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Conserved gene signalling and a derived 
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Abstract 

Background:  Vertebrates possess a diverse range of integumentary epithelial appendages, including scales, feathers 
and hair. These structures share extensive early developmental homology, as they mostly originate from a conserved 
anatomical placode. In the context of avian epithelial appendages, feathers and scutate scales are known to develop 
from an anatomical placode. However, our understanding of avian reticulate (footpad) scale development remains 
unclear.

Results:  Here, we demonstrate that reticulate scales develop from restricted circular domains of thickened epithe‑
lium, with localised conserved gene expression in both the epithelium and underlying mesenchyme. These domains 
constitute either anatomical placodes, or circular initiatory fields (comparable to the avian feather tract). Subsequent 
patterning of reticulate scales is consistent with reaction–diffusion (RD) simulation, whereby this primary domain sub‑
divides into smaller secondary units, which produce individual scales. In contrast, the footpad scales of a squamate 
model (the bearded dragon, Pogona vitticeps) develop synchronously across the ventral footpad surface.

Conclusions:  Widely conserved gene signalling underlies the initial development of avian reticulate scales. How‑
ever, their subsequent patterning is distinct from the footpad scale patterning of a squamate model, and the feather 
and scutate scale patterning of birds. Therefore, we suggest reticulate scales are a comparatively derived epithelial 
appendage, patterned through a modified RD system.
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Background
Integumentary epithelial appendages are a diverse group 
of organs that includes scales, feathers, teeth and hair 
[1]. These structures facilitate a broad range of functions, 
such as communication, protection, thermoregulation 
and locomotion [2–4]. Recent research has revealed they 
share developmental homology, as they mostly originate 
from a conserved epithelial placode, which develops 
within an initiatory field such as a feather tract [5–8]. 
This placode is characterised by conserved patterns of 

gene expression in the epithelium and underlying mes-
enchyme, as well as columnar basal epithelial cells which 
exhibit a reduced rate of proliferation [5, 9, 10]. The 
spatial distribution of these conserved placodes during 
development, and therefore the ultimate pattern of adult 
epithelial appendages, is important for facilitating their 
diverse functions.

Epithelial appendage patterning is thought to be con-
trolled by a reaction–diffusion (RD) system, whereby 
interactions between differentially diffusing activatory 
and inhibitory morphogens give rise to autonomous 
pattern formation [11, 12]. Previous research has indi-
cated that RD is of widespread importance during epi-
thelial appendage patterning of species from a diverse 
range of taxonomic groups, from sharks to mammals 
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[8, 13, 14]. RD mediates the spatial distribution of indi-
vidual epithelial placodes, which subsequently undergo 
morphogenesis and differentiate into their final adult 
form.

However, further research has demonstrated that there 
are exceptions to this patterning mechanism. The head 
scales of crocodiles are not individual developmental 
units. Instead, they arise from the physical cracking of 
highly keratinised skin, presenting a stochastic patterning 
system distinct from RD [15]. Additionally, mechanosen-
sory forces in the tissue are considered to be important 
for the initiation of follicle patterning in avian skin [16, 
17]. This demonstrates that alternative processes con-
tribute to the diversity of vertebrate epithelial appendage 
patterning.

The chicken embryo is an important model for study-
ing epithelial appendage development and associated 
RD patterning [8]. Chickens possess a range of epithe-
lial appendages, including feathers (of which there are 
several types, from filoplume to flight feathers [18]) and 
various scale types [19] (Fig. 1A–C). Overlapping scutate 
scales are found on the anterior metatarsal shank and the 
dorsal surface of the foot, whereas radially symmetrical 
reticulate scales are typically found on the ventral sur-
face of the foot and digits (Fig. 1B–C) [20], presumably to 
provide cushioning and grip during locomotion.

There is uncertainty regarding the evolutionary rela-
tionships between different squamate and avian scale 
types [5, 21]. It has been hypothesised that squamate 
reptilian scales share more similarity with avian reticu-
late scales than avian scutate scales [22]. However, the 
identification of an anatomical placode in squamate 
scale development indicates that reticulate scales might 
be derived structures [5, 6, 23]. Reticulate scales may be 
distinct from other amniote epithelial appendages due to 
the apparent lack of individual epithelial placodes [6, 24]. 
A recent transcriptome sequencing (RNA-seq) analysis 
showed that gene expression during feather develop-
ment is more similar to that of scutate scale development 
than expression during reticulate scale development [25]. 
One conclusion from this study suggested that reticulate 
scales are comparatively less derived than feathers and 
scutate scales, potentially representing a more primi-
tive state. Separate research compared avian epithelial 
appendage development and proposed that scutate scales 

are secondarily derived from feathers [26]; however, this 
study did not examine reticulate scales.

Although feathers have provided a widely used model 
system for studying avian epithelial appendage develop-
ment [8, 27], the development of reticulate scales has 
been largely unexplored at both cellular and molecular 
levels. Developmental studies exploring reticulate scales 
are absolutely necessary to improve our understanding 
of both the evolutionary relationships between different 
avian and squamate epithelial appendage types, and the 
evolution of avian-specific epithelial appendages.

Here, we examine the development of epithelial 
appendages in the chicken (Gallus gallus), focusing upon 
the patterning of reticulate scales. Using scanning elec-
tron microscopy (SEM), in  situ hybridisation (ISH) and 
immunofluorescence, we ask whether the development 
of reticulate scales is underpinned by conserved gene 
signalling, known to be important throughout the devel-
opment of other avian and squamate epithelial append-
age types. Additionally, we investigate whether reticulate 
scale development follows a patterning mechanism con-
sistent with RD simulation during their propagation 
throughout the footpad.

Results
Avian and squamate scales exhibit morphological diversity
First, we aimed to investigate the diversity of both avian 
and squamate epithelial appendages. To do this, we used 
scanning electron microscopy (SEM) to examine mor-
phological variations in the epithelial appendages of 
these evolutionarily distinct groups. Birds and squamates 
share a common ancestry within Diapsida, but their 
respective lineages diverged from each other approxi-
mately 255 million years ago [28]. Diverse feather types 
develop in tracts from the proximal–distal elongation 
of feather buds, covering most of the chicken embryo’s 
body (Fig.  1A). Scutate scales are large, overlapping, 
approximately rectangular structures found on the meta-
tarsal shank and dorsal surface of the foot [20, 29]. Both 
feathers and scutate scales display anterior–posterior 
asymmetry (Fig.  1A, B) after developing from a radially 
symmetrical placode (Fig. 2A–P, Fig. 3A–H) [20]. Reticu-
late scales form on the ventral surface of the footpad and 
digits (Fig.  1C). Unlike feathers and scutate scales, they 
maintain radial symmetry in their adult form.

Fig. 1  Morphological diversity of avian and reptilian integumentary appendages. Scanning electron microscopy (SEM) was used to examine the 
morphological characteristics of avian and reptilian appendage types. The E14 chicken embryo (Gallus gallus) possesses feathers (A), scutate scales 
on the metatarsal shank and dorsal foot surface (B), and reticulate scales on ventral foot surface (C). The hatchling veiled chameleon (C. calyptratus) 
possesses bilateral scales on the dorsal and ventral foot surface, which bare morphological similarity to reticulate scales (D). The hatchling 
blue-headed anole (A. allisoni) (E) and the E46 bearded dragon (Pogona vitticeps) (F) possess large overlapping scales, more similar to avian scutate 
scales. Scale bar lengths are: A, Bi, Di, Dii, Ei, Eii, Fi, Fii = 125 µm, Ai, Aii = 50 µm, B, D, F = 500 µm, Bii, Ci = 75 µm, C, E = 250 µm, Cii = 25 µm

(See figure on next page.)
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Fig. 2  Conserved gene signalling underlies the development of feathers, scutate and reticulate scales. Vibratome sectioning of whole-mount ISH 
samples was done to examine tissue layer-specific expression of β-cat, Shh and Bmp4 during development of avian epithelial appendages. Sections 
shown are false coloured, with DAPI in grey and gene expression in pink. Immunoreactivity of PCNA was also examined, with DAPI in blue and 
PCNA in green. PCNA immunoreactivity revealed columnar cells of the basal epithelium with reduced proliferation compared to surrounding cells 
during the primary epithelial thickening stage, for feathers, scutate and reticulate scales (A, I, Q) (white arrowheads). β-cat expression was localised 
to the epithelium during both the primary stage and morphogenesis of chick feather, scutate and reticulate scale development (B, F, J, N, R, V). 
Similarly, Shh expression was localised to the epithelium, although at the reticulate scale primary epithelial thickening stage, localised expression 
was not observed (C, G, K, O, S, W). Expression of Bmp4 was mesenchymal during the primary stage and observed in both the epithelium and 
mesenchyme during morphogenesis (D, H, L, P, T, X). Overall, these results suggest avian appendage development is underpinned by conserved 
gene signalling. White dashed lines separate the basal epithelium from the mesenchyme. Scale bars are 75 µm in length
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We next examined the morphology of squamate scales 
belonging to three lizard species, to discern the diver-
sity of these structures. This included the veiled chame-
leon (Chamaeleo calyptratus) and the bearded dragon 
(Pogona vitticeps) which are members of Acrodonta, and 
the blue-headed anole (Anolis allisoni), which belongs 
to Pleurodonta [30]. Hatchling C. calyptratus possess 
bilateral overlapping scales on the dorsal surface of the 
feet (Fig. 1D). Scales on the ventral foot surface retain a 
similar shape to the dorsal scales, but do not overlap and 
appear thicker than those on the dorsal surface (Fig. 1D). 
These ventral foot scales are morphologically similar to 
chicken reticulate scales (Fig. 1C). Scales of hatchling A. 
allisoni are large, overlapping and approximately rectan-
gular, with those on the ventral foot surface appearing 
comparable to chicken scutate scales, in terms of their 
general morphology (Fig. 1E). The scales of pre-hatchling 
(E46) P. vitticeps are similar to those of A. allisoni, as they 
are large, overlapping structures on both the dorsal and 
ventral foot surfaces (Fig. 1F).

Overall, there appears to be less morphological diver-
sity between the scales present on ventral and dorsal 
foot surfaces of the lizard species examined here than 
observed in the chicken. Furthermore, we observed no 

clear boundary separating dorsal and ventral squamate 
scale types. Therefore, the scales on lizard dorsal and 
ventral foot surfaces may be modifications of a similar 
squamate scale morphology, whereas the chicken pos-
sesses morphologically distinct scale types: the scutate 
and reticulate scales [20].

Conserved gene signalling is observed 
throughout the development of reticulate scales and other 
avian appendages
Next, we aimed to compare and understand the devel-
opmental pathways and mechanisms underlying the 
early formation of different avian epithelial appendages, 
including reticulate scales. Most epithelial appendages 
have been shown to develop from the initial formation of 
an anatomical placode, which arises within an initiatory 
field such as a feather tract [1, 5, 8]. The anatomical pla-
code is defined by an epithelial thickening with columnar 
cells exhibiting a reduced rate of proliferation, along with 
conserved molecular signalling in both the epithelium 
and underlying mesenchyme [5]. First, to investigate cel-
lular proliferation rate, we examined immunoreactivity 
of proliferating cell nuclear antigen (PCNA) during the 
early development of avian epithelial appendages (Fig. 2).

Fig. 3  Localised β-catenin expression demarks feather, scutate and reticulate scale development. Whole-mount ISH for β-cat was performed to 
examine patterning of avian epithelial appendages. Feather patterning begins at E7, with a bifurcating dorsolateral row of feathers developing 
within an initiatory tract, triggering RD patterning of adjacent feathers [8] (A–D). Scutate scales form along the anterior metatarsal shank and dorsal 
foot surface, beginning at E10 (E–H). Restricted circular domains of β-cat preceding individual reticulate scales are visible at E10.5 along the ventral 
surface of the footpad and digits (I–K). These domains appear to subsequently subdivide into smaller units at E12 (L), which then form individual 
reticulate scales. Scale bar lengths are as follows: A, E = 2000 µm, B, C, D, I, = 1000 µm, J, K, L = 500 µm, F, G, H = 400 µm
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As shown previously, avian feathers and scutate scales 
both develop from anatomical placodes which first arise 
within initiatory fields at embryonic day 7 (E7) and E10, 
respectively [6, 8, 31]. These placodes exhibit colum-
nar cells of the basal epithelium with a characteristically 
reduced rate of proliferation compared to surrounding 
cells [5] (Fig.  2A, I, white arrowheads). Notably, PCNA 
immunoreactivity indicated that reticulate scales first 
develop from comparatively larger epithelial thickenings 
that emerge along the ventral side of the footpad and dig-
its at E10.5. These placodes also possess columnar basal 
epithelial cells with a slightly reduced proliferation com-
pared to surrounding cells (Fig.  2Q, white arrowhead, 
Additional file 1: Figure S1).

We next aimed to investigate whether conserved 
molecular signalling in the epithelium and mesenchyme 
underlies the development of chicken epithelial append-
ages. First, we examined expression of the transcriptional 
cofactor β-catenin (β-cat), one of the earliest known epi-
thelial regulators of primordium-specific gene expression 
[32] (Figs. 2, 3). Whole-mount ISH revealed β-cat demar-
cates the development of feathers, scutate and reticulate 
scales, from initiation through to morphogenesis (Fig. 3) 
[32, 33]. Whilst feather development involves anterior to 
posterior and lateral addition of primordia (Fig.  3A–D), 
similar to zebrafish scale patterning [34], scutate scale 
patterning occurs through the spread of placodes proxi-
mally along the metatarsal shank and distally along the 
digits (Fig. 3E–H). Some scutate scale placodes may fuse 
to produce enlarged scale buds [26]. Notably, localised 
expression of β-cat marks restricted circular domains 
along the ventral footpad and digits (E10.5, Fig.  3I–K), 
which appear to subsequently subdivide into individual 
reticulate scales (E12, Fig. 3L).

Sectioning of whole-mount ISH samples revealed that 
expression of β-cat was specific to the epithelium of 
developing feathers, scutate and reticulate scales, dur-
ing both the primary epithelial thickening and morpho-
genesis stages (Fig.  2B, F, J, N, R, V). Additionally, we 
examined expression of a conserved regulator of epi-
thelial appendage development, sonic hedgehog (Shh) 
[8, 35–37]. Shh expression was observed in the epithe-
lium of developing appendages at both the placode and 
morphogenesis stages of development for feathers and 
scutate scales (Fig.  2C, G, K, O) [8]. Expression of Shh 
was not localised to the primary epithelial thickening 
stage of reticulate scales at E10.5, although we observed 
weak expression in the epithelium and underlying mes-
enchyme (Fig. 2S). During morphogenesis, expression of 
Shh was strong and specific to individual elevations of the 
epithelium (Fig. 2W). Finally, we charted the expression 
of bone morphogenetic protein 4 (Bmp4), a mesenchymal 
marker of placode development [5, 8]. Bmp4 expression 

was limited to the mesenchyme during the primary epi-
thelial thickening stage of feathers, scutate and reticulate 
scales (Fig.  2D, L, T), before also shifting to the epithe-
lium during morphogenesis (Fig.  2H, P, X). We also 
observed localised expression of additional conserved 
markers including bone morphogenetic protein 2 (Bmp2) 
and sprouty 2 (Spry2) during reticulate scale develop-
ment (Additional file 1: Figure S2). Together, these results 
demonstrate that conserved molecular signalling in both 
the epithelium and underlying mesenchyme regulates the 
early development of chick epithelial appendages, includ-
ing reticulate scales.

Overall, these results support previous research sug-
gesting that feathers and scutate scales develop from an 
anatomical placode [8, 36, 37]. This character is typified 
by columnar epithelial cells exhibiting a reduced rate of 
proliferation and conserved molecular signalling in both 
the epithelium and mesenchyme [5, 6, 32]. Additionally, 
we provide new developmental evidence that reticulate 
scales may develop following a similar system, initiating 
at E10.5.

A derived patterning mechanism underlies chicken 
reticulate scale development
Previously, it has been suggested that reticulate scales 
do not develop from an anatomical placode but instead 
appear as symmetrical elevations at E12, although this 
event may be preceded by a placode spanning the entire 
foot or toe pad [6]. Here, we have provided evidence that 
circular domains of conserved localised gene expression 
arise upon the ventral surface of the footpad and digits 
before subsequent development of reticulate scales.

The epithelial thickenings that subsequently give rise 
to reticulate scales emerge along the digits at E10.5 
(Figs.  2Q–T, 3I–L). These circular domains are larger 
than the initial placodes that give rise to feathers and 
scutate scales, and appear to subdivide into smaller, sec-
ondary units, which radiate outwards sequentially from 
a central unit (Fig.  4A–D). They subsequently undergo 
morphogenesis to become radially symmetrical reticulate 
scales (Fig.  1C). Such periodic patterning bears striking 
similarity to a RD system, similar to that which underlies 
avian feather patterning [8]. Feather patterning involves 
a bifurcating dorsolateral initiator row of placodes trig-
gering the emergence of parallel, adjacent rows [8]. Dur-
ing reticulate scale patterning, we observed enlarged 
placode-shaped domains, which appear to subdivide into 
radially arranged smaller secondary units, as opposed to 
the emergence of placodes in parallel, adjacent rows in 
feather development [8] (Fig. 3I–L). Reticulate scale pat-
terning may follow a derived RD mechanism, adapted 
from the system that underpins feather or scutate scale 
development.



Page 7 of 11Cooper et al. EvoDevo           (2019) 10:19 

Diverse vertebrate epithelial appendages are thought to 
be patterned through RD, in which interactions between 
diffusing activatory and inhibitory morphogens result in 
autonomous pattern formation [8, 13, 14]. Therefore, we 
examined whether RD simulation can explain the propa-
gation of reticulate scales from a single, circular initiatory 
domain (Fig. 4E–H). We initialised a RD simulation with 
a central spot representing the primary epithelial thick-
ening (Fig.  4E). Numerical exploration revealed a range 
of model parameter values for which waves of activa-
tory and inhibitory signals radiated from the primary 
placode (Fig.  4E–H, see “Methods” for further details). 
From this simulation, we observed the enlarged primary 
domain subdividing into smaller secondary units, added 
sequentially from a central unit in a radial arrangement 
(Fig.  4E–H). This is comparable to expression patterns 
of β-cat observed from E10.5 to E12 (Fig. 4A–D). These 
results demonstrate that RD can theoretically explain the 
derived patterning mechanism underpinning the devel-
opment of reticulate scales.

Squamates also possess distinct epithelial appendages 
on the ventral surfaces of their feet. This observation, 
in combination with the presence of reticulate scales 
in birds, led to the suggestion that the ancestral archo-
saur would have also possessed distinct reticulate scales 
[25]. To test this hypothesis, we examined scale develop-
ment on the ventral footpad of a reptilian squamate, the 

bearded dragon (P. vitticeps) (Fig. 5A–J). Reptilian body 
scales are known to develop from anatomical placodes 
[5] (Fig. 5G–J). ISH of P. vitticeps samples revealed that 
scales of the ventral footpad and digits also develop from 
individual placodes that begin to emerge synchronously 
at E35, and express both Shh and β-cat (Fig.  5A–F). 
Therefore, the footpad scales of P. vitticeps are develop-
mentally distinct from avian reticulate scales in terms of 
their patterning, as reticulate scales arise from restricted, 
circular domains which subdivide into individual units 
(Figs. 2, 3, 4). This provides evidence that reticulate scales 
are derived epithelial appendages that are not present in 
squamates, at least in the bearded dragon, rendering the 
condition in the ancestral archosaur ambiguous.

Discussion
Overall, we provide evidence that conserved gene signal-
ling underlies the development of avian reticulate scales. 
Restricted, circular domains of conserved localised gene 
expression appear along the ventral footpad surface at 
E10.5. These domains appear to subdivide into individual 
radially arranged reticulate scales by E12, following a pat-
tern consistent with RD simulation.

One important question that remains is whether 
this primary initiatory domain constitutes an enlarged 
anatomical placode or an initiatory field, compara-
ble to the avian feather tract. Anatomical placodes are 

Fig. 4  Reaction–diffusion simulation can explain the patterning of avian reticulate scales. Whole-mount ISH revealed that reticulate scale 
development begins with a circular domain (A, white arrowhead P), which subsequently subdivides into smaller secondary units, radiating 
outwards sequentially out from a central unit (B–D, white arrowhead S). RD simulation suggests that interactions between diffusing activatory and 
inhibitory morphogens can explain this patterning process (E–H). See “Methods” section for further details of RD modelling. Scale bars are 250 µm in 
length
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characterised by conserved gene expression in the epi-
thelium and underlying mesenchyme, and a local epi-
thelial reduction in cell proliferation [5]. We show some 
evidence for this in avian reticulate scales (Figs.  2Q–X, 
3I–J, Additional file  1: Figure S2), although we did not 
observe localised expression of Shh, a widely conserved 
marker of skin appendage development, in the primary 
circular domain [38]. Therefore, it remains uncertain 
whether these circular domains are anatomical placodes, 
or a series of initiatory fields. Comparative transcriptome 
analysis of this primary circular domain with both feather 
tracts and placodes would help to resolve this question.

Our results demonstrate that the patterning of retic-
ulate scales from an initial circular domain can be 
explained through RD simulation. RD controls the pat-
terning of various vertebrate epithelial appendages [8, 
14], and alterations to this system can give rise to diverse 
patterns both within and between different species, facili-
tating important functional traits [13]. We propose that 
reticulate scale patterning may follow a modified RD sys-
tem, derived from the patterning of feathers or scutate 

scales. Although the patterning of reticulate scales 
appears distinct from the patterning of other avian epi-
thelial appendages, it is likely still underpinned by a RD 
system.

It has been suggested that squamate scales are more 
similar to avian reticulate scales than feathers or scutate 
scales [22]. However, our developmental findings support 
the hypothesis that reticulate scales are derived struc-
tures [5], thus suggesting a new evolutionary relation-
ship between different squamate and avian scale types. 
Fossil evidence has revealed that structures comparable 
to feathers, scutate and reticulate scales were present in 
coelurosaurian theropods [39, 40], although the preva-
lence of feathers in other dinosaur groups remains con-
troversial [41–43]. Scale impressions are known for 
ornithischian and sauropodomorph dinosaurs, from 
both footprints and body fossils, but on the basis of the 
available morphological evidence it is currently ambigu-
ous whether these were developmentally homologous 
with those of squamates or birds. However, one recent 
phylogenetic analysis of dinosaur evolution suggested 

Fig. 5  Scales of the bearded dragon ventral footpad arise synchronously from individual placodes. Whole-mount ISH was performed to investigate 
gene expression during scale development of the bearded dragon’s (P. vitticeps) ventral foot surface. At E30, no placodes were visible (A, D). By E35, 
placodes were visible emerging synchronously over the footpad and digits, expressing both β-cat and Shh (B, E). By E40, these units had developed 
to cover the footpad and digits, still expressing β-cat and Shh (C, F). Section ISH of bearded dragon body scales revealed that Shh expression is 
epithelial during both placode stage and morphogenesis (G, I), as previously described [5]. PCNA immunoreactivity revealed that columnar cells 
of the basal epithelium exhibit a reduced rate of proliferation in the placode stage (H), compared to morphogenesis (J). Dashed lines separate the 
basal epithelium from the underlying mesenchyme. Scale bars are 500 µm in length
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that ornithischians and theropods share a sister group 
relationship, forming the clade Ornithoscelida [44]. If 
correct, this hypothesis might increase the likelihood 
that ornithischian ‘feathers’ and scales, which have been 
suggested to include both scutate and reticulate scales 
[41], were homologous with those of theropods as these 
could have been features present in the ornithoscelidan 
ancestor [41, 43, 44] (Additional file 1: Figure S3). Con-
sequently, current evidence supports the appearance of 
reticulate scales early in theropod evolution [39], prior 
to the origin of birds, and it is plausible that they are an 
even more ancient dinosaurian feature.

Recent RNA-seq analysis of avian epithelial append-
age types has indicated that feathers and scutate scales 
are more similar to each other, and to alligator scale 
types, than reticulate scales [25]. Researchers proposed 
that reticulate scales may have therefore arisen relatively 
earlier in tetrapod evolution. However, our results dem-
onstrate that reticulate scales develop from restricted 
circular domains at E10.5, which may constitute an ana-
tomical placode. Prior research has suggested that reticu-
late scales emerge as symmetrical elevations at E12 [6]. 
Therefore, this analysis may not have compared true pla-
code stages between epithelial appendage types, provid-
ing an explanation for this dissimilarity. Additionally, this 
previous study showed that gene expression of scutate 
scales clustered with that of reticulate scales during mor-
phogenesis [25], which is indicative of their developmen-
tal similarity in later development. Reticulate scales may 
be more developmentally similar to other avian append-
age types than previously thought, as it is possible that 
they develop from an anatomical placode.

There is a degree of morphological similarity between 
squamate scales of the veiled chameleon (C. calyptratus) 
and avian reticulate scales (Fig.  1C, D). However, based 
on the development of these units we propose this simi-
larity is a result of convergent evolution, with scales on 
the ventral foot surfaces of both groups having evolved 
to fulfil similar functions, such as grip and cushioning 
[20, 45]. Despite their similarity in appearance, reptilian 
ventral footpad scales are developmentally distinct from 
reticulate scales, as their patterning follows the synchro-
nous emergence of individual placodes at E35, rather 
than the subdivision of a circular domain (Figs. 4, 5).

Conclusion
Overall, we demonstrate that the development of avian 
epithelial appendages, including feathers, scutate and 
reticulate scales, is regulated by the signalling of con-
served developmental genes. During reticulate scale 
development, circular domains of localised gene expres-
sion are observed along the ventral footpad at E10.5, con-
stituting either anatomical placodes or circular initiatory 

fields. These domains subsequently subdivide into indi-
vidual reticulate scales, following a patterning mecha-
nism consistent with RD simulation. This is distinct from 
the patterning of squamate (P. vitticeps) ventral footpad 
scales. Therefore, we suggest that reticulate scales are 
derived epithelial appendages patterned through a modi-
fied RD system.

Methods
Animal husbandry
The University of Sheffield is a licensed establishment 
under the Animals (Scientific Procedures) Act 1986. All 
animals were culled by approved methods cited under 
Schedule 1 to the Act. Fertilised chicken eggs (Bovan 
Brown, Henry Stewart & Co., Norfolk, UK) were incu-
bated at 37.5 °C and fixed overnight in Carnoy’s solution. 
Embryos were dehydrated into ethanol (EtOH) and stored 
at − 20 °C. A. allisoni and C. calyptratus specimens were 
a gift from Oldřich Zahradníček. P. vitticeps embryos 
were obtained from reptile breeding facility at the Uni-
versity of Helsinki (licence ESAVI/13139/04.10.05/2017).

Scanning electron microscopy (SEM)
SEM was performed using a Hitachi TM3030Plus Bench-
top SEM scanning at 15,000 V. Samples were rehydrated 
to PBS, washed in ddH20 and air-dried before scanning.

Haematoxylin and eosin (H&E) staining
H&E staining was performed as previously described 
[7]. Imaging was carried out using an Olympus BX51 
microscope and Olympus DP71 Universal digital camera 
attachment.

In situ hybridisation (ISH)
Whole-mount ISH was performed as previously 
described [7], using riboprobes synthesised from the 
Riboprobe System Sp6/T7 kit (Promega) and DIG label-
ling mix (Roche). Primer sequences are as follows: 
Chick β-cat (forward: TCT​CAC​ATC​ACC​GTG​AAG​
GC, reverse: CCT​GAT​GTC​TGC​TGG​TGA​GG). Data 
obtained from plasmids used to synthesise bearded 
dragon β-cat and Shh, and chick Spry2, Shh, Bmp2 
and Bmp4, have previously been published [5, 46–48]. 
A minimum of 6 samples were used for ISH for each 
gene at each stage of chicken development. As bearded 
dragon embryos were comparatively scarce, 3 samples 
were used per gene at each developmental stage. Sam-
ples were imaged using a Nikon SMZ15000 stereomi-
croscope. Vibratome sections were cut at a thickness of 
30 µm and imaged using an Olympus BX51 microscope 
and Olympus DP71 universal digital camera attachment. 
Brightness and contrast were adjusted to improve clarity. 
Scale bars were added using Fiji [49]. Cryosections after 
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whole-mount ISH in bearded dragon were performed as 
previously described [5].

Immunofluorescence
Immunofluorescence for PCNA was done as previously 
described [5, 7]. Imaging was carried out with an Olym-
pus BX61 upright epifluorescent microscope and Olym-
pus DP71 universal digital camera attachment, using the 
software Volocity 6.3.

Reaction–diffusion (RD) modelling
RD modelling of reticulate scale patterning was done 
using an activator–inhibitor model proposed by Kondo 
and Miura [12], as previously described [13]. Briefly, this 
model describes the diffusion of, and nonlinear reac-
tion between, activator (u) and inhibitor (v) molecules 
in a two-dimensional domain. Parameter values were 
as follows: du = 0.02, Du = 0.02, au = 0.06, bu = − 0.07, 
cu =0.015, Fmax = 0.19, dv = 0.031, Dv = 0.4, av = 0.0608, 
bv = 0.004, cv = − 0.025, Gmax = 0.184 . For the simu-
lations shown in Fig.  4E–H, we specified the initial 
condition

defined in a square spatial domain 0 < x, y < L with no-
flux boundary conditions. Parameter values used were 
L = 75 and L = 1.5 . This central ‘spot’ represents a pri-
mary reticulate placode. These values were determined 
based on an ad hoc exploration around values previously 
shown to result in patterning [12]. See Cooper et al. [13] 
for further details of reaction–diffusion modelling.

Additional file

Additional file 1. Additional figures.

Additional file 2. Python script for reaction-diffusion simulations.
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