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Abstract 

Background  Pretreatment prediction of stage in patients with cervical cancer (CC) is vital for tailoring treatment 
strategy. This study aimed to explore the feasibility of a model combining reduced field-of-view (rFOV) diffusion-
weighted imaging (DWI)-derived radiomics with clinical features in staging CC.

Methods  Patients with pathologically proven CC were enrolled in this retrospective study. The rFOV DWI with b 
values of 0 and 800 s/mm2 was acquired and the clinical characteristics of each patient were collected. Radiomics 
features were extracted from the apparent diffusion coefficient maps and key features were selected subsequently. A 
clinical–radiomics model combining radiomics with clinical features was constructed. The receiver operating char-
acteristic curve was introduced to evaluate the predictive efficacy of the model, followed by comparisons with the 
MR-based subjective stage assessment (radiological model).

Results  Ninety-four patients were analyzed and divided into training (n = 61) and testing (n = 33) cohorts. In the 
training cohort, the area under the curve (AUC) of clinical–radiomics model (AUC = 0.877) for staging CC was similar 
to that of radiomics model (AUC = 0.867), but significantly higher than that of clinical model (AUC = 0.673). In the 
testing cohort, the clinical–radiomics model yielded the highest predictive performance (AUC = 0.887) of staging CC, 
even without a statistically significant difference when compared with the clinical model (AUC = 0.793), radiomics 
model (AUC = 0.846), or radiological model (AUC = 0.823).

Conclusions  The rFOV DWI-derived clinical–radiomics model has the potential for staging CC, thereby facilitating 
clinical decision-making.

Key points 

•	 Radiomics features extracted from sagittal rFOV DWI were valuable in staging CC.
•	 Clinical factors including age and menopausal status were important predictors in staging CC.
•	 The clinical–radiomics model combining rFOV DWI-derived radiomics with clinical features is of great poten-

tial for staging CC, outperforming the radiological model.
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Introduction
Cervical cancer (CC) ranks as the fourth most fre-
quently diagnosed cancer and the fourth leading cause 
of cancer-specific death worldwide [1]. The treatment 
options for patients with CC mainly depend on its 
stages at initial diagnosis [2]. Patients with early-stage 
CC frequently undergo radical hysterectomy, whereas 
those with locally advanced CC are generally treated 
with concurrent chemo-radiotherapy [3]. Hence, accu-
rate prediction of the stage in patients with CC is cru-
cial for developing appropriate treatment strategies, 
and sparing patients with locally advanced CC from 
unnecessary surgery.

The revision of the 2018 International Federation 
of Gynecology and Obstetrics (FIGO) staging system 
acknowledges the central role of MRI in assessing the 
local extent of CC [4, 5]. With the advantages of tumor-
to-normal tissue contrast, diffusion-weighted imaging 
(DWI) has been increasingly used to characterize CC 
[6]. The reduced field-of-view (rFOV) DWI, an MRI 
technique that enables minimizing the off-resonance 
induced artifacts by reducing the FOV in the phase-
encoding direction, has been reported to considerably 
improve the conspicuity of CC [7, 8]. While the appli-
cation of MRI in CC staging is still highly dependent 
on the subjective evaluation of radiologists [9], with 
poor stability and reproducibility. It is supposed that 
quantitative parameters may provide additional ben-
efits. The apparent diffusion coefficient (ADC), which 
is derived from diffusion-weighted image, has also been 
successfully introduced to quantitatively characterize 
CC [10]. Its routine clinical use, nevertheless, has been 
hampered by the considerable overlap of ADC values 
among different tumor stages.

During the past years, radiomics has gained increas-
ing interest in characterizing cancers [11]. It can 
extract additional quantitative data related to tissue 
microstructure from images, using automated and 
high-throughput extraction of data characterization 
algorithms to extract quantitative imaging features 
from a large number of medical images, deeply min-
ing image information to improve decision support in 
oncology at low cost and noninvasively [12]. As radi-
omics may identify unique MRI features that reflect 
the underlying pathophysiology, it is expected to break 
through the limitation of the application of traditional 
imaging in early diagnosis, efficacy evaluation, and 
prognosis prediction of tumors [13]. At present, radi-
omics has been applied in many diseases with good 
performance, and its application in CC is gradually 
increasing [14].

So far, no study has been reported to evaluate the 
application of radiomics based on the rFOV DWI. 

Therefore, in this study, we aimed to explore the feasi-
bility of the model combining rFOV DWI-derived radi-
omics with clinical features in predicting the stage of 
CC.

Materials and methods
Patients
This retrospective analysis was approved by the Ethics 
Committee of Tongji Hospital, and the requirement for 
informed consent was waived. One hundred and twelve 
patients with histopathologically confirmed CC were 
enrolled between March 2014 and August 2021. Inclu-
sion criteria included: (a) patients with pathologically 
confirmed cervical cancer; (b) patients who underwent 
pretreatment MRI on a 3.0  T scanner. The exclusion 
criteria were as follows: (a) surgery or chemo-radio-
therapy performed prior to MRI (n = 3); (b) inadequate 
image quality due to excessive artifacts (n = 3); (c) 
lesions with diameter less than 1 cm (n = 2); (d) incom-
plete clinic-pathological data (n = 10). The flowchart of 
patient selection is shown in Fig. 1.

Clinical characteristics of the enrolled patients were 
acquired from the electrical medical record system, 
including the information of age (years), menarche age 
(years), menopausal status (yes/no), number of gesta-
tion (times), number of production (times), and num-
ber of abortion (times) [15].

MRI examination protocols
All participants underwent MR examinations on a 3.0 T 
MR scanner (High discovery 750, GE Medical Health-
care, Milwaukee, Wisconsin) in the supine position with a 
32-channel torso phased-array coil. All recruited patients 
underwent axial T1-weighted imaging, T2WI, and rFOV 
DWI in our study. The scanning parameters of the T1WI, 
T2WI, and rFOV DWI are presented in Table 1.

Image analysis
ADC maps were reconstructed by employing the mono-
exponential model to fit to the sagittal rFOV DWI images 
with two b values (b = 0 and 800 s/mm2) using the follow-
ing equation:

where S0 represents the signal intensity when b = 0  s/
mm2; S(b) represents the signal intensity at a given b 
value.

The size of tumors was obtained based on the T2WI 
sequence by measuring the maximum diameter on the 
axial or coronal or sagittal images.

ADC = [lnS0/lnS(b) ]/b
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The tumor staging was performed by two radiologists 
independently based on the T2-weighted and diffusion-
weighted images according to the FIGO 2018 staging 

system, without the knowledge of the clinical and histo-
pathologic findings.

Tumor segmentation and feature extraction
The 3D Slicer software (version 4.13.0; www.​slicer.​org) 
was used for manual segmentation. The volumes of inter-
est (VOIs) covering the whole tumor with low signal 
intensity were delineated along the tumor border layer by 
layer on the ADC maps of all the patients by a radiologist 
(C.F., with 11 years of pelvic MRI diagnosis experience), 
the corresponding T2WI and DWI images were also used 
for defining the anatomic structures and determining the 
tumor boundaries (Fig. 2). To analyze the inter-observer 
consistency, 30 patients were randomly selected and the 
VOIs of the tumors were delineated again by another 
radiologist (B.D.D., with 5 years of pelvic MRI diagnosis 
experience).

The 3D radiomics feature extraction was implemented 
by using MATLAB (2021b; https://​www.​mathw​orks.​cn). 

Fig. 1  The flowchart of patient selection

Table 1  The acquisition parameters of each imaging sequence

TR/TE Repetition time/echo, FOV Field of view, rFOV Reduced FOV

T1WI T2WI rFOV DWI

TR/TE (ms) 360/7.7 5755/136.9 3000/55.3

FOV (mm) 340 × 340 340 × 340 240 × 100

Matrix 256 × 256 320 × 256 128 × 96

Slice Thickness/gap (mm) 4/1 4/1 4/1

b values (s/mm2) / / 0, 800

Number of excitations 2 2 8

Band width (KHZ) 50 62.5 250

Orientation Axial Axial/coronal 
oblique/sagittal

Sagittal

Acquisition time (min) 1.5 2.5 2.5

http://www.slicer.org
https://www.mathworks.cn
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Specific details of feature extraction are described in 
Additional file 1: Table S1.

Radiomics feature selection and signature construction
The intra-class correlation coefficient (ICC) was con-
ducted to assess the consistency between the two observ-
ers for each extracted feature. Only the features with 
good consistency (ICC > 0.8) were selected for further 
analysis. Then, features with statistically significant dif-
ferences between the early- and advanced-stage CC were 
further selected by performing a t test, and a significance 
level of p < 0.1 was set.

The least absolute shrinkage and selection operator 
(LASSO) logistic regression algorithm with a ten-fold 
cross-validation was adopted for further dimension 
reduction and signature building. Nonzero coefficient 
features were selected and their linear combination was 
calculated to generate radiomics signatures. Radiomics 
score (Rad-score) was acquired for each patient with the 
following formula:

Rad − score = intercept + βi × Xi

where β represents coefficient, X represents feature, and i 
represents an ordinal number.

Construction and comparison of clinical, radiomics, 
radiological, and clinical–radiomics models
Four different models including the clinical (clinical 
predictors), radiomics (rad-score), radiological (sub-
jective staging data), and clinical–radiomics models 
were constructed, respectively. The clinical–radiomics 
model combining clinical predictors and rad-score was 
built and then a clinical–radiomics nomogram was cre-
ated by using logistic regression analysis in the training 
group. The receiver operating characteristic (ROC) curve 
was used to evaluate the discrimination performance of 
these four established models. In the training and test-
ing cohorts, the area under the curve (AUC), sensitivity, 
and specificity of the models were obtained. At last, the 
decision curve analysis (DCA) was performed to quan-
tify the net benefit at different threshold probabilities to 
determine the predictive value of the clinical–radiomics 
model.

Fig. 2  A patient with FIGO stage IB cervical cancer (upper row) and a patient with FIGO stage IV cervical cancer (lower row). The high signal intensity 
on sagittal rFOV DWI with b value of 800 s/mm2 (a and d) and the low signal intensity on the corresponding ADC maps (b and e) illustrate the areas 
of tumors. The green areas on the ADC maps (c and f) represent the tumor regions of interest
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Statistical analysis
The statistical analysis was performed by using the SPSS 
(version 23.0, www.​ibm.​com/​softw​are/​analy​tics/​spss) 
and R software (version 3.6.1, www.R-​proje​ct.​org). The 
inter-observer reliability of the categorical variables was 
accessed by calculating the weighted kappa coefficient. 
The Kolmogorov–Smirnov test was used to assess the 
normality of all continuous variables. The t test or Mann–
Whitney U test was conducted to assess the differences 
in age, menarche age, and tumor size between the train-
ing and testing cohorts. The Chi-squared test was used to 
evaluate the differences in the categorical variables such 
as histological classification, menopausal status, number 
of gestation, number of production, number of abortion, 
and FIGO stage between the training and testing cohorts. 
Univariate analysis (t test or rank sum test for continu-
ous variables and Chi-square test for categorical vari-
ables) was used to select the significant predictive factors 
in discriminating early from advanced-stage CC in the 
training set. The following R packages were used: The 
“glmnet” was used to perform the LASSO logistic regres-
sion model, the “rms” package was used for multivari-
ate binary logistic regression, nomogram construction, 
and the “pROC” package was used to construct the ROC 
curve. The AUCs between different models were com-
pared by using the DeLong test. In all tests, a two-sided p 
value < 0.05 was described as statistically significant.

Results
Clinical characteristics
The characteristics of all patients are shown in Table 2. 
In this study, 18 patients were excluded based on the 
exclusion criteria, and a total of 94 patients with path-
ologically proven CC were ultimately enrolled. The 
patients were further dichotomized between the early 
stage (FIGO stage IB-IIA, n = 42) and the advanced 
stage (FIGO stage IIB-IV, n = 52) according to the FIGO 
2018 staging system. Among the 94 patients, 61 patients 
(mean age, 52 ± 9  years) were divided into the training 
cohort and 33 patients (mean age, 53 ± 11 years) into the 
testing cohort. Between the training and testing cohorts, 
there was no significant difference in all clinical charac-
teristics (all p > 0.05). In the training set, the univariate 
analysis revealed that age (p = 0.013) and menopausal 
status (p = 0.030) may be significant impacts in differ-
entiating early from advanced-stage CC, as presented in 
Table 3.

Feature selection and radiomics signature construction
A total of 851 radiomics features were extracted based 
on the sagittal rFOV DWI in this study, including the 
shape- and size-based features, first-order statistics fea-
tures, textural features, and wavelet features. Then 320 
radiomics features with good consistency (ICC > 0.8) and 
statistically significant differences between the early and 
advanced-stage groups were selected for further analy-
sis. Through the LASSO algorithm using ten-fold cross-
validation, five features (including one textural feature 
and four wavelet features) were finally chosen to build the 
radiomics signature, and the rad-score was constructed 
according to their corresponding coefficients. The pro-
cess of LASSO analysis is shown in Fig.  3. The coeffi-
cients of the radiomics features are shown in Table 4. The 
detailed formula of the rad-score is presented in Addi-
tional file 1: Appendix 1.

For inter-observer reliability of MRI-based FIGO stage 
evaluation between the two radiologists, a weighted 
kappa coefficient of 0.813 (95% CI: 0.725, 0.901) was 
achieved, indicating good consistency.

Development, performance, and clinical use of prediction 
models
The clinical–radiomics nomogram was plotted based on 
clinical–radiomics model in the training set (Fig. 4). The 
predictive performance of the clinical, radiomics, radio-
logical, and clinical–radiomics models for staging CC is 
shown in Table 5 and Fig. 5. In the training cohort, the 
clinical, radiomics, radiological, and clinical–radiomics 
models yielded AUCs of 0.673, 0.867, 0.813, and 0.877, 
respectively. For pairwise comparisons of the above 
models, the clinical–radiomics and radiomics mod-
els showed similar diagnostic performance, but signifi-
cantly higher than that of the clinical model (p = 0.004 
and 0.018, respectively). The differences of AUC between 
the remaining models were not statistically significant 
(all p > 0.05). In the testing cohort, the clinical–radiom-
ics model (AUC = 0.887) yielded the highest predic-
tive performance for staging CC when compared with 
the clinical model (AUC = 0.793, p = 0.095), radiomics 
model (AUC = 0.846, p = 0.433), and radiological model 
(AUC = 0.823, p = 0.400), but the differences were not 
statistically significant. The comparison of AUC between 
each model has been added in detail in Additional file 1: 
Table  S2. DCA demonstrated that when the threshold 
probability was greater than 10%, the clinical–radiomics 
model could bring more net benefit than the treat-all or 
treat-none strategies (Fig. 6).

http://www.ibm.com/software/analytics/spss
http://www.R-project.org
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Discussion
In our study, we developed and validated a model combin-
ing the rFOV DWI-derived radiomics with clinical features 
in predicting the stage of CC. The clinical–radiomics model 
yielded the highest predictive performance of staging CC 
when compared with the individual clinical model, radiom-
ics model, and the radiological model. With these results, 
our study indicated the feasibility of clinical–radiom-
ics model as a potentially noninvasive tool in staging CC, 
thereby aiding in the selection of therapeutic strategy [16].

During the past years, radiomics has been success-
fully recognized as a useful imaging tool in exploring the 
heterogeneity of many kinds of cancers [17–19], includ-
ing cervical cancer [12, 14, 15, 20–23]. Liu et  al. [14] 
evaluated that the whole-tumor volumetric 3D radiom-
ics analysis had a better performance in stratifying the 

histological grade of CC. Deng et  al. [24] proved that 
radiomics prediction models demonstrated the potential 
to noninvasively differentiate LNM and VEGF expres-
sion in CC. However, the previous study has conducted a 
model based on the radiomics features derived from the 
conventional DWI, which is susceptible to artifacts and 
distortion [22]. The ROIs derived from these conven-
tional sequences may deviate from the real tumor range, 
which would result in the failure of the extracted radi-
omics features to truly reflect the heterogeneity of the 
tumors, thus affecting the discriminant performance of 
the model.

Unlike previous studies, the radiomics features were 
extracted from the rFOV DWI in this study. By employ-
ing two-dimensional space selective excitation pulses 
and 180° refocusing pulses, thereby reducing the num-
ber of baselines required for k-space filling in the phase 
direction, rFOV DWI is able to reduce the field of view, 
alleviate image artifacts, and thereby improve the image 
quality [25]. Compared with the conventional DWI, 
rFOV DWI could produce superior resolution and bet-
ter identification of anatomic structures. The rFOV DWI 
has been widely applied to spinal cord, breast, thyroid, 
pancreas, prostate, uterus, and bladder [26, 27]. As rFOV 
DWI could provide less anatomic distortion and better 
image quality [8, 28], the radiomics features extracted 
from rFOV DWI were supposed to better reflect the 

Table 2  Clinical characteristics of the patients in the training and 
testing sets

Numbers in parentheses are percentages except where otherwise indicated

SCC Squamous cell carcinoma, ACA​ Adenocarcinoma

*Numbers are means ± standard deviations, with ranges in parentheses

Characteristics Training set 
(n = 61)

Testing set 
(n = 33)

p value

Age (years)* 52 ± 9 (29–71) 53 ± 11 (29–74) 0.720

Menarche age 
(years)*

14 ± 2 (10–20) 14 ± 1 (13–17) 0.425

Tumor size (mm)* 53 ± 21 (24–120) 52 ± 13 (35–79) 0.848

Histological type 0.708

SCC 55 (90) 31 (94)

ACA​ 6 (10) 2 (6)

Menopause 0.730

Yes 31 (51) 15 (45)

No 30 (49) 18 (55)

Number of gesta-
tion

0.226

≤ 3 32 (52) 13 (39)

> 3 29 (48) 20 (61)

Number of produc-
tion

0.474

≤ 3 50 (82) 25 (76)

> 3 11 (18) 8 (24)

Number of abor-
tion

0.206

≤ 3 54 (89) 26 (79)

> 3 7 (11) 7 (21)

FIGO stage 0.215

IB 16 (26) 6 (18)

IIA 12 (20) 8 (24)

IIB 13 (21) 6 (18)

III 15 (25) 5 (16)

IV 5 (8) 8 (24)

Table 3  Comparison of clinical data between patients with early 
and advanced cervical cancer in the training and testing sets

SD Standard deviation

* indicates t test, others are Chi-square test

Characteristics Training set Testing set

IB-IIA
(n = 28)

IIB-IV
(n = 33)

p value IB-IIA
(n = 14)

IIB-IV
(n = 19)

Age
(mean ± SD, years)

49 ± 9 55 ± 9 0.013* 48 ± 9 57 ± 11

Menarche age,
(mean ± SD, years)

14 ± 2 14 ± 2 0.294* 14 ± 1 14 ± 1

Menopause 0.030

Yes 10 21 3 15

No 18 12 11 4

Number of gestation 0.873

≤ 3 15 17 5 8

> 3 13 16 9 11

Number of production 0.201

≤ 3 25 25 12 13

> 3 3 8 2 6

Number of abortion 0.693

≤ 3 24 30 10 16

> 3 4 3 4 3
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heterogeneity of tumors. Texture-based features (neigh-
boring gray tone difference matrix, gray-level co-occur-
rence matrix) could be used to describe the distribution 
of voxel signal intensities, which correlates with tumor 
heterogeneity [29]. Considering the varying degrees of 
structural complexity among different tumor stages [30], 
the textural features selected in this study were supposed 
to be helpful in exploring the intra-tumor heterogene-
ity of CC [31, 32]. The AUC of the radiomics signature 

was 0.867 (95% CI: 0.755, 0.940) in the training cohort 
and 0.846 (95% CI: 0.678, 0.947) in the testing cohort. 
This result indicated that the radiomics features could be 
independent predictors of CC staging.

Given that previous studies suggested the age and men-
opausal status of patients were also independent factors 
in predicting the stage of CC [33–35], these two clinical 
factors were incorporated into the clinical–radiomics 
model. Finally, the clinical–radiomics model containing 
the rad-score, age, and menopausal status was established 
to predict the stage in patients with cervical cancer. Most 
of the previous articles simply built a single radiomics 
model [22], and few built multiple models related clinical 
factors, radiomics features, and subjective evaluation of 
stage, as did in this study. In this study, we compared the 
predictive performance of the clinical, radiomics, radio-
logical, and clinical–radiomics models for CC staging in 
the training and testing cohorts. Our results showed that 
clinical–radiomics model achieved the highest predictive 
performance with an AUC of 0.877 (95% CI, 0.767, 0.947) 
in the training cohort and 0.887 (95% CI, 0.729, 0.970) in 
the testing cohort. It indicated that the clinical–radiom-
ics model may have advantages over the radiomics fea-
tures or subjective assessment based on MRI for staging 

Fig. 3  The radiomics feature selection using the LASSO regression analysis and the ten-fold cross-validation. The abscissa corresponding to the 
lowest point of the model deviation indicates the optimal penalization coefficient lambda (λ = 0.089)

Table 4  Coefficients for the calculation of the selected 
radiomics features

NGTDM Neighboring gray tone difference matrix, GLCM Gray-level co-occurrence 
matrix, IMC2 Informational measure of correlation2, IDMN Inverse difference 
moment normalized

Variables Coefficients

Intercept − 25.62904339

Original_ NGTDM_ Contrast − 1.883115529

Wavelet-LLH_GLCM_IMC2 − 0.982822030

Wavelet-LHH_GLCM_IDMN 32.062049922

Wavelet-LLL_ first-order _Robust Mean Absolute Devia-
tion

− 0.001128832

Wavelet-LLL_ GLCM_ Difference Entropy − 0.812853027
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Fig. 4  The nomogram based on the rad-scores, age, and menopausal status

Table 5  Predictive performance of the clinical (age and menopause), radiomics, radiological, and clinical–radiomics models for 
delineating early stage from advanced-stage cervical cancer

Parentheses indicate 95% confidence interval

AUC​ Area under the curve, Ref Reference

p value means the difference of the models compared with the Ref based on DeLong test

AUC​ Sensitivity Specificity p value

Training set

Clinical model 0.673 (0.540, 0.787) 0.849 (0.681, 0.949) 0.429 (0.245, 0.628) 0.004

Radiomics model 0.867 (0.755, 0.940) 0.758 (0.577, 0.889) 0.893 (0.718, 0.977) 0.551

Radiological model 0.813 (0.692, 0.901) 0.697 (0.513, 0.844) 0.929 (0.765, 0.991) 0.206

Clinical–radiomics model 0.877 (0.767, 0.947) 0.697 (0.513, 0.844) 0.929 (0.765, 0.991) Ref

Testing set

Clinical model 0.793 (0.617, 0.914) 0.790 (0.544, 0.939) 0.786 (0.492, 0.953) 0.095

Radiomics model 0.846 (0.678, 0.947) 0.790 (0.544, 0.939) 0.929 (0.661, 0.998) 0.433

Radiological model 0.823 (0.651, 0.933) 0.790 (0.544, 0.939) 0.857 (0.572, 0.982) 0.400

Clinical–radiomics model 0.887 (0.729, 0.970) 0.842 (0.604, 0.966) 0.786 (0.492, 0.953) Ref
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Fig. 5  The ROC curves of the clinical (age and menopause), radiomics, radiological, and clinical–radiomics models for staging CC in the training 
(a) and the testing cohorts (b). The clinical–radiomics model yielded the highest AUCs for staging CC in the training cohort (AUC = 0.877) and the 
testing cohort (AUC = 0.887)

Fig. 6  DCA of the clinical–radiomics model in the testing group. The decision curve demonstrates that the clinical–radiomics model enables 
obtaining more net benefits for making clinical decisions if the threshold is greater than 0.1
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CC. With these results, our study demonstrated the feasi-
bility of using the clinical–radiomics model as a potential 
noninvasive tool to complement staging of CC.

There are still some limitations in this study. This study 
was a retrospective study, which may lead to selection 
bias. The sample size was small and it was a single-center 
study, so a prospective multi-center study is needed to 
further verify our results. The delineation of VOI was 
only based on the sagittal ADC map, and other sequences 
were not combined. Therefore, the next step is to increase 
the sample size, conduct a multi-center study, and further 
improve the study by combining other MRI sequences.

In conclusion, we demonstrated that the clinical–radi-
omics model combining rFOV DWI-derived radiomics 
features and clinical indicators (age and menopausal sta-
tus) may be of potential in staging CC, thereby providing 
more information for individualized treatment planning 
and prognosis evaluation in patients with CC.
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