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18F‑FDG PET/CT‑based radiomics nomogram 
could predict bone marrow involvement 
in pediatric neuroblastoma
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Abstract 

Objective:  To develop and validate an 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed 
tomography (PET/CT)-based radiomics nomogram for non-invasively prediction of bone marrow involvement (BMI) in 
pediatric neuroblastoma.

Methods:  A total of 133 patients with neuroblastoma were retrospectively included and randomized into the train-
ing set (n = 93) and test set (n = 40). Radiomics features were extracted from both CT and PET images. The radiomics 
signature was developed. Independent clinical risk factors were identified using the univariate and multivariate logis-
tic regression analyses to construct the clinical model. The clinical-radiomics model, which integrated the radiomics 
signature and the independent clinical risk factors, was constructed using multivariate logistic regression analysis and 
finally presented as a radiomics nomogram. The predictive performance of the clinical-radiomics model was evalu-
ated by receiver operating characteristic curves, calibration curves and decision curve analysis (DCA).

Results:  Twenty-five radiomics features were selected to construct the radiomics signature. Age at diagnosis, neuron-
specific enolase and vanillylmandelic acid were identified as independent predictors to establish the clinical model. 
In the training set, the clinical-radiomics model outperformed the radiomics model or clinical model (AUC: 0.924 vs. 
0.900, 0.875) in predicting the BMI, which was then confirmed in the test set (AUC: 0.925 vs. 0.893, 0.910). The calibra-
tion curve and DCA demonstrated that the radiomics nomogram had a good consistency and clinical utility.

Conclusion:  The 18F-FDG PET/CT-based radiomics nomogram which incorporates radiomics signature and inde-
pendent clinical risk factors could non-invasively predict BMI in pediatric neuroblastoma.
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Key points

•	 Radiomics signature is valuable in the non-invasively 
diagnosis of bone marrow involvement.

•	 Age, NSE and VMA are the independent predictors 
of bone marrow involvement

•	 The nomogram incorporating radiomics signature 
and independent clinical risk factors improves pre-
dictive performance.
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Introduction
Neuroblastoma is a malignant neuroectodermal tumor 
that originated from cells of the neural crest and is the 
most common extracranial solid malignant tumor of 
childhood [1, 2]. About 50% of neuroblastoma patients 
had metastasis at the time of initial diagnosis, which 
is frequently associated with unsatisfactory outcomes. 
The bone marrow is the most common site of metasta-
sis in neuroblastoma [3], and the spread of tumor cells 
to bone marrow is a grim prognostic factor in neuro-
blastoma patients [4]. The prognosis is significantly bet-
ter in those without bone marrow involvement (BMI) 
than in those with BMI [5, 6]. Moreover, BMI is one of 
the most important diagnostic criteria and an important 
risk factor for staging according to the International Neu-
roblastoma Staging System (INSS) and the International 
Neuroblastoma Risk Group staging system [7–9]. There-
fore, establishing an early predictive model for BMI in 
neuroblastoma patients is crucial for prognosis and the 
decision of treatment strategy.

According to the recommendations of the INSS, 
the cytology of aspirates and histology of biopsies are 
the gold standard with which to assess BMI in patients 
with neuroblastoma [5, 7, 8]. Considering that most 
neuroblastoma patients are children, the bone marrow 
aspirates and biopsies must be performed only by expe-
rienced health care providers who have been well-trained 
in the technique [10]. However, as invasive methods, 
the aspirates or biopsies may cause adverse events such 
as hemorrhage, infection and persistent pain. Moreover, 
bone marrow aspirates or biopsies had higher health-
care costs for the method, including pathology, sedation, 
anesthesia and surgical suite time [11]. Because of these 
limitations, better non-invasive computational tools 
should be developed that can effectively identify neuro-
blastoma patients with BMI.

Radiomics analysis converts medical images into mine-
able high-dimensional data by extracting innumerable 
quantitative features with high-throughput computing 
[12]. Once the high-dimension feature data describing 
quantitative attributes of volumes of interest is avail-
able, artificial intelligence, machine learning, or statistical 
approaches can be used to build classifier or regression 
modeling for disease detection, diagnosis, evaluation of 
prognosis and prediction of treatment response.

In recent years, 18F-fluorodeoxyglucose (FDG) posi-
tron emission tomography/computed tomography (PET/
CT) has been used for the evaluation of BMI and is very 
helpful in evaluating the BMI in many malignancies [13, 
14]. 18F-FDG PET/CT-based texture image features may 
provide predictive and prognostic biomarkers which per-
formed better than standardized uptake value param-
eters, metabolic tumor volume and total lesion glycolysis 

in lung cancer [15]. Although 18F-FDG PET/CT texture 
analyses have been applied as a new method for differen-
tiating BMI in lymphoma [16], there has been no study 
about radiomics based on 18F-FDG PET/CT used for the 
prediction of BMI in pediatric neuroblastoma. There-
fore, the present study aimed to develop and validate a 
radiomics nomogram that integrated the radiomics sig-
nature and the independent clinical risk factors for non-
invasively prediction of BMI in pediatric patients with 
neuroblastoma.

Materials and methods
Patients
This retrospective study was approved by the institu-
tional review board and waived the requirement for writ-
ten informed consent.

We retrospectively included a cohort of 328 patients 
who underwent 18F-FDG PET/CT in our institution with 
pathologically confirmed neuroblastoma between Janu-
ary 2018 and December 2019. The inclusion criteria con-
sisted of (1) patients with neuroblastoma who underwent 
bone marrow aspirates or biopsies and were assessed 
BMI using morphologic criteria in conjunction with 
appropriate antibodies; (2) 18F-FDG PET/CT scan per-
formed within 30 days before the bone marrow aspirates 
or biopsies. The exclusion criteria included the follow-
ing: (1) patients who received tumor-related treatments 
such as chemotherapy, radiotherapy and surgical exci-
sion prior to 18F-FDG PET/CT examination; (2) patients 
with incomplete clinical data; (3) patients were greater 
than 18  years of age at diagnosis. Finally, a total of 133 
patients (58 males and 75 females; median age, 3.2 years; 
range, 1.7–4.7  years) were retrospectively included in 
this study. According to the result of bone marrow aspi-
rates or biopsies, there were 65 patients with BMI and 68 
patients without BMI. The flow chart for patient selection 
is shown in Fig. 1.

Stratified sampling according to the BMI stratification 
was implemented to balance the positive and negative 
cases, and the final 133 cases were randomly divided into 
the training set and test set according to a ratio of 7:3, 
which resulted in 93 cases being divided into the training 
set and 40 cases being divided into the test set.

The baseline data of each patient were obtained by 
reviewing the medical records, which included the fol-
lowing aspects: (1) clinical information, (2) laboratory 
indicators, (3) PET metabolic parameters, and (4) path-
ological-related information. We defined these data as 
clinical characteristics. Laboratory indicators includ-
ing neuron-specific enolase (NSE), serum ferritin, lac-
tate dehydrogenase (LDH), urine vanillylmandelic acid 
(VMA) and homovanillic acid (HVA) were acquired 
within two weeks before therapy.
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PET/CT imaging acquisition
All patients in the cohort underwent whole body 18F-
FDG PET/CT (Biograph mCT-64 PET/CT; Siemens, 
Knoxville) scans according to European Association of 
Nuclear Medicine guidelines for tumor imaging [17, 18]. 
Patients were instructed to ban from intense exercises 
for at least 24 h before PET/CT scan and fast at least 6 h 
before 18F-FDG injection. A mean dose of 3 mCi (mean 
0.14 mCi/kg) was administrated considering the patients 
are children. A low-dose CT scan (CT scanning param-
eters: tube voltage 120 keV, thickness 2 mm, matrix size 
512 × 512) for viewing anatomic structures and attenu-
ation correction was performed an hour after the injec-
tion. PET scan with three-dimension image mode and 
2  min per bed setting followed immediately after CT 
acquisition. PET images were reconstructed with the 
time-of-flight  ordered subsets-expectation maximiza-
tion algorithm. All corrections for quantitative interpre-
tation, including detector sensitivity normalization, dead 
time, random, scatter, attenuation  and decay correction 
were applied during reconstruction. A Gaussian smooth-
ing filter with a full width at half-maximum of 5 mm was 
applied to the PET images. The PET images’ parameters 

were as follows: pixel size 4.07  mm × 4.07  mm, 3  mm 
slice thickness, and matrix size 200 × 200.

Tumor segmentation, radiomics features extraction 
and selection
Image segmentation was performed semi-automatically 
with a commonly used open-source software (3D Slicer, 
Version 4.10.1) by reader 1 (W.W. with 7 years of expe-
rience in pediatric oncologic radiology). An example of 
ROI segmentation is shown in Fig. 2. The intraclass cor-
relation coefficient (ICC) was used to assess the repro-
ducibility of the selected features. A total of 30 cases (15 
with  BMI and 15 without BMI) of CT images and PET 
images randomly selected from the whole cohort were 
independently performed repeat segmentation by reader 
1 and reader 2 (Y.K. with 10 years of experience in pediat-
ric oncologic radiology). The readers were blinded to the 
clinical information when performing the segmentation.

Radiomics features were extracted from both CT and 
PET images using Pyradiomics in Python (version 3.7.8), 
an open-source python package for the extraction of 
radiomics features from medical imaging. A fixed bin 
width (0.3 standardized uptake value for PET image and 

Fig. 1  The flow chart for patient selection
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25 Hounsfield Units [HUs] for CT image) had been cho-
sen to discretize gray value discretization for texture fea-
tures extraction [19, 20]. Furthermore, filters including 
wavelet, square, and logarithm et al. were applied to the 
original CT and PET images for calculating high-dimen-
sional features.

The features with ICC > 0.8 were considered reliable 
and maintained for subsequent analysis [21–23]. Then, 
the Pearson’s correction coefficients and Spearman’s rank 
correlation coefficient were calculated to examine redun-
dant and collinear features, and features with mutual cor-
relation coefficients > 0.9 were removed [24]. Finally, the 
least absolute shrinkage and selection operator (LASSO) 
regression with fivefold cross-validation was applied for 
feature selection.

Radiomics model, clinical model and radiomics nomogram 
construction and evaluation
Using the most optimal features to construct the radi-
omics signature. The radiomics score (Rad score) was 

calculated for each patient via the combination of the 
selected features with their respective weight coefficients.

The univariate logistic regression analysis was used to 
assess the difference in clinical characteristics between 
BMI and without BMI in the training set. Then, vari-
ables with p < 0.05 in the univariate logistic regression 
analysis were applied to multivariate logistic regression 
analysis to elucidate the independent clinical risk factors. 
Meanwhile, multivariate logistic regression analysis was 
applied to build the clinical model was built based on the 
independent clinical risk factors.

The clinical-radiomics model, which incorporated the 
independent clinical risk factors and Rad score, was con-
structed using multivariable logistic regression analysis 
and finally presented as a radiomics nomogram in the 
training set. Logistic regression is a classical statistical 
model that internally has a linear regression, which is 
topped up by a sigmoid function such that the output of 
the model is a probability estimate between 0 and 1 [25].

Fig. 2  Schematic representation of the tumor segmentation by 3D Slicer
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The predictive performance of the clinical-radiomics 
model was evaluated by receiver operating characteris-
tic (ROC) curves, calibration curves, and decision curve 
analysis (DCA). A calibration curve, obtained by plotting 
the actual probability against the nomogram-predicted 
probability, was used to evaluate the calibration of the 
nomogram. DCA was employed to evaluate the clinical 
utility of the radiomics nomogram.

Moreover, we applied two other machine learning 
methods, naive bayes and neural network, to build clin-
ical-radiomics models, and then compared the predictive 
performance of the models obtained by each machine 
learning method based on such matrices as the area 
under the curve (AUC), accuracy, precision, F1-score and 
recall.

Statistical analysis
Categorical variables were expressed as counts (n) 
and percentages (%), while continuous variables were 
expressed as mean values ± standard deviation or medi-
ans with the interquartile ranges. Statistical analyses were 
performed using R (version 4.0.3) and IMB SPSS Statis-
tics (version 26.0). Two-sided with p < 0.05 was consid-
ered statistically significant. Univariate analysis was used 
to compare differences in the clinical factors between 
the training and test sets, using the independent t-test 
or Mann–Whitney U test for quantitative data, and the 
chi-squared test for categorical variables. Clinical inde-
pendent predictors were screened using univariate and 
multivariate logistic regression analysis. The DeLong test 
was used to compare the AUC values of different mod-
els. The nomogram and calibration curve were depicted 
using the “rms (R)” package. DCA was performed using 
the “rmda (R)” package.

Results
Patient characteristics
The clinical characteristics of the patients in the train-
ing and test sets were summarized in Table 1. Univariate 
analysis indicated that there were no significant differ-
ences in all of these clinical factors between training and 
test sets.The complete dataset is available in  Additional 
file 1.

Feature selection and radiomics signature development
A total of 2632 radiomics features were extracted and 
the definition complies with Imaging Biomarker Stand-
ardization Initiative [26]. After assessing the robust-
ness, 1016 out of 2632 features were retained for model 
building, with ICC > 0.8. One hundred and seventy-one 
features were identified as independent after Pearson’s 
correlation and Spearman’s rank correlation analysis. 
Eventually, twenty-five predictive radiomics features 

were chosen to generate the radiomics signature by 
LASSO regression. Figure  3 showed the selection of 
radiomics features using the LASSO regression. The 
detail of the 25 radiomics features selected by LASSO 
(Additional file  2: Fig.  1) and the formula for the Rad 
score were described in the Additional file. The Rad 
score was statistically significant in the training set 
(p < 0.001) and test set (p < 0.001) between with  BMI 
and without BMI patients. Figure  4 showed the Rad 
score for each patient, and most patients with BMI had 
a higher Rad score than those without BMI. It indicated 
that the Rad score can be a good differentiator for neu-
roblastoma patients with or without BMI.

Construction of the clinical model and radiomics 
nomogram
Among all patients’ clinical characteristics which 
excluded pathological-related information, nine signifi-
cant predictors including age at diagnosis, gender, max-
imum diameter, NSE, ferritin, LDH, VMA, metabolic 
tumor volume and total lesion glycolysis were identi-
fied by univariate regression analysis. Age at diagnosis, 
NSE and VMA were identified as independent predic-
tors of BMI by multivariate logistic regression analysis 
(Table  2). The AUC of the clinical model constructed 
by the three independent predictors of BMI was 0.875 
(95% confidence interval [CI], 0.806–0.944) and 0.910 
(95% CI, 0.821–0.999) in the training and test sets, 
respectively.

The Rad score, age at diagnosis, NSE and VMA were 
incorporated into the radiomics nomogram (Fig.  5A). 
The calibration curves demonstrated well consistency 
between the nomogram prediction and actual BMI in 
both the training and test sets (Fig. 5B, C). The radiomics 
nomogram achieved good predictive performance with 
AUCs of 0.924 (95% CI: 0.850–0.968) in the training set 
and 0.925 (95% CI: 0.796–0.984) in the test set.

Figure  6 showed the comparison of ROC performance 
between the radiomics models, clinical model and clinical-
radiomics model in the training set and the test set. In the 
training set, the radiomics nomogram outperformed the 
radiomics model or clinical model (AUC: 0.924 vs. 0.900, 
0.875; p = 0.160, 0.035), which was then confirmed in the 
test set (AUC: 0.925 vs. 0.893, 0.910; p = 0.349, 0.732). The 
DCA for the different models in the training and test sets 
were shown in Fig.  7. It demonstrated that the radiom-
ics nomogram resulted in higher overall net benefits than 
either the radiomics model or the clinical model alone.

The results of the predictive performance of the clin-
ical-radiomics model by the different machine learning 
methods in the training and test sets are described in the 
Additional file (Additional file 2: Table 1).
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Discussion
Initial evaluation of BMI in patients with neuroblastoma 
had a crucial influence on the patient’s prognosis, clini-
cal decision-making and further management. In the pre-
sent study, we constructed an 18F-FDG PET/CT-based 
radiomics nomogram for the first time as a non-invasive 
method to predict BMI in pediatric patients with neuro-
blastoma. The radiomics nomogram incorporating the 
age at diagnosis, NSE, VMA and Rad score had an excel-
lent predictive performance in both the training and test 
sets, with an AUC of 0.924 and 0.925, respectively.

Cytology of aspirates and histology of biopsies have 
been the gold standard with which to assess neuro-
blastoma disease in bone marrow for many years [6]. 

However, bone marrow aspirates and biopsies have a 
significant risk for pediatric patients that entails a mul-
tistep process with technical challenges and diagnostic 
complexity [27]. Radiomics is an emerging field, that 
has developed rapidly in recent years with the develop-
ment of precision medicine [28]. Radiomics uses many 
automated data characterization algorithms to convert 
images of the ROI into quantitative high-throughput 
features, which radiologists cannot do with the naked 
eye [29]. By analyzing and calculating the quantitative 
features extracted from medical images to reflect infor-
mation about tumor biology and microenvironment, it 
can elaborate on intra-tumor heterogeneity more effec-
tively and accurately. It has become a useful imaging 

Table 1  Characteristics of patients with neuroblastoma in the training set and test set

BMI Bone marrow involvement, COG Children’s Oncology Group, HVA Homovanillic acid, INSS International Neuroblastoma Staging System, LDH Serum lactate 
dehydrogenase, MTV Metabolic tumor volume, NSE Neuron-specific enolase, TLG Total lesion glycolysis, VMA Vanillylmandelic acid

Characteristics All Patients (n = 133) Training set (n = 93) Test set (n = 40) p value

Age at diagnosis (years) 3.2 (1.7–4.7) 2.8 (1.4–4.7) 3.4 (2.0–4.7) 0.520

Gender 0.866

 Female 75 (54.7%) 52 (54.8%) 23 (54.5%)

 Male 58 (45.3%) 41 (45.2%) 17 (45.5%)

BMI 0.865

 Yes 65 (48.9%) 45 (48.4%) 20 (50.0%)

 No 68 (51.1%) 48 (51.6%) 20 (50.0%)

Maximum diameter(cm) 9.5 ± 3.9 9.3 ± 3.6 10.0 ± 4.6 0.373

MYCN Status 0.845

 Amplified 22 (17.3%) 15 (16.7%) 7 (18.2%)

 Not Amplified 111 (82.7%) 78 (83.3%) 33 (81.8%)

11q Aberration 0.575

 Yes 55 (41.0%) 37 (45.2%) 18 (34.5%)

 No 78 (59.0%) 56 (54.8%) 22 (65.5%)

1p Aberration 0.598

 Yes 52 (41.0%) 35 (41.7%) 17 (40.0%)

 No 81 (59.0%) 58 (58.3%) 23 (60.0%)

INSS Stage 0.435

 1, 2, 3, 4S 43 (30.9%) 32 (31.0%) 11 (30.9%)

 4 90 (69.1%) 61 (69.0%) 29 (69.1%)

COG Risk Stratification 0.540

 Low, Intermediate 45 (32.4%) 33 (31.0%) 12 (34.5%)

 High 88 (67.6%) 60 (69.0%) 28 (65.5%)

NSE (ng/mL) 237.5 (64.5–631.5) 217.9 (61.7–532.3) 315.3 (72.9–798.6) 0.290

Ferritin (ng/mL) 214.5 (72.8–295.8) 232.4 (91.2–303.5) 153.6 (64.6–288.6) 0.421

LDH (U/L) 578.0 (339.5–1038.0) 567.0 (339.5–904.5) 656.5 (342.0–1184.5) 0.589

VMA (μmol/L) 162.5 (46.2–501.8) 162.5 (49.8–552.6) 162.5 (32.2–473.3) 0.937

HVA (μmol/L) 36.4 (14.2–92.3) 36.4 (13.8–91.4) 36.4 (20.4–186.1) 0.595

SUVmax 5.4 (4.0–7.8) 5.2 (4.0–8.6) 5.8 (4.0–7.6) 0.941

SUVmean 2.0 (1.6–2.6) 2.0 (1.6–2.6) 2.2 (1.6–2.6) 0.669

MTV (mL) 130.3 (52.5–292.5) 130.3 (52.4–266.5) 131.8 (54.4–364.6) 0.772

TLG 269.5 (95.5–651.4) 248.0 (96.7–524.1) 296.8 (86.2–854.0) 0.662



Page 7 of 11Feng et al. Insights into Imaging          (2022) 13:144 	

Fig. 3  Radiomics feature selection using the least absolute shrinkage and selection operator (LASSO) regression. A The tuning parameter lambda 
(λ) in the LASSO regression model was selected via five-fold cross-validation based on minimum criteria. The LASSO regression model shows the 
best predictive performance when the λ value was set as 0.027167 and log(λ) was − 3.605761, at which point 25 features were selected. B The 
dotted vertical line was plotted at the selected λ value, resulting in 25 non-zero-coefficient features

Fig. 4  A Rad score of each patient in the training set. B Rad score of each patient in the test set

Table 2  Univariate and multivariate logistic regression analysis of clinical characteristics for predicting the BMI in the training set

CI Confidence interval, HVA Homovanillic acid, LDH Serum lactate dehydrogenase, MTV Metabolic tumor volume, NA Not available, NSE Neuron-specific enolase, OR 
Odds ratio, TLG Total lesion glycolysis, VMA Vanillylmandelic acid

Characteristics Univariate Multivariate

OR (95% CI) p value OR (95% CI) p value

Age at diagnosis (years) 1.547 (1.219, 1.962)  < 0.001 1.551 (1.184, 2.031) 0.001

Gender 2.500 (1.079, 5.792) 0.033 NA NA

Maximum diameter(cm) 1.215 (1.065, 1.387) 0.004 NA NA

NSE (ng/mL) 1.003 (1.002, 1.005)  < 0.001 1.003 (1.002, 1.005)  < 0.001

Ferritin (ng/mL) 1.007 (1.003, 1.011)  < 0.001 NA NA

LDH (U/L) 1.000 (1.000, 1.001) 0.047 NA NA

VMA (μmol/L) 1.002 (1.000, 1.003) 0.010 1.002 (1.001, 1.003) 0.006

HVA (μmol/L) 1.003 (0.999, 1.006) 0.161 NA NA

SUVmax 1.309 (0.860, 1.991) 0.403 NA NA

SUVmean 1.309 (0.860, 1.991) 0.209 NA NA

MTV (mL) 1.003 (1.000, 1.006) 0.032 NA NA

TLG 1.001 (1.000, 1.002) 0.029 NA NA
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marker and can non-invasively provide the information 
for the diagnosis, improve the differential diagnosis, 
the classification of risk and staging, efficacy assess-
ment, and prognosis of tumors [30]. 18F-FDG PET/
CT has the advantages of superior spatial resolution, 
high sensitivity, lesion semi-quantification, improved 
tumor-to-background contrast, and is widely used in 
the evaluation of pediatric neuroblastoma and metas-
tasis [31]. A study compared different imaging modali-
ties in 51 patients with high-risk neuroblastoma and 
concluded that 18F-FDG PET/CT is highly effective in 
identifying neuroblastoma for revealing small lesions, 
and for delineating the extent and localizing sites of 
disease [32]. In our study, a total of 2632 radiomics 

features were extracted from both CT and PET images. 
Finally, twenty-five radiomics features based on the 18F-
FDG PET/CT were selected by LASSO regression. The 
twenty-five radiomics features were used to construct 
the radiomics model and demonstrated a favorable abil-
ity to predict BMI in both the training and test sets. The 
radiomics model achieved an AUC of 0.900 in the train-
ing set and 0.893 in the test set in predicting BMI in 
children with neuroblastoma. Of the twenty-five radi-
omics features, the majority of selected features were 
wavelet features (18/25). It was indicated that features 
extracted from the images transformed by wavelet filter 
played an important role in the radiomics model. The 
wavelet filter can decompose special patterns hidden 

Fig. 5  A Radiomics nomogram for non-invasively prediction of bone marrow involvement (BMI) in pediatric patients with neuroblastoma. The 
radiomics nomogram was a visual representation of the clinical-radiomics model in the training set, which incorporated the Rad score, age at 
diagnosis, neuron-specific enolase and vanillylmandelic acid. B Calibration curves of the nomogram in the training set. C Calibration curves of the 
nomogram in the test set
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in the mass of data and the wavelet features may better 
explore tumor heterogeneity [21].

In addition to radiomics analysis, we also evaluated the 
value of clinical characteristics in predicting BMI. The 
age at diagnosis, NSE and VMA were identified as the 
independent predictors of BMI by univariate and multi-
variate logistic regression analyses. The children with age 
at diagnosis ≥ 18 months had a significantly higher risk of 
recurrence than those with age < 18 months [33]. And for 
patients aged ≥ 18  months at diagnosis, there is a clear 
correlation between worse outcomes with the increasing 
metastatic burden (including BMI) [4]. NSE, a specific 
isoenzyme of the glycolytic enzyme enolase, is highly 
expressed in neurons and peripheral neuroendocrine 

cells. Previous studies indicated that serum NSE lev-
els ≥ 100  ng/mL were associated with a poor outcome 
[34]. Neuroblastoma can synthesize and secrete catecho-
lamines and VMA is increased in the urine of children 
with neuroblastoma. Thus, the serum levels of NSE and 
urine levels of VMA are considered characteristic tumor 
markers of neuroblastoma [33], which can assess the con-
dition, predict the effect of treatment and evaluate the 
prognosis of children with neuroblastoma [34].

Due to heterogeneity of clinical presentation of neu-
roblastoma, this disease is divided into clinically distinct 
subgroups, high, intermediate, and low-risk groups, based 
on different parameters, including the extent of the dis-
ease (whether or not with BMI). According to the INSS, 

Fig. 6  A Receiver operating characteristic (ROC) curves for the clinical model, radiomics model and nomogram in the training set. B ROC curves for 
the clinical model, radiomics model and nomogram in the test set

Fig. 7  A Decision curve analysis (DCA) for the clinical model, radiomics model and nomogram in the training set. B DCA for the clinical model, 
radiomics model and nomogram in the test set
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neuroblastoma was staged as stages 1, 2, 3, 4 and 4S. 
Tumors with dissemination to distant lymph nodes, bone, 
bone marrow, liver, skin and other organs were defined as 
stage 4. Of the stage 4 neuroblastoma patients, 78% have 
BMI. The spread of tumor cells to bone marrow is a grim 
prognostic factor in neuroblastoma patients, with a low 
5-year event-free survival rate (29%) [4]. Therefore, BMI, 
age at diagnosis, NSE and VMA are all associated with 
poor prognosis in neuroblastoma. The present study dem-
onstrated that the age at diagnosis, NSE and VMA as inde-
pendent predictors of BMI. The clinical model included 
the three independent predictors with an AUC of 0.875 
and 0.910 in the training and test sets, respectively.

Furthermore, we developed and validated an 18F-FDG 
PET/CT-based radiomics nomogram that incorporates the 
Rad score and independent predictors of BMI, which showed 
a preferable prediction of BMI in pediatric patients with neu-
roblastoma. Comparisons and evaluations of each model by 
DCA further demonstrated that the radiomics nomogram 
resulted in net benefits of providing more than the clinical 
model or radiomics model within a certain threshold prob-
ability range. The results showed that radiomics nomogram 
may provide the physician with an independent or auxiliary 
predictive tool to enhance the diagnostic efficiency for BMI 
in patients with neuroblastoma.

There were some limitations in this study. Our study 
was retrospective, which inevitably result in selection 
bias. Moreover, this was a single-center study and the 
sample size was relatively small, which makes it less gen-
eralizable to other centers, therefore, the clinical appli-
cation and generalization of the model still need to be 
further improved and validated by multicenter studies 
with a larger sample size.

Conclusions
In conclusion, the 18F-FDG PET/CT-based radiomics 
nomogram which incorporates Rad score and independ-
ent clinical risk factors (including the age at diagnosis, 
NSE, and VMA) showed satisfactory value for the pre-
diction of the BMI in pediatric patients with neuro-
blastoma in this preliminary study, and larger series are 
required to confirm this study’s results. As a non-inva-
sive quantitative method, it holds the potential to assess 
the prognosis of the patients and assist in decision-mak-
ing and further management of neuroblastoma.
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