated with UCB-
MSCs (2 x 10° cells) or UCB-MSC-exo (20 ug) by tail
vein injection (100 pl). Rats in the control group were
injected with an equivalent volume of PBS. The above
treatment was conducted weekly. The extent of wound
healing was photographed every week. Rats were sacri-
ficed 2 or 4 weeks after surgery, and the healing skin
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tissue was collected for histological and quantitative
real-time polymerase chain reaction (QRT-PCR) analysis.

Cell counting kit-8 (CCK8) assay

EPSCs or HDFs were seeded into 96-well plates at a
density of 10,000 cells/well (100 pul) and cultured for 24
h, and then UCB-MSC-exo (25 ng/ml) were added to the
culture for another 24 h. To each well was added 10 pl
CCK-8 solution (MedChemExpress, Shanghai, China),
and then cultures were incubated for 4 h in an incubator.
Absorbance was measured at 450 nm using a microplate
reader.

Cell scratch assay

EPSCs or HDFs were seeded into 24-well plates at a
density of 50,000 cells/well (500 pul) and cultured for 24
h. The cell monolayer was scraped along a straight line
with a P-200 pipette tip to form a “scratch”. The debris
was removed, the edge of the scratch was smoothed by
washing the cells with PBS, and then the medium was
replaced with 200 pl of medium containing 25 ng/ml
UCB-MSC-exo.

In vitro myofibroblast differentiation induction and UCB-
MSC-exo/miRNA-mimic treatment

HDFs were seeded into 24-well plates at a density of
50,000 cells/well (500 pl) combined with TGE-B1 (25 ng/
ml) and cultured for 48 h to induce myofibroblast differ-
entiation. At the same time, UCB-MSC-exo (25 ng/ml)
or miRNA mimics (50 nM) were added to each well.
The expression of Collagen I, «a-SMA, TGFBRI, and
TGFBR2 was measured by IF staining and qRT-PCR
analysis.

Histopathological analysis

Healing skin was fixed with 4% paraformaldehyde solu-
tion, dehydrated by graded ethanol, and embedded in
paraffin. The sections were cut into slices and stained
with hematoxylin and eosin (H&E) or Masson and
photographed under a microscope (Precipoint MS,
Germany). The numbers of skin appendages and the
levels of collagen fibers (blue) and myofibers (red) in the
wounded area were calculated with Image-Pro Plus soft-
ware. For IF staining, rehydrated antigen-repaired paraf-
fin sections or fixed cells were incubated with primary
antibodies and conjugated secondary antibodies, stained
with  4',6-diamidino-2-phenylindole  dihydrochloride
(DAPI) (Beyotime, China) and photographed under a
microscope (VOS M5000, USA). Table S1 lists the anti-
bodies used.

qRT-PCR
Total RNA was isolated from healing skin, HDFs, and
UCB-MSC-exo using TRIzol reagent (Sangon Biotech
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Co., Ltd.,, Shanghai, China). cDNA was synthesized
from total RNA wusing the c¢cDNA Synthesis Kit
(Takara, Japan). qRT-PCR analysis was performed
using SYBR Green Master (Roche, Switzerland) in an
ABI 9700 Detection System (Thermo Fisher Scientific,
MA, USA). GAPDH mRNA was used as an internal
control. qRT-PCR for miRNA was performed using
the Bulge-Loop™ miRNA qRT-PCR Starter Kit
(Ribobio, China) according to the manufacturer’s in-
structions. U6 small RNA was used as an internal
control. Table S2 lists the primers used. All experi-
ments were repeated in triplicate.

Statistical analysis

All quantitative data are shown as means + SD (1 > 3).
Statistical analysis was conducted using Graphpad Prism
software, and significant differences were evaluated using
a one-way analysis of variance; p < 0.05 was considered
statistically significant.

Results

UCB-MSC-exo accelerate wound closure and suppresses
scar formation in full-thickness skin-wounded rats
UCB-MSCs expressed the putative mesenchymal
markers CD73, CD90, and CD105 and could be induced
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to adipogenic, osteogenic, and chondrogenic differenti-
ation (Figure S1). These results confirmed the pheno-
typic characterization of cells as MSCs. UCB-MSC-exo
were prepared from UCB-MSC-conditioned medium by
gradient centrifugation (Fig. 1A). It was characterized by
a discoid morphology (Fig. 1B) with a diameter of 30—
150 nm (Fig. 1C) determined by transmission electron
microscopy and NanoSight. The result of Western blot
showed that UCB-MSC-exo expressed exosomal
markers CD9 and TSG101 (Fig. 1D).

The therapeutic potentials of UCB-MSCs and UCB-
MSC-exo were compared in full-thickness skin-wounded
rats (Fig. 1E). As expected, there were no significant dif-
ferences in wound closure and scar area between the
UCB-MSC-exo and UCB-MSC groups; however, UCB-
MSC-exo and UCB-MSC  significantly accelerated
wound closure and smoothed wound edges, resulting in
a smaller scar size than in the control group (Fig. 1F, G).
These results suggest that UCB-MSCs accelerate wound
closure and suppress scar formation, which may func-
tion via UCB-MSC-exo.

UCB-MSC-exo improve regeneration and regulates
collagen distribution in wound healing of rats
Pathological analysis via H&E staining showed that heal-
ing skin in the UCB-MSC and the UCB-MSC-exo
groups exhibited more appendages than that in the con-
trol group. Interestingly, the skin in the UCB-MSC
group exhibited significantly (p < 0.01) more appendages
than that in the UCB-MSC-exo group after 2 weeks of
treatment; however, there were no significant differences
after 4 weeks of treatment (Fig. 2A—C). There were also
significantly (p <0.05) fewer collagen fibers (blue) and
myofibers (red) in both the UCB-MSC and the UCB-
MSC-exo groups than in the control group by Masson
staining (Fig. 2A, C, D). Moreover, the ratios of collagen
fibers to myofibers among the groups displayed different
trends after 2 and 4 weeks of treatment (Fig. 2E); the ra-
tios in the UCB-MSC and UCB-MSC-exo groups were
lower than those of the control group after 2 weeks of
treatment and higher after 4 weeks of treatment.

Furthermore, we evaluated the effects of UCB-MSC-
exo on nerve and vessel regeneration in healing skin.
IF staining results showed that, after 2 or 4 weeks of
treatment, the skin in the UCB-MSC-exo and UCB-
MSC groups exhibited significantly more vessels
(CD31") and nerves (nestin®) than that in the control
group (Fig. 2F). These results suggest that UCB-MSCs
and UCB-MSC-exo have similar effects on skin regen-
eration, promoting the regeneration of skin append-
ages, vessels, and nerves, decreasing fiber formation,
and regulating the ratio of collagen fiber to myofiber
in the wound healing process.

Page 5 of 14

UCB-MSC-exo promote the proliferation and migration of
skin cells in vivo and in vitro

To investigate the mechanism by which UCB-MSC-exo
accelerate wound closure, we examined the effects of
UCB-MSC-exo on the proliferation and migration of
skin cells in vivo and in vitro (Fig. 3). The results showed
that the cell division in healing skin in the UCB-MSC-
exo group was higher than that in the control group
(Fig. 3A). Additionally, UCB-MSC-exo also promoted
the proliferation and migration of EPSCs and HDFs
in vitro (Fig. 3B—C). These results suggest that UCB-
MSC-exo accelerate wound closure, which can occur, in
part, via the promotion of the proliferation and migra-
tion of skin cells during wound healing.

UCB-MSC-exo suppress scar formation by inhibiting
myofibroblast differentiation

a-SMA and collagen I are critical markers of myofibro-
blasts and scar tissue. The results showed that a-SMA
and collagen I were highly expressed in the healing skin;
however, the expression levels were reduced by UCB-
MSC-exo treatment (Fig. 4A—C). To further verify these
results, HDFs were cultured in the presence of TGF-1
to induce myofibroblast differentiation in vitro, and
UCB-MSC-exo (25ng/ml) were used to intervene. Ex-
pectedly, UCB-MSC-exo treatment strongly inhibited
the TGF-B1-induced high expression of a-SMA and col-
lagen I (Fig. 4D-F). These results suggest that UCB-
MSC-exo may suppress scar formation by inhibiting
myofibroblast differentiation.

UCB-MSC-exo-derived miRNAs inhibit myofibroblast
differentiation via targeting TGF-f3 receptor
miRNAs are the main components of exosomal func-
tional RNA [9, 10]. We analyzed the miRNAs in UCB-
MSCs as reported by Meng et al. [28] (Fig. 5A). To fur-
ther reveal the possible roles of these miRNAs, we used
Gene Ontology analysis to predict their function. We
demonstrated that these miRNAs were positively corre-
lated with the TGF-f signaling pathway (Fig. 5B). Gener-
ally, MSC- and their exosome-derived miRNAs were
highly correlated; thus, we detected the levels of miR-
NAs in UCB-MSC-exo, which were similarly highly
expressed in UCB-MSCs. We found that miR-21-5p,
miR-125b-5p, miR-100-5p, miR-31-5p, and let-7a-5p
were highly expressed in UCB-MSC-exo (Fig. 5C).
Moreover, we predicted the target genes of these miR-
NAs using TargetScan (http://www.targetscan.org/) and
found that miR-21-5p and miR-125b-5p were predicted
to target TGFBR2 and TGFBRI mRNAs directly, re-
spectively (Fig. 6A).

miRNA mimics were added into the HDF (+TGF-$1)
culture system to determine whether or not these miR-
NAs could affect the expression of TGFBR2 and
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TGFBR1 and thus verify the roles of miR-21-5p and
miR-125b-5p in UCB-MSC-exo function. The results
showed that miR-21-5p and miR-125b-5p significantly
inhibited TGFBR2 and TGFBRI, respectively, and de-
creased the expression of a-SMA (Fig. 6B—G). Moreover,
the expression levels of TGFBR2 and TGFBRI in the
healing skin of rats were also reduced by UCB-MSC-exo
treatment (Fig. 7). These results suggest that UCB-MSC-
exo suppress myofibroblast differentiation, which can be,
in part, via the expression of specific miRNAs miR-21-
5p, targeting TGFBR2, and miR-125b-5p, targeting
TGFBRI.

Discussion
Adult wound healing generally comprises scar repair,
which may be the result of excessive myofibroblast

formation [1, 2]. MSCs are a promising technique to ac-
celerate wound closure and limit scarring in wound
healing [9, 14—16]. UCB-MSCs have been used to accel-
erate the closure of diabetic wounds and have been re-
ported to promote the expression of anti-scarring factors
[17-21]. However, few attempts have been made to
study the effects of UCB-MSCs on scar formation. More
and more studies have shown that MSCs play a role
mainly through immune regulation and paracrine pro-
cesses, rather than directly differentiating [9, 10, 14, 29].
UCB-MSC-exo are the primary source of UCB-MSC
paracrine factors; it remains unclear whether these are
the main effectors of UCB-MSC function, especially as
the roles of UCB-MSC-exo-derived “cargo” is unknown.
For the first time, the present study has demonstrated
that UCB-MSCs accelerate wound closure and suppress
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scar formation in wound healing, which can be, in part,
via UCB-MSC-exo. We also identified two specific miR-
NAs carried by UCB-MSC-exo that could inhibit the sig-
naling activities of TGF-P receptors, thereby inhibiting
myofibroblast differentiation. To a certain extent, our re-
search proposes a new strategy for the clinical applica-
tion of UCB-MSCs to prevent scar formation.

In wound healing, MSC-based therapy is a promising
strategy to enhance re-epithelialization, inhibit fibrotic
remodeling, promote regeneration of skin appendages,
increase angiogenesis, stimulate endogenous stem cell
recruitment, and modulate inflammation [9, 10, 14—16,
29]. Additionally, UCB-MSCs might represent a more
promising option that has the potential to overcome sev-
eral limitations, including greater expansion capacity
with differentiation potential, lower immunogenicity
compared with adult-derived MSCs, and easier obtain-
ment compared to ESCs, due to related ethical issues
(22, 23].

UCB-MSCs have been wused to enhance re-
epithelialization and improve the quality of wound heal-
ing. Jae-A Jung et al. [19] and N Cil et al. [20] respect-
ively reported that UCB-MSCs promote diabetic wound
healing by increasing collagen synthesis and neovascu-
larization. Moreover, Hanako Doi et al. [18] found that
UCB-MSCs express lower levels of IL-1 pro-
inflammatory cytokines and higher levels of MMP1 and
PLAU ECM degradation enzymes than Wharton’s jelly
MSCs, suggesting that UCB-MSCs were more likely to
favor scarless wound healing. However, they failed to
significantly reduce scar formation following direct in-
jection of UCB-MSCs into full-thickness skin-wounded
nude mice [18]. In the present study, we evaluated the
essential roles of UCB-MSCs in the wound healing of
rats. We observed the phenomena of earlier wound clos-
ure, smaller scar formation, and more skin appendages,
nerves, and vessels in healing skin in the UCB-MSC
group compared with those in the control group.
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differentiation. Some cells were also treated with UCB-MSC-exo (25 ng/ml). D-F IF staining and gRT-PCR analysis of a-SMA and collagen | in HDFs;

Myofibroblast differentiation and scar formation were
also inhibited by UCB-MSC treatment, as indicated by
the decreased expressions of a-SMA and collagen I in
the healing skin of rats. Classically, a-SMA is considered
a marker of myofibroblast differentiation [30, 31], and
collagen I is considered the main component of scar tis-
sue [2, 3]. The over-differentiation of myofibroblasts and
the continuous expression of collagen I is a fundamental
cause of scar formation [2, 3]; thus, intervention is re-
quired during wound healing to prevent myofibroblast
accumulation rather than taking remedial measures after
scar formation. This study observed different in vivo ex-
perimental results from those observed by Hanako Doi
et al. [18]. This might be due to differences in UCB-
MSC treatment methods (tail vein injection versus local
injection around the wound), suggesting that the dis-
eased microenvironment is not conducive to MSC

survival and retention, limiting treatment efficacy. We
also observed that UCB-MSCs could inhibit collagen de-
position, which is counter to the results of Jae-A Jung
et al. [19], perhaps due to the different animal wound
models used (mechanical wounds versus diabetic
wounds), as diabetic wound healing is different from
mechanical wound healing, it may be in the early stage
of healing for a long time. It is known that MSCs can
regulate collagen remodeling to inhibit scar hyperplasia.
In an early stage, MSCs promote collagen remodeling
through the synthesis of types I and III, whereas they re-
duce scarring in the late stage by inhibiting collagen for-
mation [32]. This may suggest that UCB-MSCs have a
flexible targeting effect in different pathologies, which
may increase the scope of its application.

It is currently believed that MSCs play a therapeutic
role in vivo, mainly through paracrine signaling [9, 10,
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14, 29]. MSCs can release biologically active molecules
to affect the proliferation, migration, and survival of re-
ceptor cells. Our recent studies have reported that
EPSCs [9] and amniotic fluid stem cells [10] promote
skin regeneration via secreted exosomes. In this study,
we also evaluated the essential roles of UCB-MSC-exo in
the wound healing of rats and found that the effect of
UCB-MSC-exo was similar to that of UCB-MSCs, sug-
gesting that the regenerative healing effect of UCB-MSC
on wound healing may be achieved via exosome secre-
tion. We tracked UCB-MSC in vivo and detected

whether they exist on the wounded site 1 week and 2
weeks after transplantation. Interestingly, we found that
UCB-MSC aggregation was detected at the wounded site
1 week after cell implantation. However, there are in-
deed very few UCB-MSCs after cell implantation after 2
weeks (data not shown), suggesting that few UCB-MSCs
become permanently engrafted within the repaired tis-
sue. Besides the regenerative repair of skin wounds to
achieve scar-free healing, rapid wound closure is also
critical because wound closure is essential to block ex-
ternal environmental interference. Although the
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contractility of myofibroblasts is beneficial to wound
closure in the early stage, the inhibition of UCB-MSC-
exo on myofibroblast differentiation does not necessarily
lead to a slowdown in wound healing. We found that

UCB-MSCs can promote the proliferation and migration
of skin cells, including EPSCs and HDFs, which may be
essential for accelerating wound closure; this is similar
to the results reported by Yoon-jin Kim et al. [19]. UCB-
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MSCs and UCB-MSC-exo have similar repair effects
on wound healing; however, we believe that UCB-
MSC-exo may have other advantages, such as over-
coming the immune and tumorigenic issues caused by
allotransplantation.

Exosomes generally play a crucial role in cell commu-
nication, transmitting information to neighboring cells
through their “cargo,” including proteins, DNA, mRNAs
and miRNAs [26, 27, 33]. The therapeutic potential of
exosomes depends on the composition of the “cargo”
they carry [33]. It has been reported that miRNAs are
generally abundant in exosomes [9, 10]; these miRNAs
regulate various signaling pathways in the receptor cells,
including cell trafficking, apoptosis, angiogenesis, and
proteolysis via targeting transcription factors and genes
[33]. We analyzed the miRNAs in UCB-MSCs as re-
ported by Meng et al. [28] and found that these miRNAs

were positively correlated with the TGEF-B signaling
pathway. Generally, the MSC-derived miRNAs and their
exosome-derived miRNAs are highly correlated, which is
confirmed by our results. We found that the effect of
anti-myofibroblast differentiation may result from a pair
of TGF-B receptor-targeting miRNAs, miR-21-5p, and
miR-125b-5p. miR-125b-5p has been reported to sup-
press liver fibrosis in non-alcoholic fatty liver disease by
inhibiting the RhoA signaling pathway [34]. In our study,
miR-125b-5p also suppressed fibrosis scarring by inhibit-
ing TGFBRI expression. Additionally, miR-21-5p could
inhibit TGFBR2 expression in the TGF-f signaling path-
way, thereby suppressing myofibroblast differentiation,
in contrast to other reports, in which miR-21-5p pro-
moted gastric cancer and kidney fibrosis by upregulating
Smad7 in the TGF-f signaling pathway [35, 36]. Gener-
allyy, —miRNAs can target different —mRNAs
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simultaneously. Therefore, we believe that miR-21-5p
may be a double-edged sword regulating TGF-f signal-
ing; its function may vary according to the cell state and
the specific molecular network involved. Based on the
above results, we suggest that UCB-MSC-exo miRNAs
may be important regulators of the TGF-B signaling
pathway by inhibiting myofibroblast differentiation dur-
ing wound healing in the skin.

Conclusions

The present study revealed that UCB-MSCs could
stimulate regenerative wound healing via their exosomes.
Through exosome-mediated intercellular transfer, miR-
21-5p and miR-125b-5p derived from UCB-MSC-exo
inhibited TGFBR2 and TGFBRI, respectively, thereby
inhibiting the TGEF-B signaling pathway to suppress
myofibroblast differentiation (Fig. 8). As an alternative to
cell therapy, UCB-MSC-exo might represent a novel
strategy to prevent scar formation during wound healing
in the clinic.
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