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Abstract 

Background:  How genome complexity affects organismal phenotypic complexity is a fundamental question in 
evolutionary developmental biology. Previous studies proposed various contributing factors of genome complexity 
and tried to find the connection between genomic complexity and organism complexity. However, a general model 
to answer this question is lacking. Here, we introduce a ‘two-level’ model for the realization of genome complexity at 
phenotypic level.

Results:  Five representative species across Protostomia and Deuterostomia were involved in this study. The intrinsic 
gene properties contributing to genome complexity were classified into two generalized groups: the complexity and 
age degree of both protein-coding and noncoding genes. We found that young genes tend to be simpler; however, 
the mid-age genes, rather than the oldest genes, show the highest proportion of high complexity. Complex genes 
tend to be utilized preferentially in each stage of embryonic development, with maximum representation during the 
late stage of organogenesis. This trend is mainly attributed to mid-age complex genes. In contrast, young genes tend 
to be expressed in specific spatiotemporal states. An obvious correlation between the time point of the change in 
over- and under-representation and the order of gene age was observed, which supports the funnel-like model of the 
conservation pattern of development. In addition, we found some probable causes for the seemingly contradictory 
‘funnel-like’ or ‘hourglass’ model.

Conclusions:  These results indicate that complex and young genes contribute to organismal complexity at two dif-
ferent levels: Complex genes contribute to the complexity of individual proteomes in certain states, whereas young 
genes contribute to the diversity of proteomes in different spatiotemporal states. This conclusion is valid across the 
five species investigated, indicating it is a conserved model across Protostomia and Deuterostomia. The results in this 
study also support ‘funnel-like model’ from a new viewpoint and explain why there are different evo–devo relation 
models.
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Background
The relationship between genome complexity and organ-
ism complexity is one of the core topics in genomics 
and evolutionary systems biology. However, measuring 
genome complexity is not a simple task. Gene numbers 
show no obvious correlation with organism complex-
ity, a phenomenon referred to as the G-value paradox 
[1–3]. To explain this paradox, biologists have separately 
presented numerous genome complexity factors [3–9] 
related to genome sequence and the structural and func-
tional features of genes and their products. However, 
as each study focuses on one or only a few factors, one 
cannot obtain a global understanding of the factors con-
tributing to genome complexity. Additionally, the various 
contributing factors are uncategorized, further compli-
cating and confusing their relationships.

In this study, the intrinsic properties of genes/gene 
products related to genome complexity were categorized 
into two classes: gene complexity and gene age grade. 
And we try to answer the fundamental question about 
how the complex and young genes contribute to the for-
mation of organism complexity. It is through the process 
of development that genome complexity is represented 
as phenotypic complexity at the organismal level [10]. 
Development is a complex and dynamic process involv-
ing differentiation from a single embryonic stem cell to 
various terminal differentiated somatic cells. During 
this process, organism complexity gradually increases 
because of an increase in the number of cell types consti-
tuting the whole body [11–13]. At the adult stage, organ-
ism complexity is maintained by specific gene expression 
patterns among different organs, tissues and cell types 
(OTCs) of the adult body. The complexity of the organ-
ism is determined at two levels. The first level comprises 
the diversity of spatiotemporal states, i.e., different spe-
cific developmental time points or OTCs. If an organism 
contains much more different OTCs, it can be regarded 
as a more complex organism. The second level is the 
complexity of each spatiotemporal state. If two organisms 
have the same number of OTCs, the difference in com-
plexity between them is determined by the complexity of 
each individual OTC in each organism. To explore how 
these genomic complexity-contributing factors affect an 
organism’s phenotypic complexity, both levels should be 
considered simultaneously.

We classified genes, including protein-coding genes 
(PCGs) and miRNA genes, according to the above-
mentioned genome complexity factors, and explored 
the relationship between gene complexity and age 
degree. We then investigated the over- and under-rep-
resentation of each class of genes in a certain develop-
mental stage/OTC (based on the gene expression data 
listed in Additional file 1: Table S1) compared with all 

the genes in the genome. In addition, we calculated the 
tissue-/stage-specificity and compared this across each 
class of genes. Based on these results, a general pattern 
for the utilization of the genome complexity factors was 
inferred.

In addition, the relationship between gene age grade 
and the expression pattern during development may 
provide new clues to the understanding of the relation-
ship between evolution and development. In this filed, 
there are two major models related to evolution–devel-
opment connection. The first one is the ‘funnel-like’ 
model, which was firstly proposed by von Baer in 1828 
[14]. In this model, developmental similarities are high-
est in the earliest stages of embryogenesis and lowest at 
the end of development. Some recent studies also sup-
ported this model based on the analysis of genome-wide 
gene expression [15, 16]. In 1994, Duboule proposed 
another model [17], the ‘hourglass’ model, in which the 
middle stage of embryonic development show the most 
conserved morphological pattern, but not the early stage. 
During this middle stage, the body plan is being set. This 
model was also supported by the high-throughput gene 
expression analysis [15, 18–21]. Based on our results, 
we obtained some new insights into this fundamental 
question and the probable explanations for the ‘paradox’ 
between these two models.

Results
The classification of the factors contributing to genome 
complexity
To give a clear and general conception of the factors con-
tributing to genome complexity, we categorized them 
into two classes for the first time (Fig. 1). The first class 
is the number of genes and non-genic elements. The 
gene number is the same as the original understanding 
of genome complexity. The second class is the intrinsic 
properties of the genes or non-genic elements. In this 
study, due to the data available, we mainly focus on the 
intrinsic properties of genes, which include two gener-
alized categories: gene complexity and gene age degree. 
Gene complexity factors include the gene length, number 
of cis-regulatory motifs and trans-regulatory molecules 
[3], and the complexity features of the gene’s product, 
such as the length [6], the number of structural or func-
tional units (e.g., protein domains) [5, 6], the number of 
subcellular locations and the complexity of its interaction 
with other molecules. The factors for gene age degree 
include the age of the genes and its protein domains, 
the last duplication time of the genes. The young genes 
contribute substantially to the novel morphological and 
functional characteristics of complex organisms during 
evolution [22–29].
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The relationship between gene complexity and age degree
In this study, gene complexity and age degree were 
defined as the two basic properties of a gene. Gene com-
plexity refers to the complexity of the sequence, structure 
and function of one gene, whereas gene age degree refers 
to the evolutionary novelty of one gene in a certain spe-
cies compared with other species across the phylogenetic 
tree. Both of them contribute to genome complexity. 
Four factors were selected to represent the complexity 
of a gene: gene length (GL), cis-regulatory module num-
ber (CRMN) [6, 30], protein length (PL) [6] and domain 
number including repeats in a protein (DNIR) [5, 6] (see 
Additional file 2: Table S2 for the detailed values for each 
gene). We confirmed that these gene complexity factors 
correlate well with organism complexity, measured with 
cell type number within the organism [2, 31]. In total, 46 
eukaryotes were used for this analysis (Additional file 1: 
Fig. S1a–c, Table S3).

To explore the role of complex genes in the formation 
of organism complexity, we then investigated the func-
tional characteristics of complex genes. Compared with 
the simple genes, the complex genes tended to take part 
in developmental and multicellular processes (Addi-
tional file  1: Fig. S1d). Interestingly, certain regulatory 
processes, such as signal transduction, were over-repre-
sented in simple proteins in the mouse data, due in part 
to the olfactory receptor family, a large family with spe-
cial expression and function characteristics [32]. Among 
the 870 short genes (≤ 3200  bp) participating in signal 
transduction, 693 were olfactory receptor-encoding 
genes (Additional file  3: Table  S4). In view of knockout 
phenotype of genes, we found that complex genes tended 
to have multiple knockout phenotypes (Additional 
file 1: Fig. S1e1–e4 for mouse data, and Additional file 4: 

Table S5 for other species). Regarding pathways, the com-
plex genes tended to be involved in multiple KEGG path-
ways. Almost half of the high-complexity genes of mouse 
participated in two or more KEGG pathways (Additional 
file 1: Fig. S1f1–f4). We further analyzed what pathways 
are over-represented in complex genes compared with 
all the genes participating in at least one pathway. Most 
of these pathways are signaling pathways, such as the 
MAPK, calcium, ErbB, insulin, Wnt and TGF-β signaling 
pathways (Additional file 5: Table S6).

One may expect the above-mentioned four complex-
ity factors to show interdependence. For example, long 
proteins tend to contain multiple domains. To test the 
independence of these four complexity factors, the spear-
man correlations between each pair of them in the five 
species were calculated (Table 1). In fact, the correlations 
were not so strong. Taking mouse data as an example, 
the strongest correlation, between GL and PL, showed a 
coefficient of only 0.58, and the weakest, between DNIR 
and CRMN, showed 0.17. To further explore the features 
of the complex genes common or specific to these four 
factors, Venn diagrams of the four categories of complex 
genes were used to visualize their detailed relationship 
(Additional file 1: Fig. S2a). As a result, about 22.8–41.8% 
complex genes only belong to one category of the com-
plex genes (Additional file  1: Fig. S2b), and they have 
distinct specific functional features (see supplementary 
results and Figure s2c in Additional file  1 for details). 
These results indicate that these four factors are to some 
extent complementary, and it would therefore be insuffi-
cient to measure gene complexity using only one of them.

Three factors were used to represent the age degree of a 
given gene: gene origin time (GOT) [22, 33], last duplica-
tion time (LDT) [25, 26] and protein domain origin time 

Fig. 1  Schematic diagram of the factors contributing to genome/organism complexity. In theory, organism complexity correlates well with 
genome complexity. The factors contributing to genome complexity are classified into two classes: gene number and intrinsic gene properties 
which include the complexity and age degree of genes or the gene products. CRM cis-regulatory motifs/modules, TRM trans-regulatory molecules
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(DOT) [5] (Additional file 2: Table S2). Two types of GOT 
were obtained from EnsemblCompara [34] with slight 
correction (see “Methods” for detailed information) and 
a consensus gene age dataset [33] named as GOT_Ens 
and GOT_Mode, respectively. Similarly, the spear-
man correlation between each pair of these three nov-
elty factors was calculated (Table 1). Taking mouse data 
as an example, the correlation was strongest between 
GOT_Mode and DOT (R = 0.87), but weakest coefficient 
(between DOT and LDT) was only 0.4. Venn diagrams of 
the three classes of young genes were also used to visual-
ize their detailed relationship (Additional file 1: Fig. S2d). 
As a result, there are about 20.6–46.5% category-specific 
young genes (Additional file  1: Fig. S2e), and they also 
have distinct specific functional features (see supplemen-
tary results and Fig. S2f in Additional file  1 for details). 

These results indicated that the three age degree factors 
are also complementary to each other to some extent.

These four complexity factors (GL, CRMN, PL and 
DNIR) and four age degree factors (GOT_Ens, GOT_
Mode, LDT and DOT) were used in the further analy-
ses. First, we focused on the relationship between gene 
complexity and age degree, the two basic intrinsic prop-
erties of one gene, and found that nearly all of the com-
plexity factors correlated negatively with the age degree 
factors; that is, the older genes tend to be more complex, 
whereas the younger genes tend to be simpler (Table 1). 
This comprehensive analysis, using multiple factors of 
gene complexity and age degree, confirmed the previ-
ous conclusions about the relationship between gene age 
and protein length [35, 36]. Our results suggest that this 
kind of correlation is valid across each pair factor of gene 

Table 1  Results of the spearman correlation analysis for each pair of gene complexity and age factors of mouse

The gene complexity factors used in this study included GL (gene length), CRMN (cis-regulatory module number), PL (protein length) and DNIR (domain number 
including repeats in one protein). The gene age factors included GOT (gene origin time), LDT (last duplication time) and DOT (domain origin time). Correlation 
coefficients (R) and P values are shown in the table

Factor pairs M. musculus G. gallus D. rerio D. melanogaster C. elegans

R P R P R P R P R P

GL vs. PL 0.58 < 1E−323 0.57 < 1E−323 0.58 < 1E−323 0.79 < 1E−323 0.80 < 1E−323

GL vs. CRMN 0.46 < 1E−323 0.20 2.6E−126 0.04 4.4E−10 0.13 2.5E−50 − 0.12 1.3E−63

GL vs. DNIR 0.33 < 1E−323 0.34 < 1E−323 0.36 < 1E−323 0.42 < 1E−323 0.38 < 1E−323

PL vs. CRMN 0.27 < 1E−323 0.05 2.4E−10 0.01 2.4E−02 0.04 2.2E−07 − 0.09 6.1E−39

PL vs. DNIR 0.52 < 1E−323 0.53 < 1E−323 0.50 < 1E−323 0.48 < 1E−323 0.49 < 1E−323

CRMN vs. DNIR 0.17 3.0E−138 0.01 2.8E−01 0.01 1.7E−01 0.11 3.3E−41 − 0.03 3.9E−05

GOT_Ens vs. GOT_Mode 0.64 < 1E−323 0.47 < 1E−323 0.47 < 1E−323 0.74 < 1E−323 0.64 < 1E−323

GOT_Ens vs. LDT 0.65 < 1E−323 0.52 < 1E−323 0.42 < 1E−323 0.76 < 1E−323 0.87 < 1E−323

GOT_Ens vs. DOT 0.60 < 1E−323 0.51 < 1E−323 0.45 < 1E−323 0.64 < 1E−323 0.67 < 1E−323

GOT_Mode vs. LDT 0.67 < 1E−323 0.37 < 1E−323 0.35 < 1E−323 0.57 < 1E−323 0.50 < 1E−323

GOT_Mode vs. DOT 0.87 < 1E−323 0.39 < 1E−323 0.43 < 1E−323 0.67 < 1E−323 0.60 < 1E−323

LDT vs. DOT 0.40 < 1E−323 0.32 < 1E−323 0.22 2.9E−280 0.48 < 1E−323 0.56 < 1E−323

GL vs. GOT_Ens − 0.40 < 1E−323 − 0.23 7.9E−175 − 0.30 < 1E−323 − 0.27 1.6E−230 − 0.34 < 1E−323

GL vs. GOT_Mode − 0.28 < 1E−323 − 0.16 3.3E−83 − 0.17 1.3E−168 − 0.23 8.0E−165 − 0.27 < 1E−323

GL vs. LDT − 0.44 < 1E−323 − 0.16 4.2E−80 − 0.25 < 1E−323 − 0.29 7.6E−262 − 0.30 < 1E−323

GL vs. DOT − 0.22 < 1E−323 − 0.06 7.7E−12 − 0.08 2.7E−38 − 0.19 8.0E−115 − 0.32 < 1E−323

PL vs. GOT_Ens − 0.35 < 1E−323 − 0.25 8.5E−209 − 0.20 2.2E−230 − 0.32 5.6E−321 − 0.41 < 1E−323

PL vs. GOT_Mode − 0.20 2.0E−175 − 0.14 1.0E−63 − 0.10 2.2E−59 − 0.30 8.3E−278 − 0.32 < 1E−323

PL vs. LDT − 0.34 < 1E−323 − 0.17 1.6E−97 − 0.13 2.8E−103 − 0.32 < 1E−323 − 0.38 < 1E−323

PL vs. DOT − 0.21 2.0E−213 − 0.09 1.1E−27 − 0.06 3.4E−23 − 0.23 5.2E−164 − 0.40 < 1E−323

CRMN vs. GOT_Ens − 0.27 < 1E−323 0.06 1.1E−14 − 0.03 2.3E−06 − 0.13 7.7E−54 0.01 3.4E−01

CRMN vs. GOT_Mode − 0.13 2.0E−78 − 0.01 4.5E−01 − 0.04 1.7E−09 − 0.10 1.4E−34 − 0.04 7.6E−10

CRMN vs. LDT − 0.31 < 1E−323 0.04 3.9E−06 − 0.04 6.8E−10 − 0.18 1.1E−106 0.01 5.6E−02

CRMN vs. DOT − 0.17 < 1E−323 0.04 1.9E−07 − 0.02 6.7E−04 − 0.08 3.5E−19 − 0.01 3.6E−01

DNIR vs. GOT_Ens − 0.34 < 1E−323 − 0.30 5.6E−302 − 0.25 < 1E−323 − 0.57 < 1E−323 − 0.61 < 1E−323

DNIR vs. GOT_Mode − 0.20 2.0E−173 − 0.18 5.7E−103 − 0.19 7.1E−207 − 0.50 < 1E−323 − 0.45 < 1E−323

DNIR vs. LDT − 0.22 6.0E−240 − 0.14 2.2E−68 − 0.10 3.5E−61 − 0.49 < 1E−323 − 0.55 < 1E−323

DNIR vs. DOT − 0.36 < 1E−323 − 0.31 1.2E−312 − 0.32 < 1E−323 − 0.61 < 1E−323 − 0.79 < 1E−323
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complexity and age degree and valid across the repre-
sentative species.

To explore the detailed relationship between them, 
all of the genes were partitioned into several classes 
according to each gene complexity factor and each age 
degree factor. Based on GOT_Ens and GOT_Mode, 
all of the PCGs were classified into four (Fig. 2a, e, i, m, 
q) or five (Fig.  2b, f, j, n, r) age classes (see Additional 
file  1: Table  S7 for the names of age grades). Accord-
ing to the four gene complexity factors, GL, CRMN, 
PL and DNIR, all of the PCGs were divided into five or 

four complexity categories, respectively. The proportion 
of the most complex PCGs in each age degree category 
were calculated and divided by the expected percentage 
(background), which was the percentage of each type 
of complex PCGs in the genome of each species (Fig. 2, 
Additional file 6: Table S8). Interestingly, mid-age genes, 
e.g., the genes originating from the common ancestor of 
Bilateria (Fig. 2a) or Eumetazoa (Fig. 2b), have the largest 
proportion of high-complexity genes. The analyses based 
on other 4 representative species revealed the same 
conclusion (Fig.  2e, f, i, j, m, n, q, r). We assumed this 

Fig. 2  Distribution of complex genes across different age categories in the five species. a–d for Mm, Mus musculus; e–h for Gg, Gallus gallus; i–l for 
Dr, Danio rerio; m–p for Dm, Drosophila melanogaster; q–t for Ce, Caenorhabditis elegans. The percentages of complex protein-coding genes (PCGs) 
in each age degree category were calculated and divided by the expected percentage. Heat map showing the fold enrichment values obtained 
from this division. The expected percentage was the percentage of each type of complex PCGs in the genome of each species, represented as 
‘background (%)’ in the right region of the figure. Gene complexity was measured by gene length (GL), cis-regulatory module number (CRMN), 
protein length (PL) and domain number including repeats in one protein (DNIR) for each species, and the results of the most complex PCGs are 
shown in the figure. The full result data, including other complexity degrees, are in Additional file 1: Table S8. The abbreviations of age degree 
names: GOT_Mode, gene origin time from the consensus mode gene age dataset, GOT_Ens, gene origin time from the EnsemblCompara 
database; LDT, last duplication time; and DOT, the origin time of the youngest domain in one protein. The abbreviations of the grades for each 
age type of each species are listed in Additional file 1: Table S7. For the convenience of presentation, the V grades of the LDT and DOT of Mus 
musculus were the combination of V and VI grades shown in Additional file 1: Table S7. The over- or under-representation strengths of the complex 
genes in each age degree category were estimated and are represented by − log (p) or log (p), respectively (see “Methods”). All of the PCGs in 
each species were used as the background in the over-/under- representation analysis. The symbols in this figure: ++++ , over-represented 
and P < 1E−50; +++, over-represented and 1E−50 ≤ P < 1E−10; ++, over-represented and 1E−10 ≤ P < 0.05; +, over-represented but P > 0.05; 
−−−− , under-represented and P < 1E−10; −−−, under-represented and 1E−50 ≤ P < 10-10; −−, under-represented and 10-10 ≤ P < 0.05; −, 
under-represented but P > 0.05
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phenomenon is the outcome of the balance of two differ-
ent trends (Additional file  1: Fig. S3). In the first trend, 
one gene became increasingly complex during evolution, 
so the older genes are more complex, whereas the life 
spans of the younger genes are too short to become com-
plex; in the second trend, complex organisms produced 
new complex genes. For example, during the emergence 
of Eumetazoa, in particular the emergence of Bilateria, 
probably many new complex genes emerged to meet the 
complex function requirements, such as the development 
of three germ layers.

All of the PCGs were then partitioned into several 
categories according to the last duplication time (LDT, 
Fig. 2c, g, k, o, s) and protein domain origin time (DOT, 
Fig. 2d, h, l, p, t), and the proportion of the most complex 
genes in each category was then compared. The genes 
with mid-age LDTs (grades II or III) and the genes encod-
ing mid-age protein domains (grade III) have the highest 
proportion of complex genes. The results were similar to 
the conclusion that the mid-age genes showed the high-
est proportion of complex genes mentioned above.

Besides protein-coding genes, noncoding regions 
also contribute substantially to genome complexity and 
organism complexity [9, 37]. Thus, the utilization of com-
plex and young noncoding RNA genes was also explored. 
So far, only miRNA genes were involved in our analysis 
because of the lack of enough data of the complexity and 
gene age degree of other noncoding RNA genes. miRNA 
mainly functions in RNA silencing and posttranscrip-
tional regulation of gene expression [38, 39]. The func-
tional complexity of a miRNA gene is mainly determined 
by the complexity of the regulatory network in which the 
miRNA targets to various mRNAs. The number of targets 
of a certain miRNA is used to represent the complex-
ity degree of a miRNA gene. The age of a miRNA gene 
is inferred from the miRNA family database (miFam.dat) 
in miRbase. The relationship between the age grade and 
the number of targets of a miRNA was investigated. As a 
result, the mid-age miRNAs, which originated from the 
common ancestor of mammalian, have the highest pro-
portion of the most complex miRNAs (Additional file 1: 
Fig. S4). This result is consistent with the conclusion from 
protein-coding genes, indicating the trend that mid-age 
genes have the highest proportion of complex genes is a 
general trend across different types of genes.

To further explore the different roles of complex genes 
with different age degrees in the formation of organism 
complexity, we then focused on the functional differences 
among them. Taking mouse data as an example (Addi-
tional file  1: Fig. S5a), the old complex genes generally 
took part in critical and primitive cellular processes, such 
as basic metabolism, DNA replication, RNA processing, 
protein translation, oxidation reduction and transport. 

The complex genes of medium age (grades II and III) 
took part mainly in biological processes specific to mul-
ticellular organisms, such as development, signal trans-
duction, cell communication, growth, cell motility. The 
young complex genes were mainly over-represented in 
transcription regulation. In the view of knockout pheno-
type of genes, we found that the Bilateria-specific (grade 
II) complex genes tended to have multiple knockout phe-
notypes (Additional file 1: Fig. S5b1–b4). As the number 
of knockout phenotypes of a gene can approximately rep-
resent the gene’s functional complexity, the Bilateria-spe-
cific complex genes showed a stronger multifunctionality 
or pleiotropy trend. Regarding pathways, the Bilateria-
specific complex genes had the highest proportion of the 
genes involved in multiple pathways (Additional file  1: 
Fig. S5c1–c4). These results indicated that compared 
with other genes, the complex genes with medium age 
tend to facilitate the formation of organism complexity.

General utilization patterns of gene complexity/novelty 
factors in certain spatiotemporal states
Both of the complex and young genes contribute to com-
plexity at genome and organism levels. Along with the 
selective expression of complex and young genes, both 
factors can be represented at the phenotypic level. Here, 
we focused on the general utilization patterns of the gene 
complexity/age factors in different stages of development 
and different adult OTCs. We classified PCGs into several 
categories according to the preceding parameters and 
calculated the over- or under-representation strength of 
each gene category in each developmental stage and each 
adult OTC.

Based on gene length (GL, Fig. 3a, c, e, g, i), all of the 
PCGs were classified into one of the five complexity cat-
egories. We found that complex genes were significantly 
over-represented in nearly all of the stages of develop-
ment of the five species, increasing from the beginning 
of the phylotypic stage, a developmental phase during 
which the embryonic morphology of all species within 
a phylum is particularly similar [10, 15, 19, 21, 40]. 
The over-representation peaked at the late stage of the 
organogenesis stage (for example, E14.5 in mouse) and 
then decreased a little. The dynamic trend of under-rep-
resentation of simple genes (low complexity) was similar 
to the over-representation of the complex genes (Fig. 3a, 
c, e, g, i). Similar results can be obtained from the analy-
sis of other 3 complexity factors, CRMN, PL and DNIR 
(Additional file  1: Fig. S6). These results indicated that 
complex genes are utilized preferentially at each time 
point of embryonic development, contributing to the 
complexity of each state. In particular, the complex genes 
are much more over-represented during the middle and 
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late stages, which substantially contributes to the increas-
ing complexity of the embryo.

For gene age degree, based on GOT, LDT and DOT, the 
PCGs were divided into several classes (Fig. 3b, d, f, h, j, 
Additional file 1: Fig. S7). It is obvious that the old genes 
are significantly over-represented during the entire pro-
cess of embryonic development, particularly in the early 
stages, while the young genes are under-represented in all 
stages. Regardless of whether gene age degree was repre-
sented by GOT, LDT or DOT, similar conclusions were 
obtained (see supplementary description in Additional 
file  1 for more DOT-related results). In addition, we 
found an interesting species-specific phenomenon. Dur-
ing embryonic development of D. melanogaster and C. 
elegans, the over-representation strength of the sub-old 
age genes (Bilateria grade) was stronger than the oldest 
genes (Opisthokonta) (Fig.  3h, j). This trend is different 
from other 3 species (Fig.  3b, d, f ), suggesting the rela-
tively higher-level requirement of the bilaterian-specific 
genes in the embryonic development of Protostomia.

Interestingly, there is an obvious correlation between 
the time point change of the over- or under-representa-
tion strength and the order of gene origin time (Fig. 3b, 
d, f, h, j, and Additional file 1: Fig. S7). The over-represen-
tation of old genes peaked in the early stages (e.g., E3.5 
of mouse), whereas that of the mid-age genes peaked 
during the late stages of organogenesis (E10.5–E12.5 for 
mouse). In contrast, the under-representation of both 
the two classes of young genes decreased. As an example, 
the Chordata-Amniota grade genes of mouse decreased 
in the early stages, and the Mammalia-Mus grade genes 
decreased in the later stages. These results were con-
sistent with the ‘funnel-like’ model of the conservation 
pattern of development [15, 16], which predicts conser-
vation at the earliest embryonic stage (see “Discussion” 
section for details).

Both complex and young genes contribute to genome 
complexity. To more comprehensively describe the regu-
lar utilization pattern of genomic complexity factors, we 
combined gene complexity and gene age degree to clas-
sify genes. Taking mouse data as an example, all of the 
old genes (grade I, Opisthokonta-specific), regardless of 

their degree of complexity, were over-represented across 
the developmental stages (Additional file  1: Fig. S8a, e, 
i, m). Most of these old genes showed the greatest over-
representation in the early stages, except for the high-
complexity genes, which were most over-represented in 
the middle stage of organogenesis. The Bilateria-specific 
(grade II) complex genes became increasingly over-
represented from the beginning of the phylotypic stage 
[15, 21] and peaked at E12.5–14.5 (Additional file 1: Fig. 
S8b, f, j, n), similar to the complex genes from all of the 
PCGs (Fig.  3a, b, c, d). This implied that the trend of 
the dynamic over-representation strength of all PCGs 
occurred mainly due to Bilateria-specific complex genes. 
The Chordata-specific (grade III) complex genes were 
under-represented in the early stages of development 
(Additional file 1: Fig. S8c, g, k, o), being the least abun-
dant from the beginning of the phylotypic stage, but they 
became over-represented during the later stages. All 
of the Mammalia-specific (grade IV) genes, regardless 
of their degree of complexity, were under-represented 
across the developmental stages (Additional file  1: Fig. 
S8d, h, l, p). From these results, we inferred that gene age 
degree was more powerful than gene complexity in deter-
mining of the strength of over- or under-representation.

The preceding analyses were based on developmental 
data for the whole embryo. When the same analyses were 
performed using the developmental data for four organs, 
including the brain, liver, heart and lung of mouse, the 
general trends were also observed during the develop-
ment of specific organs (Additional file  1: Fig. S9, Fig. 
S10). However, only during brain development did we 
observe the same trend of increasing over-representation 
of complex genes (Additional file 1: Fig. S9). This implied 
the increasing brain complexity during development 
from the moment of its formation is much more obvious 
than the other organs investigated. Notably, in the liver, 
the over-representation of complex genes reduced (Addi-
tional file 1: Fig. S9b, f, j, n), perhaps due to the emigra-
tion of the hematopoietic system from the fetal liver in 
the later stages of embryonic development. In addition, 
the general utilization patterns of the complex and young 
genes in certain adult OTCs were the same as those for 

Fig. 3  Over- or under-representation strengths of each gene category classified by gene length (a, c, e, g, i) or gene age grade (b, d, f, h, j) during 
development of the five species. Over- and under-representation are represented by −log(P) or log(P), respectively (see “Methods” for details). The 
red/blue dashed line represents the ∓log(P) value corresponding to significant over- or under-representation. The gray shaded area represents the 
presumptive phylotypic phase. PCG refers to ‘protein-coding gene’. Developmental stages are separated by dashed light green lines and marked 
at the bottom of each panel. For M. musculus: Cleavage, Blastula (B), Neurula (N), Organogenesis and Fetus (F). For G. gallus: Primitive streak (P.S.), 
Neurula, early Organogenesis (Organog.) and late Organogenesis (Organog.). For D. rerio Cleavage (C), Blastula (B), Gastrula (G), Segmentation 
(Segment.), Pharyngula (Pharyn.) and Hatching (Hat.). For Drosophila melanogaster: Cleavage (C), Blastoderm + Gastrulation (B.G.), Germ band 
elongation and retraction (Germ band.), Early of head involution (H), Differentiation and Larvae. For C. elegans: 4-cell stage, E-cell division (E-div), 
division of the AB lineage (ABdiv), Ventral Enclosure (VE), Comma Stage (CS), Movement (Mov) and First stage larva (L1). The abbreviations for gene 
age grades: Op, Opisthokonta; Bi, Bilateria; Ch, Chordata; Ma, Mammalia; Eut, Euteleostomi; Ecd, Ecdysozoa; Dm, D. melanogaster; Cele, C. elegans 

(See figure on next page.)
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the embryonic development data (see supplementary 
results and figure s11 in Additional file 1 for details).

As for the utilization of complex and young miRNA 
genes, we found that the gene age degree also was more 
powerful than gene complexity in determining the 
strength of over- or under-representation. Old miRNA 
genes (grades I and II, Metazoa-specific and Vertebrata-
specific) were significantly over-represented in each state 
(Additional file  1: Fig. S12a, d), whereas young miRNA 
genes (grades III, IV and V, i.e., Mammalia-specific, 
Rodentia-specific and Mus-specific, respectively) were 
significantly under-represented in most of the states 
examined (Additional file 1: Fig. S12a, d). However, there 
is not such a trend that complex miRNA genes (with 
more target genes) are over-represented (Additional 
file  1: Fig. S12a, d) as the protein-coding genes (Fig.  3, 
Additional file  1: Fig. S11). This result implies that at a 
certain state the miRNA genes with more target genes 
are not utilized preferentially to form complexity and 
they may function at different states.

Gene complexity, novelty and spatiotemporal specificity
The preceding result that young genes tend to be under-
represented during development indicates that young 
genes are not utilized preferentially in certain states. If 
so, how do they contribute to the biological complexity at 
the organism level? The following developmental stage-
specificity and OTC-specificity analyses may answer this 
question.

Complex genes tended to be expressed widely across 
the stages of embryonic development (Fig. 4a, c, g, i, for 
GL, and Additional file 1: Fig. S13 for the other 3 com-
plexity factors), whereas simple genes tended to be 
expressed in specific stages. These results indicated that 
complex genes contributed little to the diversity of pro-
teomes during different stages of development. However, 
much more obvious differences between young and old 
genes could be observed. The young genes tended to be 
expressed in specific stages (Fig. 4 b, d, f, h, i, for GOT_
Ens, Additional file 1: Fig. S14 for the other 3 age grade 
factors), indicating that the young genes contribute to the 
diversity of proteomes in different stages of development. 
Similar results were obtained from mouse adult organs, 
tissues and cell types (OTCs) (Additional file 1: Fig. S15), 

indicating young genes contribute to the diversity of dif-
ferent adult OTCs.

When gene complexity and gene age degree were com-
bined, we found that old genes were widely expressed 
regardless of their complexity level (Additional file 1: Fig. 
S16). On the contrary, most of the young genes tend to 
be expressed SOTC (stage, organ, tissue and cell type)-
specifically when compared to all of the other classes 
of genes (Additional file 1: Fig. S16). These results indi-
cated that gene age degree has greater power than gene 
complexity to determine the SOTC-specificity, implying 
young genes contribute more to the diversity of different 
spatiotemporal states than simple genes.

For miRNA genes, it is also obvious that old miRNAs 
tend to express widely, whereas young miRNA tend to 
express at specific OTCs (Additional file  1: Fig. S17a, 
d). However, there are no obvious differences in SOTC-
specificity among the miRNAs with different complex-
ity degrees (Additional file 1: Fig. S17b, c, e, f ). Thus, the 
results from miRNA confirmed that gene age degree is 
more powerful than gene complexity to determine the 
SOTC-specificity.

All these results indicated that young genes contribute 
to the diversity of proteomes in different stages of devel-
opment and different adult OTCs.

Gene complexity and novelty contribute to organismal 
complexity at two different levels
According to the preceding results, we inferred that com-
plex and young genes contribute to the organismal com-
plexity at two different levels. Complex genes are utilized 
preferentially in certain states (certain developmental 
stages or certain organs, tissues and cell types). Almost 
in each proteome, the complex genes are significantly 
over-represented, contributing to the complexity of each 
proteome. In contrast, although young genes are under-
represented in each individual state, they tend to have 
a higher stage-specificity, contributing to the diversity 
between different proteomes, which in turn facilitates 
the complexity of the higher-level system (organism com-
plexity in this study). Both the complexity of each indi-
vidual proteome and the diversity of the proteomes at 
different states contribute to the formation of organism 
complexity. This is the so-called two-level model in this 
paper.

(See figure on next page.)
Fig. 4  Developmental stage-specificity of the expression of each gene category classified by gene length (a, c, e, g, i) or gene age grade (b, d, f, 
h, j) of the five species. Developmental stage-specificity (SS) of a given gene is simply represented by the number of stages in which the gene is 
expressed. The values of upper and lower quartile are indicated as upper and lower edges of the box, and the values of median are indicated as 
a red bar in the box. The differences of SS distribution between the neighboring classes are examined by Mann–Whitney U test. The corrected P 
values are shown in the top of each panel. The P values marked with red color are those less than 0.05. The abbreviations of the gene age grades are 
the same as those in Fig. 3
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Next, we focused on the detailed contribution pat-
terns of complex genes to the complexity of individual 
proteome in certain states, and how the young genes 
contribute to the diversity of proteomes in different spa-
tiotemporal states.

According to the preceding results, the complex genes 
tend to be expressed widely across different develop-
mental stages and adult OTCs. Thus, we inferred that 
the complex genes tend to facilitate the formation of 
the common complex structures and functions present 
across different spatial and temporal states. To describe 
these common complex structures and functions, we set 
up two controls: widely expressed (WE) simple genes and 
stage-specific (SS) complex genes. We classified all of the 
PCGs based on gene complexity grades (5 grades for gene 
length, CRMN and protein length; 4 grades for DNIR) 
and 3 grades of gene expression width (Fig. 5a). The gene 
distribution pattern across these categories was consist-
ent with the results of the gene spatiotemporal specific-
ity analyses (Fig.  4a-d); that is, complex genes tend to 
be widely expressed across different stages during the 
development of the five species. This result is confirmed 
by the over-representation analyses (Fig.  5b, Additional 
file 7 : Table S9).

For the biological function analysis, we focused on 
four categories: complex widely expressed (WE) genes, 
simple WE genes, complex stage-specific (SS) genes 
and simple SS genes. The characteristics of the gene 
functions of these four categories were explored based 
on GO annotation and the hypergeometric distribu-
tion model, using all of the genes with BP (biological 
process) term annotations as the background. The sig-
nificantly over-represented terms of biological pro-
cesses (BPs) were counted and compared across these 
four categories. The two WE categories were obviously 
closer because they shared more over-represented 
BP terms, whereas there were almost no shared terms 
between the WE and SS categories (Fig.  5c). In detail, 
the complex and simple widely expressed genes obvi-
ously participate in different biological processes 
(Fig.  5d). The complex widely expressed genes tend 
to take part in such biological processes as biological 

regulation, catabolic processes, cellular component 
organization, transcription, cellular localization, cell 
cycle and cellular component biogenesis. The complex 
widely expressed genes contribute to biological com-
plexity in each individual state during these biological 
processes. On the contrary, the simple widely expressed 
genes tend to take part in translation, transport and the 
generation of precursor metabolites and energy. These 
results provided the functional characteristics of com-
plex and simple widely expressed genes, marking for 
the first time that widely expressed genes were classi-
fied according to their complexity level and their func-
tional characteristics were explored. Until now, only 
the functional characteristics of widely expressed genes 
had been known. Here, the specific functional features 
of complex widely expressed genes were deciphered 
and compared with those of simple widely expressed 
genes. Furthermore, the complex/simple stage-specific 
genes clearly have different functional characteristics 
compared with the complex/simple WE genes. Nota-
bly, the BP term over-/under-presentation patterns are 
more similar among the three higher species, and there 
is obvious difference between the higher species and 
the two lower species in this study. For example, in D. 
melanogaster, most of the BP terms in Fig. 5c are signif-
icantly over-represented in the long genes, regardless of 
their stage-specificity. This suggests that the long genes 
defined in this study (the top 20% in each species) may 
have different function distributions.

For the analysis of mouse, the gene expression data 
in the adult OTCs are also taken into the calculation of 
expression width. The results about the distribution of 
widely expressed and stage- or OTC-specific genes and 
their function characteristics (Additional file 1: Fig. S18) 
were similar to the analysis based on only developmental 
stage-specificity data. The significantly over-represented 
gene knockout phenotype terms further confirmed the 
preceding results (Supplementary results in Additional 
file  1 and Table  S10 in Additional file  8). When explor-
ing the functional characteristics of complex widely 
expressed genes using the pathway view, some inter-
esting clues were found. There are 14 significantly 

Fig. 5  Detailed expression and functional characteristics of complex genes. a Shown are the detailed gene numbers of each category classified 
based on gene complexity grades (5 grades for gene length of the five species) and 3 grades of gene expression width (WE, widely expressed; 
SS, stage-specific and Other). The gene numbers of key categories are shown in red. b The percentages of protein-coding genes (PCGs) of each 
complexity grade in each age degree category were calculated and divided by the expected percentage. Heat map showing the fold enrichment 
values obtained from this division. The expected percentage was the percentage of PCGs of each complexity grade in the genome of each species, 
represented as ‘bg (%)’ in the right region of the panel. The symbols representing over-/under-representation strength are the same as those in 
Fig. 2. c Venn diagrams of the significantly over-represented GO terms (biological processes, BPs) for the four categories of interest. d Functional 
characteristics of the four categories of interest. The extent of over- and under-representation is shown by 14 grades (− 7 to 7; see “Methods” for 
details). The significantly over-represented BP terms of the two main classes for mouse, WE and SS, are separated by the solid green line. Other 
dashed lines separate the significantly over-represented BP terms of sub-classes

(See figure on next page.)
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over-represented pathways in complex widely expressed 
genes (Additional file  9: Table  S11). Interestingly, the 
high-complexity widely expressed genes tended to be 

distributed in the middle nodes of the signaling path-
ways, and they tended to participate in multiple pathways 
(Additional file 1: Fig. S18 d1–d9).

Fig. 6  Detailed expression and functional characteristics of young genes. a Shown are the detailed gene numbers of each category classified based 
on gene age grades (4 grades of GOT_Ens of the five species) and 3 grades of gene expression width (WE, widely expressed; SS, stage-specific and 
Other). The gene numbers of key categories are shown in red. b The meaning of heat map is similar to that of Fig. 5b. The symbols representing 
over-/under-representation strength are the same as those in Fig. 2. c Venn diagrams of the significantly over-represented GO terms (biological 
processes, BPs) for the four categories of interest. d The distribution of stage-specific (SS) genes and stage-specific young genes among the 
different developmental stages analyzed. The numbers of SS genes and the numbers of youngest SS genes are shown as histograms, referencing 
the left axis in each sub-panel. The percentages of SS genes in the expressed genes in each stage are shown as line charts, referencing the right axis 
in each sub-panel
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To explore the functional characteristics of stage-spe-
cific young genes compared with widely expressed young 
genes and stage-specific old genes, once again all of the 
PCGs were classified based on gene age grades and 3 
grades of gene expression width (Fig. 6a). The gene num-
bers in these categories were consistent with the result 
of gene spatiotemporal specificity analyses (Fig.  4e–h); 
that is, young genes tend to be expressed specifically 
during the development. This result is confirmed by 
the over-representation analyses (Fig.  6b, Additional 
file  7  :  Table  S9). The GO annotation focused on these 
four categories: old widely expressed genes, young widely 
expressed genes, old stage-specific genes and young 
stage-specific genes. The two ‘old’ categories (GOT: I) 
were obviously closer because they shared common over-
represented BP terms (Fig.  6c). The similar results were 
obtained based on the analysis of SOTC-specificity of 
mouse (Additional file  1: Fig. S19). Specifically, the bio-
logical functions of the SOTC-specific novel genes were 
mainly related to signal transduction, immune system 
processes, sensory perception and multicellular organ-
ism processes (Additional file 1: Fig. S19c). Interestingly, 
novel OTC-specific genes were not expressed evenly 
among different OTCs; instead, they tended to be con-
centrated in the testes and OTCs of the nervous system 
(Additional file 1: Fig. S19d, e). This result indicated that 
the young genes tend to contribute to the specificity of 
these special OTCs.

Another interesting phenomenon is about the expres-
sion distribution of the stage-specific genes during 
embryonic and larval development (Fig.  6d). There are 
much more stage-specific genes expressed during the 
very early and late stages in M. musculus, G. gallus and 
D. rerio. However, this trend is not so obvious in D. mela-
nogaster and C. elegans. Instead, in the development of 
these two species, there is only one much higher peak of 
the stage-specific gene number in the larval stage. This 
indicates that the difference between early- and mid-
stage embryonic developments in Protostomia is not so 
much obvious as Deuterostomia.

Discussion
A ‘two‑level’ model: new insights into genome complexity 
realization
Since the accomplishment of genome sequencing for 
several model organisms, the relationship between the 
complexity of genome and organism has become a focus 
of genome studies [41, 42]. However, as more contribut-
ing factors to genome complexity have been presented, 
the picture has grown increasingly complicated and 
confused. Ours is the first attempt to categorize all gene 
properties into two groups (Fig.  1), i.e., the complexity 
and age degree of genes/gene products. This classification 

system offers us a generalized and clear framework that 
can incorporate most genome complexity factors. More 
importantly, based on this general classification, we can 
identify general trends in how the factors that contribute 
to genome complexity are utilized under certain condi-
tions to form phenotypic complexity at the molecular 
and organism levels.

One of the core conclusions of this study is that com-
plex genes are significantly over-represented in each 
stage of embryonic development (Fig.  3) and each of 
the adult OTCs (Additional file  1: Fig. S11), indicating 
that the complex genes tend to be utilized preferentially 
in each spatiotemporal state. On the contrary, young 
genes are usually significantly under-represented in each 
state (Fig.  3 and Additional file  1: Fig. S11) and tend to 
be expressed at specific states (Fig.  4, Additional file  1: 
Fig. S15–17). From this result, we can infer that complex 
gene/gene products contribute to the complexity of indi-
vidual proteomes in certain states, whereas young gene/
gene products contribute to the diversity of proteomes in 
different spatiotemporal states. Organism complexity is 
determined at two levels: the diversity of the spatiotem-
poral states constituting the organism and the complex-
ity of each spatiotemporal state. This study reveals the 
respective contribution of complex and young genes to 
these two levels.

New insights into the relationship between evolution 
and development from the viewpoint of genome 
complexity realization
The fundamental issue in evolutionary developmental 
(evo–devo) biology is how to formulate the relationships 
between evolutionary and developmental processes [10, 
15, 19, 21]. Our study takes a new look at this old ques-
tion. Genome complexity is the result of a long history 
of evolution. On the other hand, it is through the devel-
opmental process that genome complexity is represented 
as organismal phenotypic complexity. The main aim of 
this study is to explore how the genomic complexity-
contributing factors, the ‘results’ of evolution, are utilized 
during development to form the organismal complexity 
at phenotypic level. This work may provide new insights 
into the relationship between evolution and development 
from the viewpoint of genome complexity realization.

First of all, complex genes tend to be utilized prefer-
entially at the late stages of embryonic development, 
contributing to the increasing complexity of the embryo 
during development (Fig. 3). More specifically, this gen-
eral trend occurs mainly due to the complex genes of 
medium age (Additional file 1: Fig. S8). Meanwhile, our 
results give new insights into the theory of evolution–
development connection [10, 15, 40]. Our findings sup-
port the funnel-like model through a new observation 
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of an obvious correlation between the time point of the 
change in over- and under-representation and the order 
of gene age (Fig. 3b, d, f, h, j, Additional file 1: Fig. S7). 
More importantly, we found some explanations about 
why there are different evo–devo relation models, for 
example, the seemingly contradictory ‘hourglass’ model 
and ‘funnel-like’ model. This ‘paradox’ may be due to 
three aspects of causes. First, the ways used for the com-
parison may affect the results. ‘Conservation’ has two 
meanings: One is that the expression pattern is con-
served among different species. Another one is refer-
ring to the evolutionary age of the expressed genes in a 
certain developmental stage. In the two previous studies 
that obtained the funnel-like model [15, 16], their conclu-
sions were based on the analyses of the trend of gene age 
in the genes expressed during each stage of development. 
They found that the age of genes expressed in early stage 
tend to be old and gene duplication and birth were the 
most rare compared with other stages (see Additional 
file  1: Table  S12 for the detailed description). They did 
not compare the gene expression pattern between differ-
ent species. Second, the method used to utilize the gene 
expression data may also be a cause leading to the differ-
ent models. Support for the funnel-like model is based 
mostly on qualitative data (only considering if a given 
gene is expressed or not, Additional file 1: Table S12) [15, 
16], whereas support for the hourglass model is based 
mostly on quantitative data (considering the amount of 
gene expression, Additional file  1: Table  S12) [15, 18–
21]. Barbara Piasecka et  al. can obtain different models 
using the same expression dataset if they calculated using 
quantitative and qualitative manner, respectively. Our 
work indicated that at the qualitative view, the old genes 
tend to be over-represented with the strongest strength 
at the early stages of embryonic development, support-
ing the early conservation model (funnel-like model for 
animal development). Third, different samples (the scope 
for the comparison analysis) will lead to different conclu-
sions about evo–devo relationship. For example, based 
on the comparison of gene expression pattern between 
C. elegans and A. nanus, a recent study [43] suggested a 
more complicated, funnel-like pattern of developmental 
constraints than previously recognized. They found that 
the level of conservation is throughout morphogenesis 
stage and the divergence level does not increase. This 
may be due to the similar morphology between these 
two species. Altogether, the ways for the comparison, the 
methods for gene expression calculation and the species 
scope of the comparison may all affect the evo–devo rela-
tionship model observed in a given analysis. The different 
evo–devo relationship models are not really contradic-
tory. In the further analysis about this question, we will 

try to decipher the biological significance behind the dif-
ferent models obtained with different ways.

Conclusion
This study, for the first time, introduces a ‘two-level’ 
model of the realization of genome complexity at pheno-
typic level: Complex genes contribute to the complexity 
of individual proteomes in certain states, whereas young 
genes contribute to the diversity of proteomes in different 
spatiotemporal states. This study also gets new insights 
into the evo–devo relationship: An obvious correlation 
between the time point of the change in over- and under-
representation and the order of gene age was observed, 
which supports the funnel-like model from a new view-
point. We also found the probable causes for the different 
‘evo–devo relation’ models.

Methods
Datasets of gene expression during development
The gene expression datasets were downloaded from the 
GEO [44] or ArrayExpress [45] databases (see Additional 
file 1: Table S1 for details and corresponding references). 
To validate the core conclusion of this study under vari-
ous conditions, the gene expression datasets selected 
were as complete as possible, representing the states of all 
the stages and spaces. For microarray data, the presence 
or absence of one gene in a certain OTC or condition is 
calculated using the presence/absence calls by MAS 5.0 
algorithm (MAS5) [46]. The RNA-seq fastq files were 
subjected to quality control using FastQC v0.11.5 (http://
www.bioin​forma​tics.babra​ham.ac.uk/proje​cts/fastq​c/). 
The adapters and low-quality areas were removed with 
FASTX-Toolkit v0.013 (http://hanno​nlab.cshl.edu/fastx​
_toolk​it/). The reads were mapped to the Drosophila 
melanogaster genome build BDGP6 using HISAT2 v2.0.4 
[47]. Expression levels were calculated as read counts 
using HTSeq v0.6.1 [48], and the genes with more than 
10 reads detected were regarded as expressed genes.

Determination of developmental stages
For Mus musculus, the embryonic developmental process 
was divided into 5 stages, including Cleavage, Blastula, 
Neurula, Organogenesis, and Fetus, according to the def-
initions and descriptions for each stage from Bgee data-
base (http://bgee.unil.ch/bgee/bgee?page=expre​ssion​
&actio​n=easy_searc​h). What is more, the ‘phylotypic 
stage’ is determined by its morphological characteristics 
described in Ref. [19] and the information from Bgee 
database.

For Gallus gallus, the method of Hamburger–Ham-
ilton [49] was used to measure the stages of embryonic 
development. Here, for the data we used, we divided 
the embryonic process into 4 stages, including Primitive 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
http://bgee.unil.ch/bgee/bgee%3fpage%3dexpression%26action%3deasy_search
http://bgee.unil.ch/bgee/bgee%3fpage%3dexpression%26action%3deasy_search
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streak, Neurulation, early Organogenesis (for the com-
mon features among vertebrates) and late Organogenesis 
(for the Avian-specific features) [10].

For Danio rerio, for the data we used [50], we grouped 
the 106 samples into 28 groups and divided the develop-
mental process into 6 stages: Cleavage, Blastula, Gastrula, 
Segmentation, Pharyngula and Hatching. The ‘phylo-
typic stage’ is about from 11.5 h to 43 h post-fertilization 
according to Ref. [21].

For D. melanogaster, we divided the early develop-
mental process into 6 stages, including Cleavage, Blas-
toderm + Gastrulation, Germ band elongation and 
retraction, Head involution, Differentiation, and Larvae 
[21]. For the data we used here [51], the ‘phylotypic stage’ 
is about from 6.5 h to 9.5 h according to Ref. [21].

For Caenorhabditis elegans, for the data we used, seven 
stages including 4-cell stage, E-cell division (E-div), divi-
sion of the AB lineage (ABdiv, 4 time points), Ventral 
Enclosure (VE), Comma Stage (CS), Movement (Mov) 
and First stage larva (L1) were assigned. The ‘phylotypic 
stage’ is about during the VE stage according to Ref. [52].

Calculation and classification of parameters of gene 
complexity
Four factors contributing to gene complexity, includ-
ing gene length (GL), cis-regulatory module number 
(CRMN), protein length (PL) and domain number 
including repeats (DNIR) in one protein, were selected 
to represent the complexity grade of one gene. GL was 
calculated by the start and end site information of the 
gene in Ensembl release 75 (http://www.ensem​bl.org/) 
extracted by BioMart [53]. CRMN was calculated based 
on the cis-regulatory module information of each gene 
in PReMod database [30] for Mus musculus, the position 
weight matrices (PWMs) in CIS-BP database and map-
ping DNA sequence [54] for Gallus gallus and Danio 
rerio, i-cisTarget [55] for D. melanogaster and PhyloNet_
sites [56] for C. elegans. PL was calculated directly by the 
number of amino acids in the protein sequence from the 
FASTA file stored in Ensembl FTP site (ftp://ftp.ensem​
bl.org/pub/curre​nt_fasta​). The methods for domain iden-
tification and DNIR calculation are the same as our pre-
vious study [5].

Calculation and classification of parameters of gene 
novelty
The gene origin time used in this study was defined by 
two methods: One is from a consensus gene age dataset 
which integrated 13 orthology inference algorithms [33]. 
This kind of gene origin time was named as GOT_Mode. 
Another method was defined by the most recent com-
mon ancestor (MRCA) of the species containing the gene 
based on the orthology relationships extracted from the 

EnsemblCompara database [34]. As described by Moy-
ers and Zhang, there are biases in the gene age annota-
tion inferred from BLAST-like alignments, especially in 
de novo gene identification and gene age determination 
for short proteins [57, 58]. The TreeBeST pipeline used 
to construct EnsemblCompara employed a synteny met-
ric that provides a measure of gene order conservation 
[34]. With this approach, the potential bias in de novo 
gene identification introduced by BLAST-like align-
ments can be well controlled [59]. To avoid the gene 
age determination bias for short proteins, we selected 
the short proteins (< 100 a.a) to run BLASTp against all 
of the protein sequences from the species included in 
Ensembl database. When determining the homology 
relationship, we did not judge only by E-value, but also 
considered the matched percentage and identity values. 
This way, the short old proteins could be assigned correct 
ages. For example, Sarcolipin (ENSMUSP00000036950 
encoded by ENSMUSG00000042045) is a very short 
protein (31 amino acids). According to the homology 
relationship annotation in EnsemblCompara (V75), Sar-
colipin of mouse only has one ortholog in Rattus nor-
vegicus. However, with our modified method, we can 
find the orthologs of Sarcolipin in Macropus eugenii, Sus 
scrofa, Homo sapiens, Oryctolagus cuniculus and Rattus 
norvegicus. Thus, the age of Sarcolipin should be defined 
as Theria-specific. In total, 611 protein-coding genes of 
mouse were assigned with a modified age. The gene age 
order (the oldest genes have the smallest order value, 
see Additional file 1: Table S13 for the detailed informa-
tion) was used to partly represent each gene’s novelty and 
was named GOT_Ens. To simplify the classification, all 
the PCGs in each species were divided into four grades 
(Additional file  1: Table  S7). In this study, the young 
genes are the (super)phylum-specific genes for each spe-
cies. For example, for M. musculus, G. gallus and D. rerio, 
Chordata-specific genes are regarded as the young genes. 
For D. melanogaster and C. elegans, Ecdysozoa-specific 
genes are regarded as the young genes.

We also introduced last duplication time (LDT) as a 
novelty factor. Most of the duplicated genes evolved new 
or sub-functions after duplication [60–62]. Some genes 
originated very early, but were duplicated recently. These 
genes have novel properties, but if we used the GOT 
alone to measure novelty, they would be classified as old 
genes. Thus, it was necessary to take the last duplication 
time into account when measuring novelty. The LDT of 
one gene was determined by the paralogy annotation in 
the Ensembl database retrieved by BioMart [63]. The val-
ues assigned to LDT were also based on the evolution-
ary time order (Additional file 1: Table S13). We assumed 
that the duplication events took place after its origina-
tion. Furthermore, we assumed that singletons were the 

http://www.ensembl.org/
ftp://ftp.ensembl.org/pub/current_fasta
ftp://ftp.ensembl.org/pub/current_fasta
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remnants of the two duplicates, one of which was lost 
during evolution. Thus, the LDT of the singleton was 
assigned with GOT minus 0.5. According to LDT, all 
of the PCGs can be partitioned into four or five classes 
(Additional file 1: Table S7).

The domain age was assigned according to its phylo-
genetic distribution using the taxonomy information 
in the Pfam database [64, 65] (http://ftp://ftp.ebi.ac.uk/
pub/databases/Pfam/). As in our previous study [5], the 
domain age characteristics of a protein are represented 
by the youngest domain within the protein, named as the 
DOT (domain origin time) of the protein. To simplify the 
classification, all of the mouse PCGs were divided into 
five or six groups according to the ancestors of domain 
origination (Additional file 1: Table S7).

The complexity and age degree for microRNA genes
The complexity of miRNA gene is represented by the 
number of its target genes. Target gene information is 
obtained based on two databases, respectively: miRTar-
Base [66] and PITA (PITA score < − 10) [67]. The age 
degree of miRNA gene is inferred from the miRNA fam-
ily database (miFam.dat) in miRbase. The origin time of 
miRNA genes was defined by the most recent common 
ancestor (MRCA) of the species containing the gene 
based on miFam.

Statistical analysis
All of the correlations were defined on the nonparamet-
ric Spearman rank correlation, which assesses how well 
the relationship between two variables can be described 
using a monotonic function. Spearman rank correlation 
was performed using MATLAB 7.11.0.

The difference tests of the stage-specificity of the genes 
in different categories in our analysis were performed 
using the Wilcoxon rank-sum test, a nonparametric sta-
tistical hypothesis test for assessing whether two inde-
pendent samples of observations have equally large 
values. We performed Wilcoxon rank-sum test using 
MATLAB 7.11.0, in which the P values will be adjusted 
using ‘normal_approximation’ method for the large sam-
ples (n > 10).

The over- or under-representation analysis is based 
on hypergeometric distribution model, and the P values 
were corrected using the Benjamini–Hochberg method. 
The over- or under- representation strengths are rep-
resented by − log(P) or log(P), respectively. When the 
heat maps were used to represent the over-/under-rep-
resentation strengths, the values of ∓log(P) were trans-
formed into 14 grades (− 7 to 7): − 7, log(P) ≤ − 30; 
− 6, − 30 < log(P) ≤ − 15; − 5, − 15 < log(P) ≤ − 10; 
− 4, − 10 < log(P) ≤ − 5; − 3, − 5<log(P) ≤ − 2; − 2, 
− 2<log(P) ≤ − 1.301; − 0.25, − 1.301 < log(P) ≤ 0; 0.25, 

0 < −log(P) < 1.301; 2, 1.301 ≤ −log(P) < 2; 3, 2 ≤ −
log(P) < 5; 4, 5 ≤ −log(P) < 10; 5, 10 ≤ −log(P) < 15; 6, 
15 ≤ −log(P) < 30; 7, −log(P) ≥ 30.

The Venn diagrams were drawn by a tool named 
‘Venny’ (http://bioin​fogp.cnb.csic.es/tools​/venny​/index​
.html).
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