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The colonial cnidarian Hydractinia
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Abstract 

Hydractinia, a genus of colonial marine cnidarians, has been used as a model organism for developmental biology 
and comparative immunology for over a century. It was this animal where stem cells and germ cells were first studied. 
However, protocols for efficient genetic engineering have only recently been established by a small but interactive 
community of researchers. The animal grows well in the lab, spawns daily, and its relatively short life cycle allows 
genetic studies. The availability of genomic tools and resources opens further opportunities for research using this 
animal. Its accessibility to experimental manipulation, growth- and cellular-plasticity, regenerative ability, and resist-
ance to aging and cancer place Hydractinia as an emerging model for research in many biological and environmental 
disciplines.
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Natural habitat and lifecycle
Hydractinia symbiolongicarpus and H. echinata are sister 
species of colonial hydrozoan cnidarians. H. symbiolongi-
carpus occurs along the eastern coast of North America, 
from Maine to South Carolina [1]. H. echinata is found 
along North European Atlantic coasts [2]. In the field, 
they are found exclusively on gastropod shells occupied 
by hermit crabs (e.g., Pagurus longicarpus). Colonies 
consist of polyps specialized for feeding, reproduction, 
or defense, which grow from a sheet of tissue called the 
stolonal mat (Fig. 1a). Unlike many of its hydrozoan rela-
tives, Hydractinia does not produce a free-living medusa 
stage (jellyfish). Instead, gametes mature in a rudimen-
tary medusoid that remains attached to sexual polyps 
(Fig. 1b). All polyps within a colony are clonally derived 
and therefore genetically identical. The mat consists of 
two epidermal cell layers, which sandwich a network of 
gastrodermal canals connecting polyps to each other 
and forming a gastrovascular system. Colonies grow by 
expanding the edge of the mat or by elongating individual 
stolons, extensions of gastrovascular canals encased in a 

thin, chitinous integument called the periderm. Colonies 
are dioecious and spawn about 90 min after first light. 
Eggs sink to the bottom after fertilization and develop 
into a planula larva within 2–3 days (Fig. 1b). Mature lar-
vae latch onto a passing hermit crab shell by firing nema-
tocysts located in their posterior ends [3]. Once on the 
shell, the larvae metamorphose into a primary polyp in 
response to a bacterial cue [4]. The juvenile colony then 
grows as described above, frequently covering the entire 
shell.

Lab culture and field collection
Hydractinia can be cultured in the lab with supplies avail-
able at most aquarium stores (Fig. 1c). A typical setup is 
a 39-L glass aquarium filled with any commercial artifi-
cial seawater (29–32  ppt) and maintained at 18–22  °C. 
Colonies grow best with ample water movement, thus 
a power head (usually one designed for a 110 L tank) is 
attached to the side of the tank. Hydractinia is sensitive 
to the accumulation of ammonia and nitrites. Biological 
filtration is therefore provided with an external filter or 
an internal sponge filter and second power head. Phos-
phates can also inhibit colony growth but are controlled 
by placing small bags of phosphate absorbing media in 
each tank. With this in place, a weekly 25% water change 
is enough to maintain healthy colonies.
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To establish a Hydractinia culture from a field-
collected animal, a piece of the colony bearing sev-
eral feeding polyps is excised from its shell with a 
sharp blade and then tied with thread to a stand-
ard 25 × 75  mm glass microscope slide. The thread is 
removed after the explant attaches to the slide. This col-
ony can then be propagated indefinitely by explanting it 
onto new slides. The slides can be stored in a histology 
slide box with the cover removed and the bottom cut 
out, which is placed at the bottom of the tank.

Hydractinia can also be bred in the lab. This is done by 
keeping them on a regular dark:light cycle (e.g., 8 h:16 h). 
Approximately an hour and a half after turning on the 
lights, eggs and sperm are spawned and can be com-
bined in artificial seawater in a Petri dish, where fertilized 
eggs begin embryonic development. After 3–4 days, the 
resulting larvae may be induced to settle by incubating 
them for 2–3 h in 100 mM CsCl and subsequently plac-
ing them on a new microscope slide. There, larvae meta-
morphose into a primary polyp, which is competent to 
feed within 1–3  days post-metamorphosis. Despite the 
predictable, light-induced spawning, spawning may occa-
sionally occur at other times. It is therefore advisable to 
keep male and female colonies in separate tanks to pre-
vent the uncontrolled production of larvae.

Laboratory cultures of Hydractinia fare well on a diet 
of 4-day-old Artemia nauplii, which they receive three 
times per week. When many embryos are required for 
an experiment, we have found it beneficial to supple-
ment this diet with pureed oysters twice a week. Colo-
nies receiving this diet release gametes more reliably, in 
greater quantities, and with higher quality.

Today, most laboratories studying Hydractinia sym-
biolongicarpus work with strains derived from a single 
population in New Haven Harbor, Connecticut. The 
primary strain is a male colony, called 291-10, which 
is particularly vigorous in laboratory culture and, for 
this reason, was the animal chosen for the Hydractinia 
genome project (see below). Several female strains (e.g., 
295-8) are also in use and their genome sequencing is in 
progress. Transgenic/mutant strains, derived from cross-
ing 291-10 to a female strain, have also been established. 
All strains are available by request from our labs. Some 
European researchers use H. echinata, for which a full 
genome sequence has been generated as well; however, 
no selected laboratory strains exist for this species and its 
maintenance is more challenging.

Major interests and research questions
Cnidarians are an interesting and highly diverse group 
of animals. This phylum diverged from the lineage lead-
ing to bilaterian animals (that includes flies, worms, 
and vertebrates) at least 600  million years ago [5], 
providing sufficient time for substantial diversifica-
tion within the cnidarian lineage (Fig.  2). Most extant 
cnidarians share a body wall consisting of an epithe-
lial bilayer, a gastric cavity, and a unique cell type—the 
stinging cell or cnidocyte (also known as nematocyte) 
from which the phylum name derives. Cnidarians are 
phylogenetically positioned as the sister group to bila-
terians [6]; therefore, studying biological phenomena 
in cnidarians can provide insight into their origin and 
how they have changed over evolutionary time between 

Fig. 1  Hydractinia morphology, life history, and culture. a Colony 
growing on a microscope slide. Major morphological structures 
are labeled. This colony was explanted from a larger colony. The 
yellow-brown rectangle at the center is a layer of chitin that is slowly 
deposited below the mat as the colony grows and indicates the 
outline of the original explant. Scale bar = 1 mm. b Life cycle of 
Hydractinia. c Typical setup of a 39-L glass aquarium for culturing 
Hydractinia (image in b from Ref. [18] and licensed under CC BY 4.0 
(link: https​://creat​iveco​mmons​.org/licen​ses/by/4.0/))
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and within phyla. The past two decades have brought 
substantial progress in cnidarian molecular biology and 
genetics, enabling functional genetic studies at least in 
some cnidarian representatives [7]. Overall, cnidarians’ 
relative morphological simplicity, sequenced genomes 
[8–10], amenability to genetic manipulation [11–13], 
and phylogenetic position promise a fruitful future in 
research on these animals that will inform areas span-
ning all the way from evolutionary biology to biomedi-
cal sciences.

Current research on Hydractinia focuses on a number 
of topics, including embryonic development [14], neuro-
genesis [15, 16], stem cells, germ cells, and regeneration 
[17–20], allorecognition [21], metabolism [22], immunity 
[23], and natural product chemistry [24]. Allorecogni-
tion refers to the ability to discriminate ‘self ’ from ‘non-
self ’ within the same species, a phenomenon observed in 
most colonial cnidarians, but not in Hydra or Nematos-
tella, the two most commonly used cnidarian model sys-
tems for molecular work. At present, Hydractinia is the 
only cnidarian in which genes controlling allorecognition 
have been identified and functionally characterized [25].

Other areas of interest are stem cells and regeneration. 
These topics have been well studied in Hydra [26, 27] and 
are emerging topics for Nematostella researchers too [28, 
29]. Interestingly, data published to date suggest that both 
stem cell behavior and the mode of regeneration differ 
substantially between cnidarian species [18, 28, 30]. For 
example, hydrozoan neuronal cells derive from migratory 
i-cells, whereas in anthozoans, neural progenitor cells 
are epithelial [16]. As to regeneration modes, Hydra can 
reform the main head structures following decapitation 
in the absence of cell proliferation whereas in Hydractinia 
and Nematostella cell proliferation is essential for regen-
eration [18]. These findings highlight the importance of 
studying more than one animal in order to prevent false 
conceptual generalizations and underestimation of the 
complexity underlying biological phenomena.

Hydractinia does not show any evidence for age-related 
deterioration [31], is highly resistant to ionizing irradia-
tion [18], and develops tumors only very rarely following 
genetic manipulation [19] but not spontaneously. These 
features are consistent with high genomic stability in this 
animal, a feature that remains to be investigated.

Experimental approaches
Manipulating gene expression has so far only been estab-
lished in four cnidarians: Hydra, Nematostella, Hydrac-
tinia, and Clytia [11–13, 32]. This can be done either by 
permanent modification of the animal’s genome or by 
transient interference with specific gene products. Both 
approaches have their pros and cons and their usage 
depends on the type of experiment being conducted and 
availability of appropriate protocols for a given species 
and life stage.

The most common approach in Hydractinia is micro-
injection of nucleic acids and/or proteins into the zygote. 
Hydractinia spawning is light-induced without the need 
for any further induction [33]. Eggs are not embedded 
in jelly and can be directly microinjected upon fertiliza-
tion [12]. Electroporation techniques are currently being 
developed in the authors’ labs with promising results. 
Circular plasmids readily integrate into the Hydractinia 
genome [12]. The site of integration is unknown, but the 
process is highly efficient; in excess of 80% of injected 
embryos become transgenic in the hands of experienced 
researchers. This approach has been used to create flu-
orescent reporter lines for many developmental genes 
and cell type-specific markers (e.g., Fig.  3). A more tar-
geted way to genetically manipulate the animals is pro-
vided by CRISPR–Cas9 technology. In Hydractinia, this 
is performed by microinjecting site-specific short guide 

Fig. 2  Cladogram showing evolutionary relationships between 
Hydractinia and other model organisms

Fig. 3  Live imaging of transgenic Hydractinia gastrozooids. a A polyp 
expressing eGFP under an RFamide precursor promoter, labeling a 
subset of neurons. The animal was created via random integration 
of a circular DNA plasmid. b A polyp expressing eGFP under the 
endogenous Eef1a promoter. The animal was created using CRISPR/
Cas9 to target integration of the eGFP coding sequence into the 
Hydractinia Eef1a locus (image from Ref. [34] and licensed under CC 
BY 4.0 (link: https​://creat​iveco​mmons​.org/licen​ses/by/4.0/))

https://creativecommons.org/licenses/by/4.0/


Page 4 of 6Frank et al. EvoDevo            (2020) 11:7 

RNAs (sgRNA) together with recombinant Cas9 to gen-
erate loss-of-function mutations [16, 20]. Adding to 
the injecting cocktail a plasmid including a fragment of 
DNA, flanked by two homology arms, can be used for 
targeted knock-in of fragments [34]. As with all plasmids, 
this DNA could also integrate randomly into the genome. 
Designing the injected DNA such that it must rely on the 
promotor of the target gene limits the likelihood that it 
would be expressed if integrating non-specifically.

Gene expression manipulation without genetic altera-
tion can be achieved by injecting short hairpin RNA 
(shRNA) [20] or morpholino oligonucleotides [35] to 
lower expression of genes, or synthetic RNA to overex-
press them (Török et al. unpublished data). Finally, incu-
bating polyps in seawater containing double stranded 
RNA (dsRNA) transiently lowers the expression of the 
corresponding gene, albeit with low efficiency [36].

Hydractinia is also unique among model cnidarians 
for being the only species in which a forward genetic 
approach has been used to identify the genetic basis of a 
phenotype. The reasons for this are almost entirely logis-
tical. First, Hydractinia colonies can produce hundreds of 
embryos per day, making it possible to quickly generate 
large populations of bred animals. Second, the animals 
grow as encrustations on a surface that can be labeled, 
making it possible to co-culture large populations of 
genetically distinct animals in a small number of tanks. 
To date, forward genetic approaches have been used to 
identify genes responsible for allorecognition [37–39] 
and sex determination (Nicotra, unpublished data). 
Given the availability of a sequenced genome and the cost 
efficiency of high-throughput genotyping, it seems feasi-
ble to consider mutagenesis screens as well.

An additional experimental approach in Hydractinia 
is grafting of tissues. This can be done for, e.g., introduc-
ing transgenic cells into a colony [20]. Grafting of tissues 
from genetically distinct individuals requires at least par-
tial matching of allorecognition alleles to prevent alloge-
neic rejection [25].

Single-cell RNA sequencing methods are also under 
development in our labs with the first single-cell sequenc-
ing libraries giving encouraging results. Our current goal 
is to develop a robust cellular atlas to define major cell 
types and subtypes in Hydractinia and to identify marker 
genes for all cell types as was recently done in Hydra and 
Nematostella [40, 41]. With a robust genome and cellu-
lar atlas in place, Hydractinia will be poised to answer 
biological questions in a more comprehensive way. Flow 
cytometry and fluorescence activated cell sorting (FACS) 
protocols are available [20], and together with many 
transgenic reporter strains it allows for generating cell 
type-specific transcriptomes following FACS-sorting of 
defined cell populations.

As with any model organism, Hydractinia has limita-
tions. Perhaps most obvious one is that it lacks a medusa 
stage, so researchers interested in this feature must look 
elsewhere, notably to the hydroid Clytia and the scypho-
zoan Aurelia. The existing Hydractinia research com-
munity also remains small compared to that for Hydra 
and Nematostella, so the availability of shared reagents 
and techniques is somewhat more limited. This concern 
is increasingly mitigated by additional labs beginning to 
study Hydractinia, and an upsurge in crosstalk between 
researchers.

Research community and resources
The Hydractinia research community is relatively small 
but growing as Hydractinia is gaining recognition as a 
tractable cnidarian research model. A recent NSF Ena-
bling Discovery through GEnomic Tools (EDGE) grant 
has been awarded to the authors, ensuring that the 
genetic toolkit and community of Hydractinia research-
ers will continue to blossom and grow. Current resources 
include high-quality genomes and transcriptomes from 
both Hydractinia symbiolongicarpus and H. echinata. 
Draft Illumina genome and transcriptome assemblies are 
publicly available through the Hydractinia Genome Pro-
ject Portal (https​://resea​rch.nhgri​.nih.gov/hydra​ctini​a/), 
and long-read PacBio genome assemblies for both spe-
cies are forthcoming (Schnitzler et al. unpublished data). 
With an estimated genome size of 774 Mb for H. echinata 
and 514  Mb for H. symbiolongicarpus, the Hydractinia 
genomes are larger than the genome of Nematostella 
(329  Mb) but smaller than that of Hydra (1086  Mb). 
Annotated reference genomes and transcriptomes can 
be used for mapping standard RNA sequencing data [20]. 
Laboratory selected, fast-growing strains are available to 
anyone. We are developing a community portal at www.
hydra​ctini​a.org to be completed in the coming months, 
which will link to written and video-based protocols 
and to a community forum, and provide an online form 
to request animals. Newcomers to the field are encour-
aged to attend the two biennial research conferences, 
the American Cnidofest [42] and the European Tutzing 
meeting [43].
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