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Abstract

Several (inter)national longitudinal dementia observational datasets encompassing demographic information, neu-
roimaging, biomarkers, neuropsychological evaluations, and muti-omics data, have ushered in a new era of potential
for integrating machine learning (ML) into dementia research and clinical practice. ML, with its proficiency in handling
multi-modal and high-dimensional data, has emerged as an innovative technique to facilitate early diagnosis, differ-
ential diagnosis, and to predict onset and progression of mild cognitive impairment and dementia. In this review, we
evaluate current and potential applications of ML, including its history in dementia research, how it compares to tra-
ditional statistics, the types of datasets it uses and the general workflow. Moreover, we identify the technical barriers
and challenges of ML implementations in clinical practice. Overall, this review provides a comprehensive understand-
ing of ML with non-technical explanations for broader accessibility to biomedical scientists and clinicians.

Keywords Alzheimer’s dementia, Alzheimer’s disease, Dementia subtyping, Diagnosis, Disease progression, Machine
learning

Introduction

Alzheimer’s disease (AD), the major cause of dementia, is
a progressive neurodegenerative disorder that predomi-
nantly affects older people [1]. The accumulation of amy-
loid-beta (AP) and formation of neurofibrillary tangles
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marked by tau phosphorylation in the brain are the key
hallmarks of AD [1]. Clinically, the disease can be divided
into three stages: 1) preclinical AD i.e., cognitive unim-
paired (CU) people with amyloid accumulation in the
brain, 2) prodromal or mild cognitive impairment (MCI)
and 3) Alzheimer’s dementia (ADem) [1]. This disease
trajectory can vary between individuals, and preclinical
AD can occur 15-20 years prior to ADem [1].
Observational longitudinal dementia datasets have
been collected in diverse age groups across several (inter)
national dementia cohorts (Table 1), providing rich infor-
mation that enhances the granularity and scope of data
science research. These datasets encompass a broad spec-
trum of information including biomarkers, genetics, neu-
ropsychological evaluations, neuroimaging, omics, etc.
(Table 2). Traditional statistical methods, constrained by
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Table 2 Types of data commonly used in ML-dementia

Page 4 of 21

Input data Categories  Assessments/ Cost Invasiveness Targets Datasets®
Techniques
Biopsy Brain tissue biopsy AU$1,601.8° High Amyloid plaques, neu- -
rofibrillary tangles, etc
Blood/CSF biomarker Lumbar puncture AU $109° High CSF-AB & CSF-tau [23], 2,3,4,5,6,7,8,9,11,17
neurofilament light
chain, etc
Blood testing (e.g., US$200—5500 [25] Minimum Neurofilament light 2,3,5,8,9,15,16

Omics (blood/serum,
urine, saliva)

Cognitive assessments

Demographics or clinical

data from EHR

Imaging

Physiological monitoring

Speech and language
[38]

HRMS [24])

Genomics

Metabolomics
Proteomics
Transcriptomics
Neuropsychological
evaluation

Questionnaire

Census, observational
cohort study, clinical
history

DTl
Retinal imaging

cT
MRI

PET
EEG
ECG

Microphones & record-
ing

US$990 for Alzhei-
mer's disease, familial,
plus APOE panel [28]
US$100—US$500 [29]
$132[30]

AUS$200 [33]

Vary by healthcare
system

Labor cost
Labor cost

US$97 [34]

AUS55°

AU$342.95°
AU$426.57

AU$605.05°
AUS$358.45°

AUS$167.55°

None/minimum

None/minimum

None/minimum

None/minimum

None

None
None

None

None

None
None

None/moderate

None

None

None

chain; plasma AB,,/
AB,, [26], p-tau 181,
p-tau231, and p-tau217
[27], etc

APP, APOE, PSENT,
PSEN2, etc

Amino acids, carbohy-
drates, fatty acids, etc
GFAP [31] and LTBP2
[32] etc

MicroRNAs, mRNA
levels, etc

ADAS-Cog, CDR, MMSE,
etc

ECOG and FAQ, etc
Age, economic status,
education, gender,
lifestyle, medical history,
race, etc

White matter integrity,
brain network connec-
tivity, etc.

Network complexity,
tortuosity, vessel calib-
ers, etc

Structural images

Functional MRI: tracking

alterations in blood flow

linked to neural activity
[35]

structural MRI: brain
anatomy images [36]
AR-PET, FDG-PET, tau-
PET [37], etc

Brain waves, electrical
activity of the brain, etc

Electrical activity
of the heart, etc

Acoustic, prosodic, etc

1,2,3,4,57,10,15

2,4,78,10,15

2,4,8,15

2,5,10,15

3,4,56,7,8,910,11,12,
13,14,15,17

1,2,3,4,567,8910,11,

12,13,14,15,16,17

3,6,7,11

1
3,4,6,8,11,15,17

2,6,7,8911,17

1,17

1,2,10,17

Abbreviations: AB amyloid-beta, ADAS-Cog Alzheimer’s Disease Assessment Scale—Cognitive Subscale, APOE apolipoprotein E, APP amyloid precursor protein, CDR
Clinical Dementia Rating, CSF cerebrospinal fluid, CT computed tomography, DT/ diffusion tensor image, ECG electrocardiogram, ECOG Everyday Cognition Scale, EEG
electroencephalogram, EHR electronic health records, FAQ Functional Activities Questionnaire, FDG-PET fluorodeoxyglucose positron emission tomography, GDF15
growth differentiation factor 15, GFAP glial fibrillary acidic protein, HMRS high-resolution mass spectrometry, LTBP2 latent transforming growth factor beta binding
protein 2, MMSE Mini-Mental State Examination, MRI magnetic resonance imaging, PSENT presenilin 1, PSEN2 presenilin 2, PET positron emission tomography

? prices were obtained from Australia Medicare Benefits Schedule website in June 2024 [39]

b refer to Table 1 for dataset number
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rigid assumptions and a limited ability to handle complex
interactions have shown limitations in processing these
multi-modal datasets, prompting an exploration of more
adaptive and comprehensive techniques such as machine
learning (ML) [2]. ML is a class of algorithms that enable
computers to analyze data and make decisions by identi-
fying patterns specific to tasks [3]. These techniques can
detect subtle patterns and trends in large datasets, sig-
nificantly enhancing the effectiveness and productivity of
data-driven research. In addition, ML has already proven
successful in tracking disease, including market-ready
products (e.g., Vivid E80 [4]) and FDA-approved devices
(e.g., Apple’s Atrial Fibrillation History Feature [5]).

The development of anti-Ap monoclonal antibodies,
such as donanemab [40] and lecanemab [41], has shown
promising results in reducing cognitive decline in early
treatment scenarios. This underscores the importance
of timely intervention. ML can enhance early detection
accuracy and personalized stimulation by determining
the most effective timepoint to adminster antibodies in
the right patients, thereby maximizing their therapeu-
tic benefits. However, it must be noted that while ML
can aid in identifying individuals likely to benefit, our
global health systems are not fully equipped to provide
these early interventions. Monoclonal antibodies require
costly monitoring for brain bleeds, which presents chal-
lenges not only in funding the necessary scans but also
in accessing scanners within a reasonable distance for
patients. A recent study showed that novel biomarkers
including microRNAs, metabolites and proteins have
been identified using ML approaches [42]. Furthermore,
it has been demonstrated that patient-level simulations
by ML can predict disease trajectories [43], estimate the
likelihood of transitioning from MCI to ADem [44] or
even successfully forecast the time-to-event outcomes
survival probability for MCI participants [45].

Here we provide a comprehensive overview of ML
application in dementia (ML-dementia) using non-tech-
nical terms to enhance accessibility to a broad readership.
Specifically, we evaluate ML from a historical perspective
and discuss typical workflows, successful applications
within 5 years and challenges—highlighting the evolving
utility of ML in biomedical research to enhance diagnosis
and management of dementia.

Machine learning

Types of ML

ML includes a variety of algorithms designed to learn
from data to meet a predefined goal, such as identifying
patterns or making predictions about future states. The
model updates its settings or ’(hyper-)parameters’ based
on feedback from performance metrics known as ’'loss
functions, which assesses the accuracy of the model’s

Page 5 of 21

predictions compared to actual outcomes. Once the
model is optimally trained, it can use real-world data to
achieve the predefined task [46]. ML techniques are pri-
marily divided into three categories: unsupervised learn-
ing, supervised learning, and reinforcement learning,
with the first two being more commonly used in demen-
tia research. These categories are discussed in detail
below and their advantages and limitations are summa-
rized in Table 3.

Supervised learning

Supervised learning explores the relationship between
input features and the corresponding target outputs,
also known as labels. In dementia research, supervised
learning can be further categorized based on the predic-
tive target, for instance, classification tasks dealing with
categorical labels (e.g., ADem vs CU), regression tasks
handling numerical labels (e.g., Clinical Dementia Rat-
ing—Sum of Boxes [CDR-SB] and Mini-Mental State
Examination [MMSE]). Once the model is trained, it can
then make predictions on unlabelled data of the same
input.

Unsupervised learning

Unsupervised learning operates on unlabelled data,
which focuses on uncovering patterns or relationships
without considering any predefined labels. This approach
includes 1) clustering tasks such as identifying subtypes
of dementia based on biological, neuropsychological, and
demographic features and 2) data compression such as
using principal component analysis to simplify and sum-
marize complex data.

Reinforcement learning

Reinforcement learning (RL) is used to learn and improve
decision making by continuously receiving feedback
through interaction with external conditions and observ-
ing the response. This approach is less commonly used
than the supervised and unsupervised methods. RL
can be classified as model-free and model-based types;
model-free RL operates without a predefined model,
while model-based RL is preferred for incorporating
domain knowledge (i.e., existing clinical knowledge). RL
could mainly be employed to simulate and predict cogni-
tive states, as well as to estimate the probability of transi-
tioning between cognitive states.

Statistical analysis versus ML approaches

Traditional statistical methods include a hypothesis-
driven approach and statical inference (i.e., generalizing
findings from a subset of data to a large population). Such
approach relies on strong assumptions about the data,
e.g., the data follows a normal distribution to fit existing
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theoretical models [50]. However, these traditional sta-
tistical methods often encounter practical challenges in
complex real-world scenarios, as the assumptions made
may not be satisfied in clinical practice [2]. In contrast,
ML adopts a more data-driven approach with minimal
assumptions, and it concentrates on prediction rather
than inference [2]. However, statistical models and ML
techniques sometimes overlap; e.g., both methods often
employ linear and logistic regression models to meet
statistical goals or to achieve simple linear predictions
in ML contexts. It must be noted that ML possesses the
capability to process and analyze extensive and complex
datasets, such as omics data, effectively uncovering pat-
terns or capturing interactions that might be omitted
or overlooked by the traditional statistical analysis [2].
Therefore, ML is often beneficial to clinical research,
where data is inherently multidimensional with a diverse
array of variables.

The history and typical workflow of ML techniques

in dementia research and clinical applications

Prior to the year 2000, research primarily focused on
clarifying the genetic and biochemical foundations of
AD, with significant emphasis on the roles of AP and
familial genetic mutations [51]. In the subsequent dec-
ade (2000-2010), scholarly attention shifted towards
differentiating AD from CU mostly using ML model
such as support vector machines alongside brain imag-
ing techniques [52]. In the following five years or so,
researchers focused on predicting clinical progress in
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MCI patients using multi-kernel support vector machine
(SVM, a ML model) with longitudinal data from mag-
netic resonance imaging (MRI) and positron emission
tomography (PET) [53].

Since then, ML or deep learning, a subset of ML that
uses neural network to simulate the learning process of
human [54], has been used to classify disease subtypes
and stages. Similar to how the human brain employs
interconnected neurons for information processing, neu-
ral networks in ML use nodes (artificial neurons) and
their interconnections to mimic the brain’s structure and
functionality. This design facilitates pattern recognition
and decision-making. For instance, Ramzan et al. [55]
utilizes resting-state function MRI with Residual Net-
work architecture to classify AD into: CU, significant
memory concern, early-MCI, MCI, late-MCI, and ADem.
In more recent years, the adoption of advanced deep
learning architectures, such as time-series models has
expanded. For example, hybrid deep learning frameworks
based on Bidirectional Long Short-Term Memory models
leverage multimodal data (i.e., MRI, PET, and neuropsy-
chological evaluation) to enhance the classification of CU
and early MCI [56]. A timeline summarizing the use of
ML in dementia research is presented in Fig. 1.

The general workflow to build and apply the ML-
dementia model is summarized in Fig. 2, which can
be separated into six key steps, including 1) Intended
application, 2) Data selection, 3) Data pre-processing,
4) Model Construction, 5) Model evaluation, and 6)

Timelines of ML in Dementia Research

Statistical analysis and inference are predominantly used to
understand the molecular and cellular mechanisms, with an
emphasis on genetic and biochemical factors, particularly the
ApB protein.

2016-2020

Deep learning models (e.g CNN) are utilized for advanced
classification of AD stages and predicting AD progression,
expansion to include EEG data and advanced imaging (e.g.
fMRI, DTI, SPECT)

Traditional supervised machine learning models (e.g. SVM)
for early detection and AD stage prediction, utilizing CSF,
blood, and genetic biomarkers and brain imaging (e.g.
structural MRI)

Multivariate data analysis alongside with ensemble
supervised learning (e.g. random forest) and reinforcement
learning, are employed for predicting neuropsychological
score, early detection and forecasting disease trajectories,
using multimodal data (e.g. MRI, PET, biomarkers)

Advanced deep learning architectures (e.g. RNN, time-series models, transformer-
based NLP models, 3D model) are employed to forecast AD progression, and make
personalized prediction/care planning, using multimodal data.
Fig. 1 Timelines of ML in dementia research. AB=amyloid-beta; AD = Alzheimer’s dementia; CNN = convolutional neural network;
CSF=cerebrospinal fluid; DTI=diffusion tensor image; EEG = electroencephalogram; fMRI=functional magnetic resonance imaging;
MRI=magnetic resonance imaging; NLP = natural language processing; PET = positron emission tomography; RNN =recurrent neural network;
SPECT =single-photon emission computed tomography; SVM = support vector machine. This figure is created using Canva (www.canva.com)
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Machine Learning Workflows in Clinical Settings

Extract relevant
features

DATA
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Data cleaning, feature
engineering, etc
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A
|
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|

MODEL

CONSTRUCTION

MODEL
EVALUATION

|
[
|
‘
Evaluating the model performance,
assessed by evaluation metrics (e.g.
confusion matrix, AUC, MSE)

Fig. 2 General machine learning model workflows in clinical settings. AUC=area under the curve; MSE=mean squared error. This figure is created

using Canva (www.canva.com)

Maintenance. We have provided a detailed description
for each step in Supplementary Material — ML workflow.

Data used in ML-dementia studies

Several observational dementia datasets have been used
for ML model construction and validation (Table 1),
such as the Australian Imaging, Biomarker and Lifestyle
(AIBL) study [57] and the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) study [13]. These datasets are
often longitudinal, involving thousands of participants,
spanning several decades with regular follow-ups, and
some are still actively recruiting. These datasets feature
a diverse range of participant demographics, typically
focusing on middle-aged adults from various racial, eth-
nic and educational backgrounds. Each dataset has a
distinct focus. For instance, Open Access Series of Imag-
ing Studies [OASIS] [16] concentrate on brain imaging,
while the Religious Orders Study and Rush Memory and
Aging Project [ROSMAP] [9] aim to understand aging
processes. Data collection and testing within the same
dataset can vary depending on the project’s phases or
aims. For example, ADNI adapts its data collection strat-
egies across five phases, and OASIS divides its datasets

to address specific research goals. While most datasets
listed in Table 1 primarily address AD, others such as the
UK Biobank [15] and the Framingham Heart Study [6],
provide a broader insight across various health outcomes
within larger cohorts.

A variety of data/sample collection methods have
been employed in these studies, which can be cat-
egorized as per their level of invasiveness (Table 2).
Invasive methods, such as cerebrospinal fluid collec-
tion through lumbar puncture, are commonly used to
obtain biomarkers (AP and tau) and markers of neu-
rodegeneration [1]. The AT(N) 2018 framework [58],
categorizes the progression of AD into different stages
based on specific combinations of these biomarkers
(Table 4). Compared to lumbar puncture, venous blood
collection is considered less-invasive, and often used
for biomarker research and omics (genomics, tran-
scriptomics, proteomics, and metabolomics) analysis
[59]. Non-invasive methods such as MRI and PET are
employed to study brain structure and Af levels [1].
Neuropsychological evaluation (Table 5) are also non-
invasive, which are quantitative measures of cognitive
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Table 4 2018 NIA-AA research framework [58] for biological definition of Alzheimer’s disease

A T N CU MCI Dementia
(Cognitively unimpaired) (Mild Cognitive Impairment)
- - - Cognitively unimpaired MCI not caused by Alzheimer’s disease Dementia not caused by Alzheimer’s disease
+
+ -
+
+ - - Preclinical Alzheimer's disease  Prodromal Alzheimer’s disease Alzheimer's dementia
+
+ - Alzheimer's pathologic change with MCI Alzheimer's pathologic change with dementia
+ MClI suspects not caused by Alzheimer's disease  Dementia suspects not caused by Alzheimer’s disease

A: amyloid-beta levels detected by PET or cerebrospinal fluid analysis

T: tau pathology evidenced by tangles and PET or cerebrospinal fluid biomarkers

N: neurodegeneration indicated by MRI atrophy, ®F-Fluorodeoxyglucose—PET hypometabolism, or high cerebrospinal fluid tau

Table 5 Examples of neuropsychological tests for dementia research or clinical diagnosis

Method Domain

Name of assessments

Questionnaire Global functioning and behavior
Psychiatrics

Neuropsychologi-
cal evaluation

Global functioning and behavior

Test battery

Language

Memory

Visuospatial ability

Recognition and processing speed
Executive functioning

Emotional and personality assessment

Everyday Cognition (ECOG), Functional Assessment Questionnaire (FAQ), etc
Geriatric Depression Scale (GDS), Neuropsychiatric Inventory (NPI), etc

Clinical Dementia Rating-Sum of Boxes (CDR), Mini Mental State Examination (MMSE),
Montreal Cognitive Assessment (MoCA), etc

Alzheimer’s Disease Assessment Scale (ADAS), Cogstate Brief Battery (CBB), etc

Boston Naming Test (BNT), Rey Auditory Verbal Learning Test (RAVLT), etc

Rey Auditory Verbal Learning test (RAVLT); Logical memory lIA Delayed (LOGIMEM), etc
Clock Drawing Test, Hooper Visual Organization Test, etc

Face Recognition Tests, Benton Visual Retention Test, etc

Wisconsin Card Sorting Test, Stroop Test, Trail Making Test (Part B), etc

Minnesota Multiphasic Personality Inventory, Beck Depression Inventory, etc

Table 6 CDR-SB and MMSE scores for cognitive health classification

Cognitive health Substage CDR-SB Score (0-18) [62] MMSE
Score
(0-30) [63]
(@] - 0 30
(cognitive unimpairment)
Mdcl Questionable impairment 0.5-25 26-29
(mild cognitive impairment) Very mild dementia 3.0-40
Alzheimer’s dementia Mild dementia 45-9.0 21-25
Moderate dementia 9.5-15.5 11-20
Severe dementia 16.0-18.0 0-10

CDR-SB Clinical Dementia Rating-Sum of Boxes, MMSE Mini-Mental State Examination

functions across various disease stages (Table 6) [60].
Demographic information, lifestyle data and medical
history are often self-reported or collected using ques-
tionnaires and are used as baseline predictors in the
majority of studies [61].

Existing ML-dementia models using non/
less-invasive data

The following section reviews ML models using input
data collected via non-/moderately invasive approaches.
These data include demographics (age, gender, ethnic-
ity, family history), medical history, neuropsychological
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evaluation, blood (omics, biomarkers), and brain imag-
ing. Studies published between 2019 and 2024 were
selected based on uniqueness in methodology, which is
summarized in Table 7 and Fig. 3.

Dementia subtyping

AD is the major cause of dementia, followed by vascu-
lar dementia, frontotemporal dementia, and dementia
with Lewy bodies [90]. Accurate differential diagnosis is
important for clinicians to offer the most suitable care
options to the patients [91]. Recent studies utilizing ML
and deep learning models have shown relative high accu-
racy in differential diagnoses by incorporating metabo-
lomics [67] and neuroimaging [64—66] (Table 7A). For
instance, Qiang et al. [67] established the associations
between 249 metabolites and type of dementia (all-
cause dementia, ADem, and vascular dementia) using
UK Biobank data. The study employed Cox proportional
hazard models and light gradient boosting machine algo-
rithms to generate a metabolic risk score. This score
when combined with demographic and neuropsychologi-
cal test scores achieved an AUC of 0.85 (AUC approach-
ing 1 indicates excellence in discrimination) for the
classification of different types of dementia. By employ-
ing neuroimaging data, Castellazzi et al. [92] used the
adaptive neuro-fuzzy inference systems to distinguish
between ADem and vascular dementia. This achieved
over 84% accuracy using a combination of features from
resting-state functional MRI and diffusion tensor imag-
ing. Moreover, another independent research group [65]
achieved ~ 80% accuracy in differentiating dementia with
Lewy bodies from ADem using structural MRI data and a
residual neural network. Finally, Nguyen et al. [66] intro-
duced an innovative approach, by integrating 3D U-Nets
with a multi-layer perceptron classifier to discern ADem
from frontotemporal dementia through structural MRI
images, attaining an AUC of 0.94.

Although these studies achieved high diagnostic accu-
racies (~80%), only Nguyen et al. [66] validated their
model using an external dataset. This raises concerns
about the generalizability of these findings and suggests
that potential cohort bias cannot be ruled out. It is crucial
to further validate these models prior to clinical trial and
implementation. Moreover, these studies appear to focus
on the differential diagnosis between vascular dementia
and ADem (Qiang et al. [67] and Catellazzi et al. [92]) and
between frontotemporal dementia and ADem (Nguyen
et al. [66]). Future research could explore the possibility
of differentiating multiple subtypes of dementia using
a single model. Furthermore, all these studies, except
Qiang et al. [67], leveraged advanced imaging techniques
to capture intricate details of the brain. The reliance on
high-resolution imaging data necessitates substantial
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resources, making it challenging to implement the new
technology in clinics.

Disease staging

Predicting disease stages using either a binary classifi-
cation (CU vs ADem, CU vs MCI+ ADem, CU vs MCI,
MCI vs ADem) or CU/MCI/ADem classification is com-
monly used in ML-dementia. These typically employ
omics data [69, 74], neuropsychological evaluation [70],
and neuroimaging [68, 70, 71] (Table 7B). Mahendran
et al. [74] demonstrated that deep belief network-based
approach (accuracy 82%) outperformed SVM (accuracy
78%) and Naive Bayes (accuracy 76%) in binary classifica-
tion of CU and ADem using their multi-omics data. In
another study, Wang et al. [69] utilized six differentially
expressed metabolites, three metabolic pathways and a
random forest model to differentiate the MCI+ ADem
group from CU, and they achieved an AUC of 0.77. MRI
data have also been employed to facilitate disease classi-
fication. For instance, Naz et al. utilized only structural
MRI data [71], and achieved a classification accuracy of
99.27, 98.89 and 97.06% for MCI/ADem, ADem/CU, and
MCI/CU, respectively. To generate more complex mod-
els, multimodal data (e.g., demographic, medical history,
brain volume, neuropsychological evaluation and genet-
ics) have been integrated, such as convolutional neural
network model for disease stage classification. For exam-
ple, using multimodality, Venugopalan et al. [70] achieved
a classification accuracy of 83% for CU, 74% for MCI and
85% for ADem.

We noted that model development in most of these
studies were challenged by an imbalanced dataset, with
AD and MCI often being underrepresented compared
to CU individuals due to disease prevalence. Interest-
ingly, Naz et al. [71] manually balanced the dataset by
eliminating some of the CU participant data (CU=95,
MCI=146, ADem =95). However, this approach reduces
the overall dataset size, possibly leading to the model
not capturing all critical features for accurate classifica-
tion [93]. Model overfitting is also expected from using
such a small dataset [94]. Future studies could focus on
enriching AD and MCI participant data; however, this is
currently less practical due to a lack of harmonized data-
sets that allows data pooling. An alternative approach is
to intentionally recruit MCI and ADem participants, as
done by Kwak et al. [77]; however, these data may be less
suitable for studying the onset and progression of AD.
Another major issue is that the classification accuracy is
usually less satisfactory for differentiating MCI from AD,
as has been reported by Wang et al. [69] and Naz et al.
[71]. Using multimodal data could be a potential solution
[70], nonetheless, future studies are required to confirm
whether their observations are dataset dependent.
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Fig. 3 Types of data used in ML models. A Counts of various data types used in four major ML-dementia applications; B Donut chart showing
the distribution of data types used in the selected studies (Table 7); C Venn diagram illustrating the overlap of data types used in the selected
studies shown in Table 7. This figure is created using Canva (www.canva.com)

Disease progression/trajectory prediction

The prediction of future disease states or neuropsycho-
logical outcomes can be achieved using classification
and regression models, as well as simulating disease
trajectories using more complex deep learning mod-
els (Table 7C). Most classification models categorize
MCI-to-dementia progressors and non-progressors.
For example, Rye et.al. [72] achieved a 75% of accu-
racy in predicting whether MCI participants progress
to dementia using a random forest model, where neu-
ropsychological evaluation, hippocampal volume and
Apolipoprotein E (APOE) genotype were used as input
features. An ensemble model was employed by Mof-
rad et al. [79] for such prediction, where MRI and neu-
ropsychological evaluation were used to achieve a 77%
accuracy. Regression models often employ neuropsy-
chological evaluation, such as CDR-SB, ADAS-Cog,
and MMSE [77, 78, 82], to estimate disease severity
over time. For example, Lian et al. [78] employed a mul-
titask weakly-supervised Attention Network, which is a
regression model that built on structural MRI data col-
lected from CU, MCI progressor, MCI non-progressor,
and ADem participants to predict 3-year future CDR-
SB, ADAS-Cog, and MMSE scores. This model has

achieved promising results, with a root-mean-squared
error of 1.5, 5.7, and 2.2 for each score, respectively.

For disease trajectory simulation, Bucholc et al. [82]
has combined unsupervised and supervised learning
techniques, where participants were categorized by their
cognitive score trajectories (stable vs deterioration over
2-3 years). The trajectories of each category were then
analyzed using random forest, support vector machine,
and linear regression (supervised). This approach
achieved a~90% accuracy in predicting seven different
neuropsychological test scores over 1-year and 2-year
intervals, from the correspondent baseline scores. A
more complex model, Long Short-Term Memory Recur-
rent Neural Networks, was used by Mukherji et al. [81] to
simulate the trajectory for five neuropsychological tests.
This model achieved a prediction accuracy of 85 and 83%
for 2-year and 4-year, respectively. Recent work has also
focused on dynamically predicting the risk of demen-
tia onset. This is typically achieved using a Cox model,
combined with functional data analysis to model longi-
tudinal neuropsychological outcomes. For example, Jiang
et al. [76] utilized the functional ensemble random sur-
vival forest to characterize the joint effects of neuropsy-
chological evaluation in predicting disease progression,
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specifically to predict the time to AD conversion in
individuals with MCI and to provide personalized
dynamic predictions. This approach achieved an AUC
of approximately 0.90 over an average follow-up period
of 31 months. Similarly, Zou et al. [83] proposed a mul-
tivariate functional mixed model framework to simulta-
neously model multiple longitudinal neuropsychological
outcomes and the time to dementia onset, achieving an
integrated AUC of over 0.80, with the mean time to visit
being 1.12 years.

Mukheriji et al. [81], Bucholc et al. [82] and Lian et al.
[78] predict disease progression over a fixed interval,
while Jiang et al. [76] and Zou et al. [83] simulate disease
progression. It should be noted that simulation meth-
ods introduce higher variance and complexity compared
to fixed interval models [95]; however, they can predict
disease status at any time point, whereas fixed interval
models can only predict disease status at the end of the
interval. Different models may suit varying clinical needs
or patient expectations, each balancing its own advan-
tages and limitations. In addition, these complex models
are prone to overfitting [94], capturing noise that does
not generalize to unseen data. This issue could be exacer-
bated in studies where the training datasets are relatively
small, such as that for Jiang et al. [76] (165 MCI stable,
137 MCI progressor). We have also noted that most of
these models, except Lian et al. [78], involve various neu-
ropsychological tests, which often differ between stud-
ies. This makes it challenging for external validation and
comparison between different models. Future studies
should consider developing models based on neuropsy-
chological tests that are routinely used in clinics for eas-
ier evaluation, validation and potential implementation.

Predicting AB and tau levels in the brain

ML models have shown promise in predicting AD bio-
markers with reasonable accuracy (Table 7D). For pre-
dicting AP and p-tau levels in the brain, the problem is
often simplified into a binary classification, e.g., nor-
mal vs high or negative vs positive. Langford et al. [85]
employed the extreme gradient boosting algorithm, a
scalable tree boosting model to predict Ap PET posi-
tivity (standardized uptake values > 1.15) from demo-
graphics (age, education, gender and family history), four
neuropsychological tests and APOE genotype., An AUC
of 0.74 was achieved. Palmgqvist et al. [84] used plasma
AB,,/ APy, ratios, APOE genotype, and neuropsycho-
logical tests for a logistic regression with a lasso penalty
model, and achieved an AUC of 0.83. In contrast, Lew et.
al. [88] employed a logistic regression model for binary
prediction of PET results (high versus low AP or p-tau)
using MRI and other data (e.g., demographic, APOE
genotype, neuropsychological tests and hippocampal
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volumes etc.). This resulted in an AUC of 0.79 for A and
0.73 for p-tau. Using a seven-layer neural network, 3,635
plasma proteins, age and APOE genotype for the same
prediction, Zhang et al. [89] achieved a lower AUC score
for Ap (AUC=0.78) and p-tau (AUC=0.67). Their per-
formance is relatively lower than the other studies, which
could possibly be due to high feature-to-sample ratio
(3000 proteins in 800 participants), which can complicate
model training and validation.

Notably, a universally accepted threshold to determine
binary classification is lacking. For example, Langford
et al. [85] used a threshold of 1.15, while Palmgqvist et al.
[84] adopted a threshold of 0.738. Whether this would
have impacted the prediction performance of the model
is unclear. Future studies should consider standardizing
this threshold to enable comparisons between models.
Another issue with these studies is that the datasets used
for model training are relatively small (e.g., 300 partici-
pants for Palmqvist et al. [84] and 800 participants for
Zhang et al. [89]), possibly due to cost constraints associ-
ated with PET and MRIL Research funding bodies could
play a role in encouraging (inter)national collaboration
and data sharing, as well as endorsing standard data
formats (especially for those high-cost experiments) to
increase the size of datasets for more robust results.

Challenges and future directions

ML has been applied to clinical data analysis for more
than two decades, and its widespread adoption in clinical
research and healthcare has noticeably accelerated. This
section will discuss the technical barriers, and the antici-
pated challenges and potential solutions to applying ML
in clinical practice for dementia (summarized in Table 8).

Clinical data quality

Given the complex set up of longitudinal studies and
heterogenous disease pathology, missing values, outli-
ers, data imbalance are inevitable. Missing data is often
due to incomplete responses, data collection errors,
technical issues and participant withdrawal [96]. Data
scientists either disregard participants with missing data
or use imputation techniques (e.g., mean imputation,
multiple imputation by chained equations, etc. [97]).
Outliers normally result from errors from record, meas-
urement or misclassification. Statistic techniques, such
as z-scores and interquartile range or box plot are used
to detect outliers. Once identified, common approaches
involve removing outliers, adjusting into specific per-
centile, or applying transformations to reduce the skew-
ness of the data distribution [98]. Data imbalance is
a commonly encountered issue for dementia dataset,
as MCI and ADem occur in a smaller population com-
pared to CU. When MCI/ADem cases are significantly
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Table 8 Challenges, solutions and future directions
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Challenges Solutions/future directions

Missing data

Data imbalance

Diagnostics error
Non-uniform longitudinal data Data harmonization
Lack of generalizability

Exclusion of diverse populations

Utilize data imputation technique like mean imputation, multiple imputation by chained equations, etc
Utilize resampling techniques like Synthetic Minority Over-sampling Technique, etc
Expand the use of subjective diagnostics criteria

Develop global criteria that balance scientific rigor and practical feasibility
Encourage global collaborative efforts among researchers, clinicians, and regulatory bodies, strategic recruit-

ment of people from culturally and linguistically diverse background

Computational burdens
Patient acceptance
Clinician acceptance

Utilize efficient algorithm design, high-performance computing resources, and distributed computing platforms
Increase public awareness, ensure data transparency, security, and provide psychological support
Offer ML training to medical students and clinicians, develop explainable Al techniques, and involve clinicians

in co-design of ML tools to enhance usability and trust

Lack of interpretation for ML-demen-
tia applications ent
Ethical and regulatory considerations

ing post-deployment

Implement and promote explainable Al techniques like LIME and SHAP to make ML decision-making transpar-

Advocate for local and international ethical guidelines and regulatory compliance, ensure continuous monitor-

underrepresented compared to CU, it can lead to a
biased model performance, where ML models trained on
imbalanced data may prioritize the majority and struggle
to accurately predict the minority [99]. To address this
issue, resampling techniques such as Synthetic Minority
Over-sampling Technique [100] can be employed.

The quality of clinical data used to train ML models
directly impacts the soundness of the model. The diagno-
ses are performed by clinicians and neuropsychologists
[101, 102], which can sometimes introduce human errors
into the dataset. This is because diagnosis is complicated
by that 1) preclinical AD is difficult to detect [103], 2)
MCI can be misclassified [104], and 3) vascular demen-
tia, Lewy body dementia, and frontotemporal dementia
are sometimes misdiagnosed as ADem [105]. Moreover,
some neuropsychological tests are influenced by practice
effects [106] (repeated testing can artificially improve
performance over time), and education background [107]
(poor performance for individuals who are less educated),
potentially skewing results. Furthermore, the trajectory
of dementia varies significantly among individuals due
to the complex interplays of age, genetics, sex, and other
comorbidities [108]. Some individuals may experience a
gradual decline in cognition over many years, while oth-
ers show rapid deterioration. Many longitudinal studies
employ an "up-to-interval" method [75], classifying par-
ticipants into CU, MCI, ADem, and non-ADem within
a specified follow-up period. However, this approach
often falls short in capturing the disease trajectory of
individuals experiencing gradual cognitive decline. In
addition, older participants are more likely to withdraw
from the study due to their dependency on others (e.g.,
reduced mobility discourage their participation), lead-
ing to their disease trajectory not fully captured. Cohort

study designs can be enhanced to improve data quality.
Longitudinal study designs should consider incorporat-
ing more objective diagnostic criteria, such as expanding
the use of AP PET scans, and integration of blood-based
biomarkers, tau, and neuroinflammation markers, to
enhance the assessments accuracy. Additionally, devel-
oping strategies to prolong study follow-up duration is
crucial for capturing the full progression of disease states
over time. Research funding bodies could play a crucial
role in driving this progress by prioritizing investment
and providing support to longitudinal studies.

Data standardization

The existing longitudinal datasets exhibit a lack of uni-
formity and standardized approach in sample/data col-
lection and record format, making it difficult to validate
and compare metrics like accuracy, sensitivity, and speci-
ficity between ML models that built on different datasets
[109]. For example, although AIBL and ROSMAP col-
lected depression related data, yet different scales were
used—AIBL adapted the Hospital Anxiety and Depres-
sion Scale while ROSMAP used the Center for Epidemio-
logical Studies Depression scale. The lack of uniformity
in data collection could also be attributed to the intrin-
sic nature of the technology. For example, various plat-
forms, techniques, and environmental factors could
introduce biases and variabilities into omics dataset
[110]. In addition, omics data is often noisy and sparse,
especially when detecting molecules of low abundance,
and therefore more prone to batch effect. Furthermore,
different annotation systems or reference databases used
to identify proteins, metabolites, and genes can lead to
mismatches and inconsistencies. Also, different omics
dataset may lack of common features due to experiment
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set up. All these make it less practical to standardize the
omics data.

To enhance the performance of ML models in demen-
tia research, addressing variability in data collection
methods is crucial. The Alzheimer’s Dementia Onset
and Progression in International Cohorts initiative [111]
exemplifies the successful application of data harmoni-
zation, integrating data from five international demen-
tia cohort studies, including the Adult Children Study,
ADNI, AIBL, the Dominantly Inherited Alzheimer
Network, and the National Alzheimer’s Coordinating
Center. Similar initiatives should be encouraged, as they
are crucial for enhancing statistical power, and enabling
more robust ML applications in dementia, leveraging the
existing longitudinal datasets. In addition, publication of
sample collection protocols, along with raising awareness
of the requirements and benefits of data pooling for ML
among biomedical and clinician scientists, could pro-
mote consistent data collection practices and enhance
collaborative research efforts globally. Of paramount
importance, inconsistencies in data formats can under-
mine the effectiveness of ML models. Advanced tools like
‘dtool’ provide practical solutions for standardizing data
formats and enhancing quality by encapsulating data and
metadata into consistent, unified dataset structures with
readily accessible metadata for both the collective data-
set and its individual files [112]. Data repositories could
endorse guidelines that only accept datasets meeting
standardized criteria.

Data generalizability

A longitudinal dataset may lack of generalizability. The
study setting and enrolment criteria would exclude cer-
tain populations based on ethnicity, education level,
socio-economic status, or comorbid conditions. For
example, research studies might exclude participants
with severe cardiovascular diseases or advanced diabe-
tes, arguing that these conditions could confound the
cognitive assessments used to diagnose and track ADem
progression [113]. Moreover, studies that require partici-
pants to be English-speaking exclude individuals from a
culturally and linguistically diverse background (e.g., the
indigenous population in Australia, who have a higher
risk of ADem). These exclusions can result in datasets
that fail to fully represent the diverse population affected
by dementia. The clinical application of ML models built
from biased data will consequently be limited. Collabo-
rative efforts between researchers, clinicians, and regula-
tory bodies are crucial in developing criteria that balance
scientific rigor with practical feasibility. Furthermore, the
major dementia longitudinal studies are often restricted
to national boundaries, constraining their generalizability
and the assessment of their performance in more border
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real-world scenarios. Researchers are encouraged to
employ multiple datasets, where the model is trained on
one dataset (e.g., ADNI) and validated on another dataset
(e.g., AIBL) [114] to address this challenge.

Computational and memory burden

Computational and memory burden is another technical
challenge to ML-dementia, particularly as recent stud-
ies focus on high-dimensional longitudinal omics data.
Advanced tools such as the versatile toolbox MEFISTO
[115] and the PALMO platform [116] are now capa-
ble of modelling spatial and temporal omics data. These
tools utilize high-performance computing resources and
implement various optimization strategies to improve
processing efficiency. However, the high computational
and memory demands of these algorithms can limit their
applicability in AD studies that involve large sample sizes.
Furthermore, the high volume of data requires a robust
data management solution. Distributed computing plat-
forms, like Apache Hadoop [117], can be employed to
efficiently handle, store, and share the large-scale data,
facilitating collaborative efforts across different research
groups and locations. However, these platforms are not
always affordable, creating a technical barrier.

From bench to clinic

Artificial intelligence (AI), such as ML, has already dem-
onstrated success in disease tracking, as evidenced by
FDA-approved devices like Apple’s Atrial Fibrillation
History Feature [5]. While ML applications have yet to
be implemented in dementia clinical practice, anticipated
challenges must be considered for future implementation
in dementia diagnosis and care.

Acceptance of ML tools by patients
The targeted population for ML-dementia tools is older
adults, which raises questions about their readiness
to accept these technological innovations [118]. Many
older adults are not as technologically adept as younger
generations, making it challenging for them to under-
stand ML and its potential in diagnosing and managing
diseases. This lack of understanding can result in low
trust in ML-generated results, leading to hesitation in
their use for healthcare purposes. Moreover, some ML
tools collect data using wearable devices, raising privacy
concerns among older adults who may be unsure how
their data will be used. Furthermore, not all older adults
want to receive predictions about their disease progres-
sion or early detection due to psychological fears and
anxieties [119].

To address these challenges and improve accept-
ance among older adults, several steps should be taken.
Increasing public awareness of ML and its benefits in
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healthcare is crucial, as many people may not realize
that AI/ML are already being used. Ensuring transpar-
ency in data usage and robust data security measures can
help build trust, while offering a personalized approach
where individuals can opt in or out of predictive analyses
can promote autonomy [120]. Providing comprehensive
psychological support can help individuals cope with the
emotional impact of potential diagnoses and empower
them to make informed decisions about their health and
care plans. By addressing these concerns through patient
education, demonstrating the reliability and benefits of
ML tools, and ensuring robust data security measures,
we can foster greater acceptance of ML-dementia tools
among older adults.

Acceptance of ML tools by clinicians

Clinicians tend to prefer techniques that are transpar-
ent and interpretable, aligning with conventional clinical
reasoning. One of the barriers for clinicians to trust and
uptake the output of ML models is the opaque nature of
these algorithms, often referred to as "black boxes.” ML
models can obscure the logic behind their complex deci-
sion-making processes, sometimes producing results that
cannot be easily justified by existing biomedical knowl-
edge. The "black box" nature of ML potentially erodes
clinicians’ trust, hindering the adoption of these mod-
els in clinical practice. In response to these challenges,
there is an increasing focus on developing explainable AI
techniques, such as Local Interpretable Model-agnostic
Explanations (LIME) and SHapley Additive exPlana-
tions (SHAP) [121]. These methods aim to make the
decision-making processes of ML models more transpar-
ent and understandable, thereby can potentially enhance
trust among clinicians. Another significant challenge
is that many clinicians have not received formal train-
ing in ML, which can hinder their ability to effectively
use and explain these tools to patients [122]. Providing
basic education about ML to clinicians and incorporat-
ing an AI/ML training component in medical school cur-
riculum can enhance their ability to use innovative tools
and communicate the benefits to patients. Of paramount
importance, involving clinicians in the co-design of ML-
dementia models can ensure AI/ML tools meet clinical
needs and foster greater acceptance and integration into
practice. Last but not least, some clinicians are hesitant
to accept AI/ML tools due to concerns about job dis-
placement [122]. However, it is essential to understand
that AI/ML tools are designed to augment, not replace,
the work of clinicians, similar to other diagnostic tests.
Clinicians should be assured that their clinical judgment
cannot be replaced by AI/ML and that the role of AI/ML
in clinical practice should be clearly defined in relevant
guidelines.
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Ethics and regulatory considerations

The integration of AI/ML in healthcare brings forth
numerous ethical and regulatory concerns that could
potentially impede their implementation. Recently, the
World Health Organization issued new guidance on the
ethics and governance of Al technology applications
in healthcare [123], emphasizing the need for AI/ML
developers to prioritize ethical principles. To facilitate
the potential implementation of AI/ML tools in demen-
tia diagnosis and management, we also advocate for
the development of local guidelines to fit the culture/
religious needs. On the regulatory front, compliance
with healthcare regulations is indispensable. Regulatory
bodies, such as FDA, the European Medicines Agency,
and the Therapeutic Goods administration (Australia),
should get prepared for processing more applications for
AI/ML medical devices in the future. A clear approach
must be established for post-deployment continuous
monitoring and reporting, to maintain their safety and
effectiveness in the clinic [122]. More importantly, it is
crucial that regulations should clearly define the respon-
sibilities and accountabilities of AI/ML developers and
healthcare providers for any errors generated by AI/ML
tools. This includes specifying the extent of liability for
developers in the event of AI/ML malfunction or incor-
rect predictions, as well as outlining the role of health-
care providers in interpretating AI/ML outputs before
making clinical decisions. Regulations should also detail
mechanisms for reporting and addressing errors, as well
as protocols for updating and improving AI/ML tools
from reported errors. An in-depth discussion on regu-
latory matters concerning ML/AI is outside the scope
of this review. Regulatory bodies, clinicians, and pub-
lic health experts are encouraged to work on regulatory
matters to prepare our healthcare systems for the imple-
mentation of AI/ML tools.
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AD Alzheimer’s disease

ADem Alzheimer’s dementia

ADAS Alzheimer’s Disease Assessment Scale—Cognitive Subscale
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(@) Cognitive unimpaired
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ML Machine learning

MMSE Mini-Mental State Examination

MRI Magnetic resonance imaging

OASIS Open Access Series of Imaging Studies

PET Positron emission tomography

RL Reinforcement learning

ROSMAP  Religious Orders Study/Memory and Aging Project
SVM Support vector machine
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