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Abstract

“differentiation” in tumorigenesis remain elusive.

Introduction: Cancer stem cells (CSCs) possess characteristics associated with normal stem cells, specifically the
abilities to renew themselves and to give rise to all cell types (differentiation). It is assumed that induction of
differentiation in CSCs would reduce their ability to form tumors. What triggers CSC differentiation and the role of

Methods: Glioma stem cell (GSC) lines and subcutaneous as well as orthotopic xenografts established from fresh
surgical specimens of glioblastoma multiforme were used.

Results: Exposure of GSCs to serum activates mitochondrial respiration and causes an increase in mitochondrial
reactive oxygen species (ROS) as well as oxidative stress responses, leading to the appearance of differentiation
morphology and a deceased expression of CSC markers. Chemical perturbation of the mitochondrial electron
transport chain causes ROS increase and further downregulation of stem cell markers, while antioxidant N-acetyl-
cysteine reduces ROS and suppresses the differentiation of GSCs. Surprisingly, the serum-induced differentiated
GSCs exhibit greater ability to form tumor in both orthotopic and subcutaneous xenograft models, which can be
suppressed by N-acetyl-cysteine. Mitochondrial ROS from the serum-stimulated cells triggered the activation of
nuclear factor-kappa-B (NFkB) pathway, which is a potential mechanism for the promotion of tumorigenesis.

Conclusion: This study suggests that ROS generated from active mitochondrial respiration in the presence of
serum is critical in CSCs activation, which promotes tumor development in vivo.

Introduction

Recent studies indicate the existence of cancer stem cells
(CSCs) in various types of cancers, including leukemia
and solid tumors [1, 2]. Similar to normal stem cells,
CSCs are able to self-renew and to generate the down-
stream progeny. Although CSCs constitute a very small
fraction of the total cancer cells in the tumor bulk, this
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special subpopulation of malignant cells is thought to
play a major role in cancer initiation and development
and may be a key cause of resistance to chemotherapy
and radiotherapy, leading to persistence of residual dis-
ease and cancer recurrence [3]. This phenomenon is due
in part to the unique biological properties of CSCs, in-
cluding high capacity of DNA repair, high expression of
certain ATP-dependent drug exporting pumps, high
levels of glutathione synthesis, and high expression of
cell survival factors [4—6]. A detailed understanding of
factors that affect the ability of CSCs to maintain their
self-renewal and promote disease progression is import-
ant for developing new strategies to effectively kill CSCs.
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Mounting evidence suggests that the tissue microenvir-
onment may profoundly affect the biological properties and
the fates of stem cells and CSCs [7]. In vivo, normal stem
cells or CSCs reside in special tissue locations known as
stem cell niches, which are thought to provide the micro-
environment important for the maintenance of their stem-
ness [8]. Although the exact nature of the stem cell niches
remains to be defined, it is known that low oxygen and
proper levels of certain growth factors such as epidermal
growth factor (EGF) and basic fibroblast growth factor
(bFGF) are important to maintain the stemness of the cells
[9]. Brain CSCs have been found in perivascular niches
[8, 10]. Increasing the endothelial cells or blood vessels in
orthotopic brain tumor xenografts enhances self-renewal of
CSCs and accelerates the initiation and growth of tumors
[10]. However, exposure of CSCs to serum in vitro usually
induces differentiation and presumably may compromise
their self-renewal ability [11, 12]. CSCs cultured in serum-
free media seem to closely mimic the genotype and gene
expression profiles of their primary tumors iz vivo than do
CSCs cultured in standard serum-containing medium [9].
Although the ability of serum to induce apparent differenti-
ation of CSCs has been known for a long time, the under-
lying mechanisms remain largely unknown. It is also
unclear whether exposure of CSCs to serum negatively or
positively affects their ability to form tumor in vivo.

Reactive oxygen species (ROS) are known to play a
role in affecting the fates of normal stem cells [13, 14].
Elevated ROS has been observed to induce differenti-
ation of embryonic stem cells into cardiovascular and
mesendodermal cells [7, 15]. The neural stem cells and
hematopoietic stem cells contain lower levels of ROS
than their mature progeny, whereas increased ROS levels
are associated with lowered self-renewal capacity, in-
creased cell cycling, and reduced viability [16—18]. Previ-
ous study showed that breast CSCs might have high
ROS-scavenging capacity and contain lower cellular
ROS compared with the corresponding non-tumorigenic
cells [6]. A recent study suggests that ROS might affect
the differentiation state of CSC by activation of p38
MAPK [19]. However, the role of ROS in serum-induce
differentiation of CSCs and their physiological relevance
in tumor development in vivo remain largely unclear.
The present study was designed to investigate these im-
portant questions. We showed that serum could activate
mitochondrial respiration and promote generation of
mitochondrial ROS, leading to apparent loss of certain
stem cell markers and lower ability to form neuro-
spheres. However, despite these seemingly differentiation
phenotypes in vitro, the serum-induced glioma stem cells
exhibited greater capacity to form tumor in vivo. Our
study revealed a novel role of mitochondrial ROS in
serum activation of CSCs to produce the downstream pro-
geny and promote tumor development in vivo. The
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regulation of this redox signaling mechanism has potential
implications in developing new strategies to target CSCs.

Methods

Cell lines and cell culture

GSC11, GSC23, and GBM3752 cell lines were originally
established from fresh surgical specimens of glioblastoma
multiforme at the University of Texas MD Anderson Cancer
Center [20, 21]. GSC11 and GSC23 were maintained in
Dulbecco’s modified Eagle’s medium with nutrient mixture
F-12 (DMEM/F12) (Mediatech Inc.,, Manassas, VA, USA)
supplemented with B27 (Invitrogen, Carlsbad, CA, USA),
20 ng/ml epidermal growth factor (Miltenyi Biotec, Auburn,
CA, USA), 20 ng/ml of basic fibroblast growth factor
(Miltenyi Biotec), and 2 mM L-glutamine (Mediatech Inc.)
without serum (designated as “stem cell medium”). Cells
were cultured in a humidified incubator maintained at 37 °C
with 5 % CO,. GBM3752 cells were obtained from GBM pa-
tients undergoing surgery at Texas Children’s Hospital and
maintained in severe combined immunodeficiency (SCID)
mice orthotopically [22]. The cells were freshly isolated from
the tumors and cultured in stem cell medium for in vitro
study within the first five passages. For serum treatment, cells
were cultured in the stem cell medium with 5 % fetal bovine
serum (FBS) with or without various concentrations of N-
acetyl-cysteine (NAC) (Sigma-Aldrich, St. Louis, MO, USA).

RNA isolation, RNA microarray analyses, and reverse
transcription-polymerase chain reaction

GSC11 and GSC23 cells were cultured in stem cell medium
with or without serum for 1, 3, or 7 days in triplicate. Total
RNA was isolated from the cells by using an RNeasy Mini
kit (Qiagen Inc., Valencia, CA, USA). Sample labeling was
performed with an RNA amplification kit in accordance
with the conditions recommended by the manufacturer
(Applied Biosystems, Foster City, CA, USA). Total RNA
was reverse-transcribed by using a complementary DNA
(cDNA) synthesis kit (Fermentas Inc., Glen Burnie, MD,
USA). The quantitative polymerase chain reaction analyses
were carried out in a 25-ul reaction mixture that contained
1 pl cDNA, 0.1 pg oligonucleotide primer pairs, 12.5 pl
SYBR Green Mix (Invitrogen), and diethylpyrocarbonate-
treated water. Human HT-12v3 expression beadchips
containing 48,000 probes of 25,000 annotated genes were
obtained from Ilumina Inc. (San Diego, CA, USA). The
gene expression microarray analysis was performed at the
System Biology Department of the UT MD Anderson
Cancer Center. Total RNA was extracted from GSC11 cells
and used for labeling and hybridization to human expres-
sion beadchips in accordance with the protocols of the
manufacturer. All experiments were performed in triplicate.
Primary microarray data in this study are available in the
National Cancer for Biotechnology Information Gene
Expression Omnibus (GEO) database (GSE28220). The
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following primer sets were used for quantitative reverse
transcription-polymerase chain reaction (RT-PCR) analysis:
SOX2-sense, 5'-GCCTGGGCGCCGAGTGGA-3"; SOX2-
antisense, 5-GGGCGAGCCGTTCATGTAGGTCTG-3");
Olig2-sense, 5-TGCGCAAGCTTTCCAAGA-3’; Olig2-
antisense, 5'-CAGCGAGTTGGTGAGCATGA-3".

Flow cytometric analyses

Cells were dissociated into single-cell suspension by
using accutase reagents (Sigma-Aldrich), stained with
allophycocyanin (APC)-conjugated CD133 antibody
(clone AC133 from MACS) or the control APC-IgG2b
antibody (MACS) by using the conditions recom-
mended by the manufacturer. APC fluorescence was
quantitated by flow cytometry analysis. To measure
intracellular ROS, cells were collected and dissociated
into single-cell suspension by accutase, washed with
phosphate-buffered saline (PBS) once, and resuspended
in pre-warmed PBS containing freshly prepared CM-
H2DCFDA (1 uM) or MitoSOX-Red (5 uM; Molecular
Probes, Eugene, OR, USA). After incubation at 37 °C
for 30 min (H2DCFDA) or 15 min (MitoSOX-Red), the
cells were washed with PBS twice and then subjected to
flow cytometric analyses.

Immunoblots

Cultured cells were washed with cold PBS before
homogenization in lysate buffer. Whole cell lysate (20 pg
protein/sample) was used in Western blot analysis. Cell ly-
sates were separated by electrophoresis on 10-12 % so-
dium dodecyl sulfate polyacrylamide gel electrophoresis
and transferred to nitrocellulose membranes. After block-
ing with 5 % non-fat milk/PBS with Tween 20 for 1 h, the
membranes were incubated at 4 °C overnight with primary
antibodies, including mouse anti-human CD133 (Miltenyi
Biotec), rabbit anti-human SOX2 (Cell Signaling Technol-
ogy Inc.,, Danvers, MA, USA), rabbit anti-human Olig2
(Abcam, Cambridge, MA, USA), rabbit anti-human
Catalase (EMD Chemicals, Gibbstown, NJ, USA), sheep
anti-human SOD1 (EMD Chemicals), rabbit anti-human
SOD2 (Santa Cruz Biotechnology Inc., Santa Cruz, CA,
USA), and anti-mouse total OXPHOS (Abcam). The
Western blot signals were detected with horseradish
peroxidase-conjugated secondary antibodies. The mem-
branes were developed by using a Pierce Supersignal West
Pico Chemiluminescent Substrate (Fisher Scientific Inc.,
Pittsburgh, PA, USA).

Immunofluorescence staining

Cells were fixed in 4 % formaldehyde, washed in PBS,
and permeabilized for the analysis of intracellular
markers (20 min, 0.25 % Triton X-100; Sigma-Aldrich).
The monolayers were then incubated with a blocking so-
lution (PBS with 5 % FBS) (45 min, room temperature),
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followed by incubation (overnight at 4 °C) with the primary
antibodies: anti-glial fibrillary acidic protein (anti-GFAP)
(Miltenyi Biotec), anti-B-III tubulin (Abcam), anti-Nestin
(Abcam), and anti-O4 (Miltenyi Biotec). After extensive
washing in PBS, a second incubation (1 h; 37 °C) with
Alexa Fluor-488- or Alexa Fluor-547-specific anti-mouse
or anti-rabbit secondary antibodies (all from Invitrogen)
was performed. Cell nuclei were stained with 4',6-diami-
dino-2-phenylindole (DAPI) (Sigma-Aldrich). Florescence
labeling was observed by using a fluorescent microscope
(Olympus, Tokyo, Japan).

Oxygen consumption assay

Samples were dissociated into singles cells, washed
with PBS once, and suspended at 4 to approximately
10 million cells per milliliter in stem cell medium.
Oxygen consumption was measured in 1-ml medium
by using Oxytherm equipped with a Clark-type elec-
trode (Hansatech Instruments Ltd, Norfolk, UK) as de-
scribed previously [23].

Mouse xenografts

Subcutaneous xenografts: GSC11 cells cultured under
various conditions (stem cell medium without FBS, with
5 % FBS, or with FBS and 20 mM NAC for 7 days) were
collected, treated with accutase to make single-cell sus-
pension, and inoculated into the right flank of nude mice
(2x 10° cells per mouse). The mice were euthanized
when the tumor diameter was greater than 1.5 cm. For
orthotopic xenograft inoculation, GBM3752 cells were
first cultured in stem cell medium with or without
serum (5 % FBS). The cells were maintained in vitro
under these two conditions for 60 passages. Cells were
collected and inoculated intracranially into the brains of
SCID mice (1 x 10* cells per mouse). The mice were eu-
thanized when they developed signs of neurological def-
icit and became moribund. All experiments of the
present study were performed in accordance with hu-
man protocols approved by the Institutional Review
Board at UT MD Anderson Cancer Center and Baylor
College of Medicine as well as animal protocols (ACUF
11-98-08136, AN-4548) approved by the Institutional
Animal Care and Use Committee of Baylor College of
Medicine. Signed informed consent was obtained from
all patients or their legal guardians prior to sample
acquisition.

Results and Discussion

Induction of apparent differentiation of GSCs by serum
and association with ROS stress responses

Both established glioma stem cell lines and primary gli-
oma cells isolated from fresh tumor tissues were used in
our study. GSC11 and GSC23 are two glioblastoma stem
cell lines originally derived from glioblastoma multiforme
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(GBM) surgical specimens and exhibit the in vitro stem
cell characteristics of extensive self-renewal, the ability to
differentiate to neurons and astrocytes, and the ability to
initiate tumor in vivo. GSC11 and GSC23 cells were main-
tained in serum-free stem cell culture medium as de-
scribed previously (He, 2010 #274) [24]. An orthotopic
xenograft model (GBM3752) that preserves glioblastoma
stem cells was originally established by directly inoculating
primary tumor cells from fresh GBM specimen into the
right cerebellum of SCID mice brain [22]. The xenograft
tumor cells preserve tumorigenicity, multi-lineage differen-
tiation, and CD133" expression after being subtransplanted
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in mice brain. GBM3752 cells were prepared freshly
from tumors (maintained in SCID) mice for in vitro
study. As shown in Fig. 1, GSC11 and GBM3752 cells
grew well in stem cell medium containing EGF and
bFGF without serum and exhibited the morphology of
stem-like neurospheres (Fig. 1a) with high expression of
CD133 (Fig. 1b, c). The addition of serum (% FBS) to
the culture medium caused a significant change in cell
morphology, manifested by a loss of neurosphere forma-
tion and the appearance of differentiated cells attaching
to the culture dish (Fig. 1a). This was accompanied by a
substantial decrease of CD133 expression in a time-
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Fig. 1 Effect of serum on neurosphere formation and the expression of stem cell markers in glioblastoma stem cells. a Glioblastoma stem cells
(GSC11 and GBM3752) formed neurospheres in serum-free medium supplemented with epidermal growth factor and basic fibroblast growth
factor. Exposure of the cells to serum (5 % FBS) for 3 days led to a loss of neurosphere formation in both clones. b Western blot analysis of
CD133in GSC11 cells before and after exposure to serum for 1, 3, and 7 days. ¢ Flow cytometry analysis of CD133 expression in GSC11 cells
before and after exposure to serum for 7 days. The right panel shows quantitation of the percentage of CD133" cells before and after GSC11 cells
were exposed to serum for 1, 3, and 7 days; *P < 0.05. d Expression of SOX2, Olig2, and NotchT mRNA in GSC11 cells before and after exposure to
serum for 3 days. Expression of mRNA was measured by quantitative reverse transcription-polymerase chain reaction. **P < 0.001. e Effect of serum
on protein expression of stem cell markers SOX2 and Olig2 and differentiation marker ANXA1. GSC11 cells were exposed to 5 % FBS for 1, 3, and 7 days
as indicated. SOX2, Olig2, ANXA1 were detected by Western blot analysis. Cont control, D day, FBS fetal bovine serum, GBM glioblastoma multiforme,
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dependent manner (Fig. 1b, c) and a decrease of Nestin
(Additional file 1: Figure S1). Quantitative RT-PCR and
Western blot analyses revealed a significant decrease in
expression of Sox2 and Olig2, two transcription factors
known to regulate neural stem cells and neural progenitor
cells (Fig. 1d, e). The expression of Notchl, a molecule
important for promoting neural stem cell function [25],
was also downregulated (Fig. 1d). In contrast, the expres-
sion of differentiation markers, including GFAP, B-III
tubulin, O4 (Additional file 1: Figure S1), and ANXAI,
were increased after serum exposure (Additional file 1:
Figure S1 and Fig. le). Similar results were observed in
the third cell line GSC23 (Additional file 1: Figure S2).
Surprisingly, this apparent differentiation induced by
serum did not result in a decrease in tumorigenesis, and
as will be described below, the glioma stem cells were
activated by serum exposure (see in vivo study below).

To investigate the molecular events and potential al-
terations in the signaling pathways of GSCs in response
to serum induction, we treated GSC11 cells with 5 %
EBS for 1, 3, and 7 days in triplicate cultures, and RNA
was isolated from each sample for determination of gene
expression profiles using microarray analyses. As shown
in Additional file 1: Figure S3A, clustering analysis of
gene expression profiles revealed that the serum-treated
GSC11 cells exhibited gene expression profiles clearly
distinct from that of the GSC11 cells cultured in serum-
free medium. There was a further shift of gene expres-
sion profiles as the time of serum exposure prolonged.
The fact that the three separated samples of the same
time point (biological triplicate) displayed similar gene
expression patterns and clustered in the same group
demonstrated the high reproducibility of this experimen-
tal system. Using the Ingenuity pathway analysis, we
found that the oxidative stress response pathway was in-
duced by serum most significantly (P =0.0005) at all
time points tested. Additional file 1: Figure S3B shows
the genes involved in oxidative stress response identified
by this analysis in GSCI11 cells. Among these genes,
SOD2, catalase, NQO1, peroxiredoxin 1, thioredoxin re-
ductase 1, and glutamate-cysteine ligase are involved in
ROS scavenging. These results suggested that the homeo-
stasis of reduction/oxidation (redox) balance might have
been disrupted in the serum-induced GSCs.

Induction of mitochondrial ROS generation in glioma
stem cells by serum through activation of electron
transport chain

The observations that exposure of GSCs to serum
caused consistent oxidative stress response in all tested
time points prompted us to explore possible changes
in cellular redox status. Since mitochondria are major
sites of ROS production, we used MitoSOX-Red to de-
tect mitochondrial superoxide (O3) and 5-(and-6)-
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chloromethyl-2,7-dichlorodihydrofluorescein  diacetate
acetyl ester (DCF-DA) to measure total cellular hydrogen
peroxide (H,O,) and other ROS. The results showed that
that serum induced a substantial increase of mitochon-
drial O; in a time-dependent manner, with an increase of
the median value from 46 units in control cells (serum-
free) to 67, 188, and 268 units on days 1, 3, and 7 after
serum exposure, respectively (Fig. 2a). Interestingly,
total cellular ROS (as measured by DCE-DA) also
showed a moderate increase, from 84 units in the con-
trol to 112, 126, and 159 units on days 1, 3, and 7, re-
spectively (Fig. 2a). Similar results were observed in
another glioblastoma stem cell line GSC23 (Additional
file 1: Figure S4). Exposure of GSC23 cells to serum led
to a 5- and 11-fold increase of mitochondrial O; on days
3 and 7, respectively, and the total cellular ROS detected
by DCE-DA also moderately increased (Additional file 1:
Figure S4A).

We then used two types of fresh glioma cells to further
confirm the above observations. First, the stem-like
GBM3752 cells [22] were obtained freshly from tumor
xenografts and divided into two portions; one portion
was cultured in serum-free stem cell medium and the
other portion was cultured in serum-containing medium.
After 7 days, the mitochondrial ROS and total cellular
ROS in each culture condition were measured by Mito-
SOX and DC-FDA. As shown in Fig. 2b, a 3-fold in-
crease in mitochondrial O; and a moderate increase
(26 %) in total cellular ROS were observed, consistent
with that seen in GSC11 and GSC23 cells. Furthermore,
this pattern of redox alterations was consistently ob-
served in primary glioma cells isolated from fresh GBM
tumor tissues (Fig. 2c and Additional file 1: Figure S4B),
suggesting that the induction of mitochondrial O; gen-
eration might be a highly consistent event in serum-
induced changes in GSCs.

To test whether the increase in mitochondrial O, and
cellular ROS induced by serum in GSCs might cause
stress response, we used Western blotting to analyze the
expression of antioxidant molecules before and after
serum exposure. As shown in Fig. 2d, there was a time-
dependent increase in expression of SOD2, a mitochon-
drial superoxide dismutase that converts O; to H,O,.
Interestingly, the cytosolic superoxide dismutase (SOD1)
did not exhibit significant change after GSC11 and
GSC23 were exposed to serum (Fig. 2d, Additional file 1:
Figure S4C), suggesting that the main source of ROS
stress might be mainly from mitochondria and was con-
sistent with the increase in mitochondrial O; shown in
Fig. 2a-c. The expression of catalase, an enzyme that
converts cellular H,O, to water and oxygen, increased
after serum incubation (Fig. 2d, Additional file 1: Figure
S4C). Cellular glutathione (GSH), a major endogenous
antioxidant, decreased after serum exposure in GSC11
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Fig. 2 Induction of mitochondrial O; generation and oxidative stress response in glioblastoma stem cells. a Effect of serum on mitochondrial O3
and total cellular ROS in GSC11 cells. Cells were incubated without or with 5 % FBS for 1, 3, or 7 days (D1, D3, D7). Mitochondrial O; was
measured by flow cytometry analysis after cells were stained with MitoSOX-Red, and total cellular ROS were detected by using CM-H2-DCFDA
staining followed by flow cytometry analysis. The numbers in parentheses indicate the median fluorescent intensity. b Effect of serum exposure
(1-7 days) on mitochondrial O; and total cellular ROS in GBM3752 cells. ¢ Effect of serum on mitochondrial O and total cellular ROS in primary
tumor cells isolated from fresh GBM tumor tissue. The freshly isolated tumor cells were divided into two portions for incubation in stem cell
medium without or with serum (5 % FBS) for 7 days, and mitochondrial O5 and total cellular ROS were then measured. The shaded curve shows
the background (Bkg) fluorescent without dye. d Western blot analysis of SOD1, SOD2, and catalase in GSC11 cells before and after exposure to
serum for 1, 3, and 7 days. e Cellular glutathione in GSC11 cells cultured in stem cell medium without or with serum for 1, 3, and 7 days. *P <
0.05. Cont control, DCF-DA 5-(and-6)-chloromethyl-2,7-dichlorodihydrofluorescein diacetate acetyl ester, FBS fetal bovine serum, GBM glioblastoma
multiforme, GSH glutathione, GSC glioma stem cell, O, superoxide, ROS reactive oxygen species, SOD cytosolic superoxide dismutase

cells (Fig. 2e) and G23 cells (Additional file 1: Figure S4D),
reflecting a consumption of this antioxidant. These data
together suggest that the increase in SOD2 expression
might be a stress response to elevated mitochondrial O3
generation induced by serum. SOD2 converted O; to
H,0,, which was then able to pass the mitochondrial
membranes to cytosol, where it was converted to O, and
H,O by catalase or neutralized by GSH, resulting in only a
moderate increase of overall cellular ROS and a decrease
in GSH.

Since mitochondrial O; is generated mainly during
respiration because of the release of electrons from com-
plexes I and III of the electron transport chain, we spec-
ulated that the increased mitochondrial O; might be a
result of active mitochondrial respiration induced by
serum and not a consequence of a slower O; elimination
since SOD2 expression was increased. To test this possi-
bility, we measured oxygen consumption in GSCs as an
indicator of mitochondrial respiration. As shown in
Fig. 3a and b, exposure of GSC11 cells to serum led to a
time-dependent increase of oxygen consumption, with
approximately a 100 % increase by day 3. Interestingly,
measurement of mitochondrial mass by using Mito-
Tracker Green as well as mitochondria electron trans-
port chain (ETC.) and the ATP synthase complex
antibodies showed that serum did not cause any signifi-
cant change in mitochondrial mass and complexes
(Fig. 3c and Additional file 1: Figure S5), suggesting that
the increase in respiration was mainly a functional activa-
tion of the pre-existing mitochondria. GBM3752 cells from
freshly dissected orthotopic tumor xenografts were cul-
tured in either serum-free medium or serum-containing
medium for 7 days. A significantly higher oxygen con-
sumption was observed in GBM3752 cells cultured with
serum (Additional file 1: Figure S6A) without any sig-
nificant changes in mitochondrial mass (Additional file 1:
Figure S6B). The increase in respiration without increase
of mitochondrial mass was also consistently observed in
GSC23 cells (Additional file 1: Figure S6C). Despite the in-
crease of mitochondrial respiration, cells at Go/G; phase
were decreased only on day 1 compared with cells cultured

in serum-free medium (Additional file 1: Figure S7). Cells
at G,/M phase were not changed.

Important role of mitochondrial ROS in mediating the
serum effect on glioma stem cells

To evaluate the role of activation of mitochondrial res-
piration and ROS generation in serum-induced apparent
differentiation of GSCs, we first used ETC. complex I in-
hibitor rotenone and complex III inhibitor antimycin to
inhibit mitochondrial respiration in glioma stem cells
and then tested whether this affected the ability of serum
to induce apparent differentiation in GSCs. The results
showed that both ETC. inhibitors disrupted mitochondrial
respiration and caused a further increase of mitochondrial
O; in the presence of serum (Fig. 3d), but neither of them
prevented the serum-induced GSCs from attaching to the
flasks and exhibiting apparent differentiation morphology
(data not shown). In fact, adding rotenone or antimycin
even caused a further decrease of CD133 at both mRNA
(Fig. 3e) and protein levels (Fig. 3f).

Considering the observations that exposure of GSCs
to serum caused an increase in mitochondrial respiration
and O; generation but inhibition of mitochondria respir-
ation by ETC. inhibitors (rotenone and antimycin) did
not prevent serum to induce changes in GSCs, we
speculate it was the increase in mitochondrial ROS gen-
eration, not the respiration per se, that plays a key role
in mediating the serum effect on GSCs. To test this pos-
sibility, we used exogenous H,O, to cause a level of in-
crease in mitochondrial ROS comparable to that caused
by serum in GSC11 and GSC23 cells (Fig. 4a, b). Inter-
estingly, a short-term treatment of GSCs with such ex-
ogenous H,O, for 6 h led to a significant decrease of
SOX2, Olig2, and CD133 mRNA expression in GSC11
cells (Fig. 4c) and GSC23 cells (Fig. 4d), similar to those
observed in serum-induced cells.

To further validate this novel role of ROS, we used
NAC, a precursor for glutathione synthesis with potent
antioxidant property to reduce ROS stress, to test whether
it could prevent the effect of serum on GSCs. As shown in
Fig. 5a, incubation of GSC11 cells with serum for 7 days
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caused a significant increase of mitochondrial O, and the
presence of NAC effectively suppressed such ROS in-
crease. Importantly, NAC also prevented serum-induced
loss of ability to form stem-like neurospheres (Fig. 5b) and
partially preserved the expression of CD133 in serum-in-
duced cells (Fig. 5c). These results suggest that the in-
crease in mitochondrial ROS generation might play an
important role in mediating the serum effect on GSCs.
Since there was a significant decrease in expression of
SOX2, Olig2, and Notchl in serum-induced GSCs, we
tested whether NAC might also suppress this serum

effect. As shown in Fig. 5d, quantitative RT-PCR re-
vealed that the addition of NAC to the serum-treated
GSC11 cells largely blocked the decrease of SOX2 and
Olig2 expression, suggesting that the expression of these
two molecules might be redox-sensitive. Similar results
were observed in GSC23 (Additional file 1: Figure S8).
Furthermore, gene expression analysis of molecules in-
volved in the Notch pathway revealed that serum caused a
significant decrease in the expression of Notchl, MENG,
LENG, HESs, DTX3, and DLL1 (Fig. 5e). Consistently,
the presence of antioxidant NAC largely prevented the
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downregulation of the Notch-related genes (Fig. 5e), might alter the ability of GSCs to form tumors in vivo.
again suggesting the important role of ROS and redox  First, GSC11 cells were incubated with or without serum

signaling in regulation of GSCs. for 7 days, and the same numbers (2 x 10°) of the con-
trol cells or serum-induced cells were inoculated sub-
Serum induction of GSCs promotes tumorigenesis in vivo cutaneously into the right flank of nude mice. Under

Because exposure of GSCs to serum caused the cells to  these subcutaneous inoculation conditions, only two out
exhibit apparent differentiation morphology and a de-  of seven of the mice inoculated with the control GSC11
crease in neurosphere formation, we used two in vivo  cells (serum-free) form tumors, and surprisingly seven
models to test whether serum induction of such changes out of seven mice inoculated with the serum-induced
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GSC11 cells developed tumor (Fig. 6a), suggesting that
exposure of GSCI11 cells to serum promotes their
tumorigenesis. Interestingly, five out of seven mice inoc-
ulated with GSC11 cells treated with serum in the pres-
ence of the antioxidant NAC formed tumors (Fig. 6a).

induced GSCI11 cel

(P =0.0019, Fig. 6b)

The overall survival of the mice inoculated with serum-

Is was significantly shorter than that

of the control mice inoculated serum-free GSC11 cells

. No significant difference (P =0.064)

in overall survival was found between the control group
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Fig. 6 Serum promotes in vivo tumorigenesis of glioblastoma
stem cells. a GSC11 cells were cultured in serum-free medium or
serum-containing medium in the presence or absence of 20 mM
NAC for 7 days. Equal numbers of cells (2 x 10°% from each sample
were inoculated subcutaneously into the right flank of nude mice
(seven mice per group). The numbers of mice that developed tumors
in each group are shown. b Survival curves for the mice in the three
groups of mice described in (a). € GBM3752 cells were isolated from
orthotopic tumor xenografts cultured in stem cell medium with or
without serum as described in Methods. Equal numbers of cells
(10,000 per injection) were inoculated into non-obese diabetic/severe
combined immunodeficiency mice intracranially. The mice were
observed for survival and euthanized when they developed signs of
neurological deficit and became moribund. NAC N-acetyl-cysteine

(serum-free) and the group of mice inoculated with
GSC11 cells exposed to serum in the presence of NAC
(20 mM).

We also used another mouse model, orthotopic inocu-
lation of GBM3752 cells into the SCID mice (Shu et al.
[22]), to further evaluate the role of serum exposure on
tumorigenesis. The same numbers (1 x 10%) of GBM3752
cells with or without serum exposure were inoculated
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into SCID mice intracranially, and the mice were observed
for tumor development and survival. As shown in Fig. 6c,
the overall survival of mice inoculated with serum-
induced GBM3752 cells was significantly shorter than that
of the mice bearing the control GBM3752 cells cultured
in stem cell medium without serum (P = 0.0067). These
results were consistent with those of the subcutaneous
tumor model and suggest that serum exposure activated
glioma stem cells and promoted tumor formation.

Activation of the NFkB survival pathway in serum-induced
glioma stem cells

To explore the possible mechanisms by which serum in-
duction of mitochondrial ROS generation could lead to ac-
tivation of GSCs and promote tumorigenesis, we further
analyzed the gene expression microarray data from GSC11
cells exposed to serum for various times (Additional file 1:
Figure S2) and found that the expression of multiple genes
downstream of nuclear factor-kappa-B (NFxB) (including
CD44, 1L-8, IL-11, CCND1, TFPI2, and PLAUR) consist-
ently increased after incubation with serum (Fig. 7a—g).
Since oxidative stress is known to activate NF«kB [26, 27],
it is possible that in vivo. Indeed, incubation of GSC23
cells with serum caused a substantial increase in IkBa
phosphorylation and p65 phosphorylation (Fig. 7h), two
molecular events indicative of NFkB activation. Import-
antly, the addition of the antioxidant NAC partially sup-
pressed the serum-induced phosphorylation of IkBa and
p65, suggesting the role of ROS in mediating serum-
induced NF«B activation. Similar results were observed in
GSC11 cells (Fig. 7i). Serum exposure caused a significant
increase in phosphorylated IkBa and p65 (Fig. 7i, lanes 1
and 2). The addition of NAC suppressed these phosphory-
lations (Fig. 7i, lane 7). These data together with the
known function of IKK in phosphorylating IkBa and p65
suggest a possibility that serum might activate NF«B in
GSCs through ROS-induced activation of IKK, a redox-
sensitive molecule known to be activated by ROS [28]. To
exam this possibility, we used a specific IKK inhibitor,
BMS-345541, to test whether inhibition of IKK would pre-
vent serum-induced phosphorylation of IkBa and p65. As
shown in Fig. 7i, BMS-345541 at concentrations of 10—
20 uM effectively suppressed serum-induced phosphoryl-
ation of IkBa and p65, associated with a preservation of
CD133 expression of suppression of ANXA1. These data
suggest that IKK might play an important role in mediat-
ing serum-induced activation of NF«B through a redox-
sensitive mechanism.

It has been known for some time that CSCs, similar to
normal stem cells, require a certain tissue microenviron-
ment to maintain their stemness [29, 30] and that exposure
of stem cells to serum iz vitro usually induces differenti-
ation phenotype [9]. However, the underlying mecha-
nisms remain unclear. Although apparent differentiation
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phenotypes are also observed when CSCs are exposed to
serum, it is unclear whether this would cause a decrease
in tumorigenesis. Our study revealed a ROS-mediated
mechanism by which serum induces apparent differenti-
ation in glioma stem cells. We found that exposure of
GSCs to serum resulted in activation of mitochondrial res-
piration, leading to an increase of oxygen consumption

and high generation of mitochondrial O, which induced
the expression of SOD2 to convert O; to H,O,. Owing to
its relatively long half-life and ability to cross biological
membranes, H,O, has been considered a second messen-
ger that mediates redox-sensitive signaling in cellular re-
sponse to growth factors [31, 32]. The ability of H,O, to
cause oxidation of protein thiol via catalytic cysteine can
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alter the function of the target proteins and thus provides
a mechanism for redox signaling [32]. Since O, has an ex-
tremely short half-life and cannot pass the mitochondrial
membranes, the increased O; within the mitochondria
could not directly function as a second messenger to
affect the nuclear gene expression. As such, conversion of
the mitochondrial O; to HyO, by SOD2 seems important
to relay the redox signal from mitochondria to cytosol and
nucleus during serum-induced differentiation of GSCs.
The upregulation of SOD2 in serum-treated GSCs would
facilitate the conversion of O, to H,O».

Although the ability of ROS to induce normal stem
cell differentiation has been noticed in some experimen-
tal systems [33, 34], the exact mechanisms remain un-
clear. Our study found that downregulation of SOX2,
Olig2, and the Notch-related molecules by ROS might
be a potential mechanism. The ability of exogenous anti-
oxidant NAC to prevent the decreased expression of
these genes and to block the serum-induced differenti-
ation phenotype supports this notion. It is possible that
the expression of SOX2, Olig2, and the Notch-related
molecules is regulated via a redox-sensitive mechanism,
with ROS being a negative regulator. Since SOX2, Olig2,
and the Notch pathway are involved in regulation of
neural stem cells [35, 36], downregulation of these genes
could promote apparent differentiation of GSCs and
drive them to enter a process in which GSCs progress to
become the downstream progeny cancer cells.

Surprisingly, we found that although incubation of
GSCs with serum induced apparent differentiation
morphology and caused a downregulation of certain
stem cell markers, including CD133, SOX2, and Olig2,
this led to an increase of tumorigenicity and a reduction
of survival in mice in two different mouse models (sub-
cutaneous and orthotopic). These new findings seem to
challenge the traditional view that CSCs are responsible
for cancer development and their ability to form tumor
would decrease once they are induced to undergo differ-
entiation. Interestingly, a recent study showed that
tumor cell self-renewal capacity did not predict tumor
growth potential in vivo [37]. The study by Barrett et al.
showed that glioma cells with low self-renewal capacity
were more tumorigenic and generate tumor more rap-
idly than cells with high self-renewal capacity. These ob-
servations are consistent with our findings. Furthermore,
our study revealed that activation of the nuclear factor-
kappa-B (NFxB) survival pathway by ROS might be a
mechanism that promotes GSC survival and enhances
tumorigenesis. The role of the NFxB pathway in normal
stem cell proliferation has been implicated previously.
For instance, NF«B is activated during human embryonic
stem cell (hESC) differentiation, and inhibition of NFxB
leads to a reduction of hESC proliferation and suppression
of their progression toward primitive extraembryonic and
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embryonic lineages [38]. As such, inhibition of NFkB may
potentially prevent activation of CSCs and thus suppress
tumor development. Interestingly, recent studies have
shown that targeting the NFxB pathway may be effective
against CSCs [39—-41]. Their studies showed that inhib-
ition of NFkB by using compounds such as niclosamide
and disulfiram suppressed acute myeloid leukemia stem
cells and breast CSCs.

The NFkB signaling pathway plays a crucial role in
cancer development and progression [42]. It can either
promote or inhibit carcinogenesis, depending on the cell
types and experimental conditions. The NFkB signaling
pathway is often activated by ROS through IKK phos-
phorylation of IkB [43] and p65 [44]. Our study found
that serum could cause the activation of NF«B, which
could be blocked by the antioxidant NAC. These results
suggest that the activation of NFxB in the serum-
induced cells is probably mediated by a redox-regulatory
mechanism due to ROS generation in the serum-
activated mitochondria. It is worth noting that deletion
of NFKBIA which encodes the NFxB inhibitor IxBa
seems to be an oncogenic event in GBM [45]. Interest-
ingly, a recent study showed that the NFxB pathway was
activated in glioblastoma-initiating cells (GICs) after in-
duction of differentiation and that blockade of the NF«xB
pathway could drive differentiating GSCs into senes-
cence [40], again suggesting that activation of NFkB is
important in maintaining the proliferation of differenti-
ating GSCs. This effect was partly mediated by reduced
levels of the NF«kB target gene cyclin D1. Furthermore, a
novel small-molecule inhibitor of the NFkB pathway in-
duced senescence of tumor cells in a mouse model bear-
ing human GIC-derived tumors. These findings reveal
that activation of NFkB may keep differentiating GICs
from acquiring a mature postmitotic phenotype, thus
allowing cell proliferation. Our study showed that, in the
case of GSC exposure to serum, activation of NFkB is
likely through ROS stimulation of IKK, which promotes
phosphorylation of IxBa and p65. We found that anti-
oxidant NAC or inhibition of IKK by BMS-345541 could
effectively prevent the serum-induced NFxB activation
and loss of CD133, suggesting a novel role of ROS in
driving the progression of GSCs toward downstream
progeny cells to promote tumor development.

Conclusions

In summary, our study showed that exposure of glioma
stem cells to serum could stimulate mitochondrial res-
piration leading to increased generation of mitochon-
drial ROS, which activated NFkB to promote cancer cell
survival and tumorigenesis. A key underlying mechan-
ism is likely through a redox-mediated activation of IKK
to phosphorylate IkBa and p65. Although the serum-
induced elevation of ROS in GSCs also caused a
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decrease in neurosphere formation in vitro and a re-
duced expression of stem cell markers such as CD133,
this apparent differentiation did not reduce the ability of
the glioma stem cells to form tumor in vivo. Instead, the
serum-induced GSCs exhibited greater tumorigenesis in
both subcutaneous and orthotopic xenograft models.
These new findings suggest that serum may activate gli-
oma stem cells to progress toward the downstream can-
cer progenitor cells and promote tumor formation and
that activation of mitochondrial respiration and ROS
generation may play a key role in redox signaling during
this tumorigenesis process. It is also important to note
that the apparent differentiation phenotype such as neu-
rosphere formation and CDI133 expression in vitro
observed might not necessarily predict tumorigenesis in
vivo.
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