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Abstract  
Background: Early and accurate diagnosis of Alzheimer’s disease (AD) is essential for disease management and 
therapeutic choices that can delay disease progression. Machine learning (ML) approaches have been extensively 
used in attempts to develop algorithms for reliable early diagnosis of AD, although clinical usefulness, interpretability, 
and generalizability of the classifiers across datasets and MRI protocols remain limited.

Methods: We report a multi-diagnostic and generalizable approach for mild cognitive impairment (MCI) and AD 
diagnosis using structural MRI and ML. Classifiers were trained and tested using subjects from the AD Neuroimag-
ing Initiative (ADNI) database (n = 570) and the Open Access Series of Imaging Studies (OASIS) project database (n 
= 531). Several classifiers are compared and combined using voting for a decision. Additionally, we report tests of 
generalizability across datasets and protocols (IR-SPGR and MPRAGE), the impact of using graph theory measures on 
diagnostic classification performance, the relative importance of different brain regions on classification for better 
interpretability, and an evaluation of the potential for clinical applicability of the classifier.

Results: Our “healthy controls (HC) vs. AD” classifier trained and tested on the combination of ADNI and OASIS 
datasets obtained a balanced accuracy (BAC) of 90.6% and a Matthew’s correlation coefficient (MCC) of 0.811. Our “HC 
vs. MCI vs. AD” classifier trained and tested on the ADNI dataset obtained a 62.1% BAC (33.3% being the by-chance 
cut-off ) and 0.438 MCC. Hippocampal features were the strongest contributors to the classification decisions (approx. 
25–45%), followed by temporal (approx. 13%), cingulate, and frontal regions (approx. 8–13% each), which is consist-
ent with our current understanding of AD and its progression. Classifiers generalized well across both datasets and 
protocols. Finally, using graph theory measures did not improve classification performance.

Conclusions: In sum, we present a diagnostic tool for MCI and AD trained using baseline scans and a follow-up 
diagnosis regardless of progression, which is multi-diagnostic, generalizable across independent data sources and 
acquisition protocols, and with transparently reported performance. Rated as potentially clinically applicable, our tool 
may be clinically useful to inform diagnostic decisions in dementia, if successful in real-world prospective clinical trials.
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Introduction
Alzheimer’s disease (AD) is one of the most prevalent 
health conditions in aging, affecting over 32 million 
people worldwide [1, 2]. It is a neurodegenerative dis-
ease characterized by an initial asymptomatic stage, 
which occurs about 20 years before symptom onset, 
and during which neuronal damage takes place [3]. The 
subsequent early symptomatic stage is characterized by 
a cognitive decline, which is referred to as “mild cogni-
tive impairment due to AD” (herein referred to as MCI) 
when the clinicians consider the cognitive decline to 
be the result of the prodromal stage of AD (as opposed 
to other types of dementia, medication, depression, or 
other causes) [4]. As a diagnosis, MCI is useful in pre-
dicting future AD, with about 15% of MCI patients con-
verting to AD every year [5]. Although there is no cure 
for AD, an early diagnosis of the disease is important 
to start therapies that can slow down its progression 
and improve its management [6]. However, the diagno-
sis of MCI is difficult, as cognitive decline is present in 
healthy aging. This calls for the use of MCI as well as 
AD diagnostic biomarkers. For both diagnoses, one of 
the most widely used measures to support the clinical 
decision is medial temporal atrophy (MTA) as detected 
by visual inspection of a structural magnetic resonance 
imaging (MRI) scan [7, 8]. However, this biomarker is 
not particularly useful for the early diagnosis of MCI, 
as MTA does not occur until late into the disease pro-
gression [9]. Other common biomarkers for MCI and 
AD, such as fluorodeoxyglucose or amyloid positron 
emission tomography and cerebrospinal fluid measures, 
are less accessible, more expensive, and more invasive 
compared to MRI ones [7], which would make the latter 
more appealing for a first-line, early diagnosis.

Given the limitations of the current diagnostic bio-
markers, it is necessary to develop a diagnostic tool 
that can detect early manifestations and accurately 
diagnose both MCI and AD. Recently, there have been 
efforts to develop such a tool using machine learn-
ing (ML) methodologies, with structural MRI, which 
are high-performing in distinguishing “healthy con-
trols (HC) vs. AD” (80–100% accuracy), “MCI vs. AD” 
(50–85% accuracy), “HC vs. MCI” (60–90% accuracy), 
and “HC vs. MCI vs. AD” (59–77% accuracy) [10, 11]. 
Importantly, these studies often use the diagnosis at the 
time of scanning as the “ground-truth” label to train the 
ML algorithm, limiting the classifier to be only as good 
as the clinician. However, clinical accuracy is limited at 

this initial stage, with 20% of MCI patients transition-
ing to AD and 16% reverting to normal cognition after 
approximately 1 year [12]. Therefore, the latest possible 
diagnosis by the clinician should be used as ground-
truth in classifier design, despite in vivo diagnosis still 
being imperfect even when at later stages (with 10% 
of patients diagnosed with probable AD not meeting 
pathological criteria in autopsy [13]). An imprecise 
ground-truth limits the quality of the statistical model 
and its clinical usefulness when an early diagnosis is 
sought. Some studies consider progression from MCI 
to AD during a follow-up period, differentiating stable 
from progressive MCI [14]. However, to our knowl-
edge, no study using machine learning for MCI and 
AD diagnosis has considered other conversions from 
initial diagnosis, specifically MCI reversion to HC and 
HC progression to MCI. It is unclear whether studies 
that consider progression from MCI to AD include sub-
jects with other conversions in their sample and, if so, 
whether the baseline or the current diagnosis is used 
as a label. Not including these subjects could inflate 
the performance of classifiers aiming at future diagno-
sis and also limits their applicability. Thus, to increase 
classifier quality, in the current study, we considered all 
types of transitions and used ground-truth diagnostic 
labels at a minimum of 1-year follow-up and a maxi-
mum of 3-year follow-up.

Importantly, in the present study, we aimed to develop 
an MRI-based multi-diagnostic classification biomarker. 
This classifier is multi-diagnostic in the sense that it dif-
ferentiates HC, MCI, and AD simultaneously, which the 
vast majority of studies that consider HC, MCI, and AD 
do not [11], and which more closely approximates the 
decision clinicians face. Furthermore, we used data from 
multiple datasets and MRI acquisition protocols. Specifi-
cally, surpassing a common limitation in the literature, 
we assessed our classifiers’ generalizability across two 
publicly available independent datasets [10]. Secondly, 
we assessed generalizability across the two most common 
T1-weighted acquisition protocols: a magnetization-pre-
pared rapid gradient echo (MPRAGE) sequence and a 
spoiled gradient echo with inversion recovery prepara-
tion (IR-SPGR) sequence. The acquisition protocol has 
also been shown to impact brain atrophy rate measure-
ments [15] and image signal-to-noise and contrast-to-
noise ratios [16], but its impact on ML classification has 
not been studied, and, more importantly, different pro-
tocols are often used unbalanced between diagnostic 
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groups, which may gravely bias (particularly, inflate) clas-
sification performance.

ML-based diagnosis classification biomarkers should 
stem from a careful trade-off between complexity and 
interpretability, such that they explore complexity to 
achieve statistical power but retain pathophysiological 
interpretability which can be informative and reassur-
ing to the clinician. Most previously published classi-
fiers largely lack interpretability and do not provide any 
insight into how the classification decision was reached 
[11, 17]. We exclusively used simple linear ML algorithms 
and tree-based algorithms, so that feature importances 
could be extracted from the classifiers, to retain some 
level of interpretability, while also combining classifiers 
into a complex ensemble. To further increase complex-
ity, above using raw morphometric structural features 
extracted from the MRI scan, previous studies have built 
ML classifiers using structural T1-weighted MRI graph 
theory (GT) features for AD diagnosis. GT morphom-
etry-derived features allow the classifiers to account for 
complex inter-dependence between brain regions, thus 
potentially increasing predictive power. Studies using 
GT features have obtained a good performance in “HC 
vs. AD” classification (87.0–92.4% area under the receiver 
operating characteristic curve (AUC)) [18–21] and in 
multi-diagnostic “HC vs. MCI vs. AD” classification 
(72.9% AUC) [18]. However, only one of these studies 
[21] reported the performance difference between using 
GT vs. morphometric features, having found that thick-
ness-based GT features result in very modest improve-
ment when compared to raw thickness measures (92.4% 
from 91.6% AUC, respectively, in “HC vs. AD”). Since 
GT metrics may reduce classifier interpretability, these 
should only be used if the improvement obtained out-
weighs the loss of interpretability. In the present study, 
we build classifiers with and without GT metrics to 
determine whether including such metrics is preferable. 
We used structural MRI GT features which have all been 
previously associated with AD (degree [22], clustering 
coefficient [23], node betweenness centrality [24], and 
eigenvector centrality [25]). However, unfortunately, we 
could not herein predict the direction of these effects, as 
they can depend on edge definition [26] and vary across 
studies [27].

The ML biomarker literature is also rife with unclear 
reports, which hinders comparability between findings 
and an insight into their clinical applicability [28]. We 
aimed to report classifier performance transparently 
and comprehensively. Along with commonly reported 
metrics such as sensitivity, specificity, and AUC, we also 
report more robust metrics such as MCC [29, 30], as well 
as negative and positive predictive values (NPV and PPV) 
which are standardized (for better comparability) [31] 

and prevalence-adjusted (for better clinical context inter-
pretation). We also report performance stratified by sex, 
which may be relevant in clinical practice, as well as con-
fusion matrices where possible, allowing readers to cal-
culate additional (unreported) metrics. Finally, we sought 
to evaluate our classifier using our own biomarker evalu-
ation framework published in 2014 [32], to inform on our 
most inclusive classifiers’ potential clinical applicability.

In sum, we report a ML-based diagnostic tool for MCI 
and AD which tackles limitations of previous studies, 
specifically by being (1) multi-diagnostic; (2) trained and 
tested across 2 independent data sources with multiple 
acquisition protocols; (3) with tests of generalizability 
across datasets and protocols, the latter being completely 
novel in the context of AD; (4) based on baseline scans 
and a follow-up diagnosis, regardless of progression; (5) 
with transparently reported performance, and (6) with an 
evaluation of potential clinical applicability.

Materials and methods
Datasets
Data used in the preparation of this article were obtained 
from the publicly available Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (adni.loni.usc.
edu) and the Open Access Series of Imaging Studies 
(OASIS) project database. The most recent visit in which 
a diagnosis was made was considered the best available 
“ground-truth” to train the classifiers. Furthermore, the 
most recent diagnosis visit must have been at least 1 year 
after the selected scan for classifier training. The maxi-
mum follow-up time was of 3 years. Furthermore, diag-
nosis transitions must have occurred at least 6 months 
after the MRI scan. For each subject, we selected their 
earliest available structural MRI scan that fulfilled our 
study’s requirements (in the next section). Differences 
between diagnoses in age and sex (which are known to 
impact brain structure [33, 34]) and “time from MRI to 
most recent diagnosis” (which relates positively with the 
likelihood of diagnostic transitions) were estimated with 
1-way ANOVAs (or, if residuals had non-parametric dis-
tributions, Mann-Whitney tests) and chi-square.

ADNI
The ADNI was launched in 2003 as a public-private part-
nership, led by principal investigator Michael W. Weiner, 
MD. The primary goal of ADNI has been to test whether 
serial MRI, positron emission tomography, other bio-
logical markers, and clinical and neuropsychological 
assessment can be combined to measure the progression 
of MCI and early AD. From ADNI, 570 subjects were 
included (211 HC, 188 MCI, 171 AD). To ensure diagnos-
tic criteria equivalence across the different ADNI sam-
ples (ADNI, ADNI2, ADNIGO, and ADNI3), besides the 
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diagnosis attributed by the clinician based on a clinical 
interview and exam results, subjects had to fulfill addi-
tional criteria based on the ADNI2 procedures manual. 
Specifically, HC must have a Mini-Mental State Exam 
(MMSE) score of at least 24 and a Clinical Dementia Rat-
ing (CDR) of 0; MCI patients must have an MMSE score 
of at least 24 and a CDR of 0.5 with a Memory Box score 
of at least 0.5; and AD patients must have an MMSE 
score below 27 and a CDR of at least 0.5.

OASIS
From the OASIS-3 dataset of the OASIS project, 531 
subjects were included (463 HD, 70 AD) [35]. OASIS 
subjects had to fulfill the same MMSE and CDR require-
ments used for ADNI subjects and must have been diag-
nosed by a clinician based on a clinical interview and 
exam results.

MRI acquisition
ADNI
All ADNI subjects underwent a T1-weighted 3.0 T MRI 
scan using a MPRAGE (TR = 2300 ms, TE = 2.84–3.25 
ms, TI = 900 ms, FA = 8°/9°) or a IR-SPGR (TR = 
6.98–7.65 ms, TE = 2.84–3.20 ms, TI = 400 ms, FA = 
11°) sequence. Scans using parallel imaging accelera-
tion techniques were excluded because, while some evi-
dence shows that parallel imaging has little impact on 
brain atrophy rate measurements [15] and morphometric 
measures [36], differences have been found when using 
more complex longitudinal measures [37]. As ML meth-
ods are more sensitive to peculiarities in the data, accel-
eration could impact classifier performance. Out of 864 
subjects in the ADNI dataset with 3.0 T MRI scan and a 
follow-up time of at least 1 year, 294 were excluded due 
to inclusion criteria for acquisition parameters, leaving 
the final sample of 570 subjects.

OASIS
All OASIS subjects underwent a T1-weighted 3.0  T 
MRI scan (TR = 2400 ms, TE = 3.16 ms, TI = 1 s, FA 
= 8°) using an MPRAGE sequence with a parallel imag-
ing acceleration in-plane factor of 2 (not excluded as all 
acquisitions used parallel imaging).

MRI analysis
Morphometric features
MRI preprocessing was performed using the FreeSurfer 
v6.0.0 standard pipeline [38]. The cortical structure of 
each hemisphere was parcellated into 34 regions of inter-
est (ROIs). For each ROI, 8 measures were obtained (sur-
face area, volume, average cortical thickness, standard 
deviation of the cortical thickness, integrated rectified 
mean curvature, integrated rectified Gaussian curvature, 

folding index, and intrinsic curvature index). Addition-
ally, volumes were extracted from 40 subcortical ROIs 
and 64 white matter ROIs. This set of measures was 
decided a priori because they reflect morphometric alter-
ations associated with MCI and AD, specifically brain 
atrophy [39], cortical thinning [40], cortical gyrification 
patterns [41], and white matter changes [42]. Finally, each 
hippocampus was segmented into 13 subfields [43], with 
26 additional volumes being obtained. These hippocam-
pal subfield volumes were extracted because this region 
has been extensively associated with AD and its progres-
sion [44]. Overall, 694 structural features were extracted.

Graph theory features
GT features were derived from the morphometric data. 
ROI volumes (209 features) were used to compute a 
binary graph. The edges of the graph were calculated 
with the following ratio:

Four different thresholds were used for graph binariza-
tion (0.3, 0.5, 0.7, and 0.9). From each subject’s graph, 4 
node-wise measures were derived: degree (the number of 
nodes connected to a given node), clustering coefficient 
(the fraction of a node’s neighbors that are neighbors 
of each other), node betweenness centrality (the frac-
tion of all shortest paths in the network that contain a 
given node), and eigenvector centrality (a measure of the 
influence of a node in a network). These measures were 
calculated using the Brain Connectivity Toolbox — com-
prehensive details about these measures can be found in 
the article accompanying the toolbox [45]. Overall, 836 
GT-based features were computed for each subject at 
each threshold.

Machine learning classification
The proposed method for multi-diagnostic classification 
of HC, MCI, and AD is an ensemble of 3 binary classi-
fiers. The approach for each binary classifier and their 
combination is illustrated in Figs. 1 and 2, respectively.

Binary classifiers for morphometric data
For each binary classifier, data was split into training 
(70%) and test (30%) sets in a stratified fashion, and 7 dif-
ferent classifiers were trained: (1) a linear support vector 
machine (l-SVM), (2) a decision tree (DT), (3) a random 
forest (RF), (4) an extremely randomized tree (ET), (5) a 
linear discriminant analysis classifier (LDA), (6) a logis-
tic regression classifier (LR), and (7) a logistic regression 
classifier with stochastic gradient descent learning (LR-
SGD). These algorithms were chosen for exposing feature 

Ratioij =
2

Featurei
Featurej

+
Featurej
Featurei
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importances and outputting probabilities. Feature impor-
tance was determined from the weight assigned to the 
features, except for tree methods (DT, RF, ET), for which 
it was determined based on impurity. Overall feature 

importances for the binary classifier were calculated by 
averaging the feature importances of each classifier vot-
ing in that binary decision.

Fig. 1 Classification approach for binary classifiers. See the “Machine learning classification” section for a detailed explanation. l-SVM, linear support 
vector machine; DT, decision tree; RF, random forest; ET, extremely randomized tree; LDA, linear discriminant analysis; LR, logistic regression; LR-SGD, 
logistic regression with stochastic gradient descent learning; MCC, Matthews correlation coefficient; CV, cross-validation; X̄, average; σ, standard 
deviation. Green color indicates classifiers using only structural features and blue indicates classifiers using only GT features
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During training, for feature selection and classifier 
parameter tuning, data was split into 5 stratified cross-
validation (CV) folds, meaning 20% of the dataset was 
iteratively used for the testing and the remaining 80% for 
training. Within each fold, features were scaled between 
0 and 1, and a percentile of best features (between 0 and 
100% in steps of 10%) was selected using mutual informa-
tion, ANOVA F-values, or chi-square statistics, and then 
the classifier was fit. A simple evolutionary algorithm 
[46] was used to select the best feature percentile, feature 
selection metric, and classifier hyper-parameters (tested 
hyper-parameters for each algorithm are in Supplemen-
tary Information 1). The evolutionary algorithm evolved 
over 10 generations, with 10 individuals per generation, a 
gene mutation probability of 30%, and a crossover prob-
ability of 50%, with a tournament size of 3. These param-
eters were selected based on preliminary tests run on a 

subset of the ADNI MPRAGE training set. We changed 
two of these hyper-parameters from their default val-
ues. First, we lowered the population size from 50 to 
10, because our overall population size was relatively 
low, and also because this improved training speed. We 
also increased the gene mutation probability from 10 to 
30% as we noticed classifiers were not converging after 
10 generations or were getting stuck at local minima. 
The evolutionary algorithm was optimized for the MCC 
metric, which is more robust than more commonly used 
metrics such as accuracy or AUC [29, 30]. The 7 binary 
classifiers were ranked based on their performance in the 
training set folds, according to a custom ranking metric 
which selects for classifiers that have good performance 
and low variability across folds (mean MCC across folds 
minus the standard deviation of MCC across folds). Clas-
sifiers performing above the mean of the 7 classifiers 

Fig. 2 Classification approach for multi-class classifiers. See the “Machine learning classification” section for a detailed explanation. CV, 
cross-validation; SVM, support vector machine. Green color indicates classifiers using only structural features and blue indicates classifiers using only 
GT features
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were refitted on the entire training dataset using the 
tuned hyper-parameters. Finally, the selected classifiers 
were combined into a single one by simple voting.

Binary classifiers for GT data
The training of classifiers using GT data followed the 
same approach explained in the previous section, except 
that those 7 classifiers were trained for each graph-
binarization threshold, for a total of 28 classifiers. Since 
GT features are harder to interpret, we only included 
GT-based classifiers in the voting if improvement was 
expected based on their performance (i.e., if they ranked 
above the selected morphometric-only based classifiers, 
replacing whichever of the selected morphometric-only 
classifiers were worst.)

Multi‑diagnostic classifiers
To combine the output from the binary classifiers, we 
fitted a linear SVM classifier using a one-vs-one multi-
diagnostic strategy on the higher-class probabilities out-
put by each binary. We optimized the C parameter using 
a 5-fold stratified CV approach and refitted the classifier 
on the entire training set before testing. Overall feature 
importance for the multi-diagnostic classifier was calcu-
lated by weighting the feature importances of each binary 
classifier by the coefficient of the linear SVM which com-
bines the binary classifiers.

Classifier performance evaluation
All reported performances are those of the test set. We 
opted to use a test set instead of a CV scheme because 
cross-validation cannot be used to estimate performance 
in all of our experiments, as for some experiments the 
training set data has different characteristics from the 
testing set data (e.g., in experiment A3, the training set 
is ADNI MPRAGE and the testing set is ADNI IR-SPGR, 
meaning there is only one possible split into training and 
testing, i.e., all ADNI MPRAGE being in the training set 
and all ADNI IR-SPGR being in the testing set). The test 
sets were age-matched across diagnosis groups, to ensure 
that any learning bias introduced by age would not be 
reflected in our test metrics. Furthermore, the test sets 
were split evenly between sexes to ensure that sex pro-
portions in the training set would not inflate test results 
and to allow us to report data stratified by sex with the 
same confidence interval for both sexes. Finally, the test 
set had the same proportions of transitions as the train-
ing set (i.e., 30% of cases from each type of transition 
were assigned to the test set). 95% confidence intervals 
for each metric were estimated using 2000 bootstrapped 
samples of the test set. Similarly, to compare classifiers’ 
performance, two-tailed p-values were estimated using 
2000 bootstrapped samples from the test set of each of 

the classifiers being compared, with statistical signifi-
cance threshold set at 0.05. Balanced accuracy (BAC) was 
calculated as the average of recall obtained on each class. 
As PPV and NPV should be adjusted for the prevalence 
of the disease in the diagnostic tests to be useful in the 
clinical context [47], we report both using prevalence 
estimates from the first visit in the clinical setting (HC 
= 42.0%, MCI = 18.6%, AD = 26.3%, non-AD cogni-
tive impairment = 13.1%) [48] and, additionally, at 50% 
prevalence as “standardized predictive values” for easier 
technical comparison with other predictive tests, as rec-
ommended [31].

Experiments
Using ADNI: generalizability across acquisition protocols
Using the ADNI dataset, we focused specifically on the 
impact of MPRAGE and IR-SPGR protocols on classi-
fier performance. Five diagnostic classification tasks were 
performed on different subsets of the ADNI dataset (i.e., 
experiments A1–A5): (A1) MPRAGE only, (A2) IR-SPGR 
only, (A3) training on MPRAGE and testing on IR-SPGR, 
(A4) training on IR-SPGR and testing on MPRAGE, and 
(A5) full ADNI dataset. Of the 570 ADNI subjects, 423 
had MPRAGE scans (149 HC, 145 MCI, 129 AD) and 152 
had IR-SPGR scans (62 HC, 48 MCI, 42 AD). For classi-
fiers using both types of scans, only the MPRAGE scan is 
used for the 5 subjects with both scan types. For classifi-
ers using both datasets in training and testing, MPRAGE 
and IR-SPGR proportions were balanced across diagno-
sis to prevent the classifier from extrapolating diagnosis 
information from diagnosis irrelevant characteristics 
associated with the acquisition protocol. Experiments 
A6–A10 are the corresponding classifiers that received 
both morphometric and morphometric-derived GT met-
rics as inputs. Finally, a classifier was trained for the dis-
tinction between MPRAGE and IR-SPGR scans.

Using ADNI and OASIS: generalizability across datasets
The second set of experiments focused on the combina-
tion of the ADNI and OASIS datasets. Since the OASIS 
scanning protocol parameters were most similar to 
ADNI MPRAGE, we only used ADNI MPRAGE scans 
on this set of experiments. Five diagnostic classification 
tasks were performed on different combinations of the 2 
datasets using morphometric features (i.e., experiments 
B1–B5): (B1) ADNI MPRAGE only, (B2) OASIS only, 
(B3) training on ADNI MPRAGE and testing on OASIS, 
(B4) training on OASIS and testing on ADNI MPRAGE, 
and (B5) training and testing on both OASIS and ADNI 
MPRAGE. As above, for classifiers using both datasets 
in training, the dataset was balanced across diagnosis. 
Experiments B6–B10 correspond to the classifiers that 
received both morphometric and morphometric-derived 
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GT metrics as inputs. Additionally, a classifier was 
trained for the distinction between the OASIS and ADNI 
scans. A summary of all diagnostic classification experi-
ments is shown in Table 1.

Diagnosis transition
Since we have follow-up data for all patients, we describe 
the ground-truth either as “stable” (meaning the diagno-
sis has not changed between the time of scanning and the 
most recent clinical follow-up) or as a “transition” (mean-
ing the clinical diagnosis at the time of scanning is dif-
ferent from the most recent clinical follow-up available) 
and compare performance between “stable” patients and 
those who “transitioned” within the follow-up time. We 
did not exclude any transition cases, including diagnosis 
regression, to avoid artificially inflating model perfor-
mance, which could arise from only including reliable or 
progressive diagnosis.

Clinical applicability potential
We sought to evaluate the potential for clinical applica-
bility of our most inclusive diagnosis-wise and protocol-
wise biomarker without GT features (“HC vs. MCI vs. 
AD”; experiment A5) and our most inclusive dataset-wise 

biomarker without GT features (“HC vs. AD”; experi-
ment B5), as a first step towards informing on their 
potential clinical usefulness. For this, we utilized our own 
biomarker evaluation framework [32], which takes into 
account two dimensions, “Quality of Evidence,” which 
refers to the biomarker’s statistical strength and repro-
ducibility, and “Effect Size,” which refers to its predictive 
power.

Results
Cohort characteristics
The demographic and diagnostic data of the study’s sub-
jects are shown in Table  2. In the ADNI dataset, there 
was a statistically significant difference between diag-
noses in age at the time of scanning (F(2, 570) = 4.19, 
p = 0.016) such that AD subjects were older than HC 
(t(382) = 2.88, p = 0.004), with no significant difference 
between MCI and AD (t(359) = 1.87, p = 0.063) or MCI 
and HC subjects (t(399) = 0.888, p = 0.375), and in sex 
between diagnosis (X2(2, N = 570) = 8.18, p = 0.017). 
There was no statistically significant difference in “time 
from MRI to most recent diagnosis” between diagnoses 
(F(2, 570) = 2.84, p = 0.059). In the OASIS dataset, there 

Table 1 Summary of diagnostic classification experiments

‘GT metrics’ refers to whether graph theory metrics were given as an input to classifiers, regardless of whether the classifier selected them or not. For each of the 
experiments A1 through A10, 4 classifiers were built (“HC vs. MCI”; “HC vs. AD”; “MCI vs. AD”; and “HC vs. MCI vs. AD”). For each of the experiments B1 through B10, only 
1 classifier was built (“HC vs. AD”, as OASIS did not have MCI subjects available)

Experiment Training set Testing set GT metrics

Using ADNI: testing generalizability across acquisition protocols
 A1 ADNI MPRAGE ADNI MPRAGE No

 A2 ADNI IR-SPGR ADNI IR-SPGR No

 A3 ADNI MPRAGE ADNI IR-SPGR No

 A4 ADNI IR-SPGR ADNI MPRAGE No

 A5 ADNI IR-SPGR and ADNI MPRAGE ADNI IR-SPGR and ADNI MPRAGE No

 A6 ADNI MPRAGE ADNI MPRAGE Yes

 A7 ADNI IR-SPGR ADNI IR-SPGR Yes

 A8 ADNI MPRAGE ADNI IR-SPGR Yes

 A9 ADNI IR-SPGR ADNI MPRAGE Yes

 A10 ADNI IR-SPGR and ADNI MPRAGE ADNI IR-SPGR and ADNI MPRAGE Yes

Using ADNI and OASIS: testing generalizability across datasets
 B1 ADNI MPRAGE ADNI MPRAGE No

 B2 OASIS (MPRAGE) OASIS (MPRAGE) No

 B3 OASIS (MPRAGE) ADNI MPRAGE No

 B4 ADNI MPRAGE OASIS (MPRAGE) No

 B5 ADNI MPRAGE and OASIS (MPRAGE) ADNI MPRAGE and OASIS (MPRAGE) No

 B6 ADNI MPRAGE ADNI MPRAGE Yes

 B7 OASIS (MPRAGE) OASIS (MPRAGE) Yes

 B8 OASIS (MPRAGE) ADNI MPRAGE Yes

 B9 ADNI MPRAGE OASIS (MPRAGE) Yes

 B10 ADNI MPRAGE and OASIS (MPRAGE) ADNI MPRAGE and OASIS (MPRAGE) Yes
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was a significant difference between diagnoses in age (U 
= 6545, p < .001), such that AD subjects were older than 
HC, and in “time from MRI to most recent diagnosis” (U 
= 9827, p < .001) such that HC had a longer follow-up 
time than AD, but none in sex (X2(1, N = 506) = 2.37, p 
= 0.124).

ADNI: MPRAGE vs. IR‑SPGR
Classifier performance
Results from all ADNI MPRAGE vs. IR-SPGR diagnos-
tic experiments with only morphometric features being 
inputted are presented in Table 3. (Results from the cor-
responding classifiers being inputted morphometric and 
GT features can be found in Supplementary Table 1.) All 
classifiers that received GT features as input alongside 
morphometric features (experiments A6–A10) made use 
of GT features for classification. Despite being selected, 
the use of GT features had no statistically significant 
impact on performance in any experiment (p = 0.060–
0.974). The classifier distinguishing between MPRAGE 
and IR-SPGR scans only selected morphometric features 
and yielded nearly perfect testing performance (0.968 
MCC [CI 95%: 0.914–1.000]; 99.2% BAC [CI 95%: 97.9–
100.0%]). Regarding sex, the performance of our most 
global classifier (experiment A5, HC vs. MCI vs. AD) for 
females (N = 82) was 0.454 MCC [CI 95%: 0.300–0.611] 
and for males (N = 82) was 0.424 MCC [CI 95%: 0.268–
0.568], and the difference between sexes was not signifi-
cantly different (p = 0.778).

Feature importance
The relative contribution of features to the “HC vs. 
AD” classifier using ADNI MPRAGE and IR-SPGR for 
both training and testing (experiment A5) is illustrated 
grouped by anatomical region (Fig. 3A) and by morpho-
metric feature type (Fig.  3B). Anatomical regions are 
grouped according to Supplementary Information 2 and 
detailed contributions for each morphometric feature 
type-region pair are reported in Supplementary Table 3. 
We report this experiment as it was the most inclusive, 
using both scan types in training and testing, and we 
chose the “HC vs. AD” because it was the best perform-
ing binary, giving us confidence that the feature impor-
tances are clinically meaningful. Despite, it is important 
to note that the degree of predictive of features does not 
necessarily reflect the degree of biological contribution 
to the disease [49]. We report the classifier without GT 
features as no improvement was obtained from including 
those features.

Comparison between stable and transitioning diagnoses
Predictions concerning disease progression by the 
multi-diagnostic classifier (“AD vs MCI vs HC”) from 
experiment A5 are reported in Table  4. In the test set 
for that classifier, 38 subjects out of 164 changed diag-
nosis between the time of scanning and the most recent 
visit. Considering stable and transition cases separately, 
our classifier’s performance was similar (p = 0.505, i.e., 
when considering only stable cases, 0.420 MCC, CI 95%: 
0.286–0.543; and when only transition cases, 0.327 MCC, 
CI 95%: 0.071–0.579).

Table 2 Descriptive statistics of demographic and clinical variables

M male, F female

Dataset Diagnosis N Sex (M/F) Age (at MRI scanning) Time from MRI to the 
most recent diagnosis 
(months)

Mean Standard 
deviation

Mean Standard 
deviation

ADNI HC 211 98/113 72.4 6.6 33.6 5.5

 HC stable 186 86/100 73.1 6.3 33.3 5.7

 MCI transition to HC 26 13/12 67.8 7.3 36.0 0.0

MCI 188 113/75 73.1 7.5 31.3 7.9

 MCI stable 172 102/70 72.5 7.4 31.4 7.9

 HC transition to MCI 16 11/5 78.9 5.7 31.1 8.0

AD 171 97/74 74.6 7.9 26.2 9.6

 AD stable 90 50/40 75.2 7.9 20.2 7.9

 MCI transition to AD 83 34/47 73.9 7.9 32.8 6.5

OASIS HC 439 179/260 67.4 8.1 34.6 4.2

AD 67 34/33 75.6 7.5 30.2 7.9
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Clinical applicability potential
Using our own biomarker evaluation framework pub-
lished in 2014 [32], we evaluated the “HC vs. MCI vs. 
AD” classifier (experiment A5) as a biomarker with a 
“Quality of Evidence” grade of 2 (out of 4), given it is 
a controlled study with a biomarker defined a priori, 
based on previous evidence regarding structural MRI 
alterations in MCI and AD. In terms of “Effect Size,” we 
converted the AUC metric (77.7% CI 95%: 77.2–82.6%) 
into odds ratio (OR) [50], resulting in a large OR of 7.06 
(CI 95%: 6.75–11.1), which corresponds to a grade 4 
(out of 4). The overall sum score of 6 (out of 8) indicates 

this classifier has potential for clinical applicability and 
thus should be further evaluated in future randomized 
controlled trials (RCTs) to compare it to current prac-
tices and clinical prediction, in order to determine its 
real-world clinical usefulness.

OASIS vs. ADNI
Classifier performance
Results from all ADNI vs. OASIS diagnostic experi-
ments using only morphometric features are presented 
in Table  5. (Results from the corresponding classifiers 
which received both morphometric and GT features as 

HPC 36.8%

Temporal 12.3%
Cingulate 10.9%

Frontal 8.4%

Parietal 6.7%

Central 6.0%

CSF 5.6%

Occipito-
Temporal 2.8%

Insula 2.4%

Basal Ganglia
A

B

2.1%

Occipital1.5%
Corpus Callosum

0.1%

Other 4.3%
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Thickness 21.0%

StDev Thickness
7.8%

Surface Area
5.3%

Gaussian 
Curvature 3.9%

Folding Index
3.4%

Mean Curvature
3.4%

Curvature Index
1.9%

Fig. 3 Relative contribution of features for the “HC vs. AD” classifier from experiment A5. Relative contributions are grouped by anatomical region 
(A) and by morphometric feature type (B). CSF, cerebrospinal fluid; HPC, hippocampus; StDev Thickness, standard deviation of the cortical thickness
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inputs can be found in the Supplementary Table 2.) All 
classifiers that received GT features as input alongside 
morphometric features (experiments B6–B10) made 
use of GT features for classification. However, input-
ting GT features to the classifiers had no statistically 
significant impact on their performance in any experi-
ment (p = 0.265–0.998). The classifier distinguish-
ing between ADNI MPRAGE and OASIS scans only 
selected morphometric features and obtained a BAC 
of 83.6% [CI 95%: 76.2–90.4%] and MCC of 0.680 [CI 
95%: 0.541–0.806] — demonstrating that the datasets 
are not perfectly distinguishable. For the most inclusive 
biomarker without GT features (experiment B5), we 
looked at the data stratified by sex. In the test set, there 
were 64 females and 63 males. Performance for females 
was 0.749 MCC [CI 95%: 0.557–0.904] and for males 
0.875 MCC [CI 95%: 0.747–0.969], and the difference 
between sexes was not significant (p = 0.219). For 
females, the classifier output consisted of 30 true nega-
tives (TN), 4 false positives (FP), 4 false negatives (FN), 
and 26 true positives (TP) while for males the classifier 
output consisted of 31 TN, 3 FP, 1 FN, and 28 TP.

Feature importance
The relative contribution of features for the “HC vs. 
AD” classifier using ADNI MPRAGE and OASIS sub-
jects for both training and testing (experiment B5) are 
illustrated grouped by anatomical region (Fig.  4A) and 
by morphometric feature type (Fig.  4B). Features are 
grouped by region according to Supplementary Informa-
tion 2 and detailed contributions for each type-region 
pair are reported in Supplementary Table  4. We report 

this experiment as it was the most inclusive, using both 
datasets in training and testing, and without GT features 
(as no improvement was obtained from including those 
features).

Clinical applicability
Using our own biomarker evaluation framework pub-
lished in 2014 [32], we evaluated the classifier from 
experiment B5 as a biomarker with a “Quality of Evi-
dence” grade of 2 (out of 4), given it is a controlled study 
with a biomarker defined a priori, based on previous evi-
dence regarding structural MRI alterations in MCI and 
AD. In terms of “Effect Size,” we converted the AUC met-
ric (97.4% CI 95%: 94.9–99.3%) into odds ratio (OR) [50], 
resulting in a large OR of 146 (CI 95%: 66.4–547), which 
corresponds to a grade 4 (out of 4). The overall sum score 
of 6 (out of 8) indicates this classifier has potential for 
clinical applicability and thus should be further evalu-
ated in future RCT to compare it to current practices and 
clinical prediction, in order to determine its real-world 
clinical usefulness.

Discussion
Early diagnosis of MCI and AD is essential for early 
therapies and better disease management [6]. For this, 
we developed a ML-based tool which is (1) multi-diag-
nostic; (2) trained and tested across 2 independent data 
sources with multiple acquisition protocols; (3) with tests 
of generalizability across datasets and protocols, the lat-
ter being completely novel in the context of AD (4) based 
on baseline scans and a follow-up diagnosis, regardless 
of progression; (5) with transparently reported perfor-
mance; and (6) with an evaluation of potential clinical 
applicability. Results showed our tool was well-perform-
ing in differentiating AD, MCI, and HC (0.438 MCC; 
62.1% BAC; 77.7% AUC), showing an accuracy above 
chance level (i.e., 33.3% BAC given the 3 possible diag-
noses), regardless of diagnosis at the time of scanning, 
when tested against a follow-up diagnosis of at least 1 
year and a maximum of 3 years. Our tool also performed 
equally well when being tested on data from datasets and 
acquisition protocols not used in training, meaning it is 
likely to generalize well to independent data. Addition-
ally, since our classifiers perform equally well without 
GT features, which add complexity to the classifiers, we 
found no advantage in including GT features. Finally, 
we reported the relative importance of different brain 
regions and morphometric feature type for the diagnostic 
classification, which might aid in clinical interpretability 
of the classifiers.

Table 4 Classifier confusion matrix for the multi-diagnostic 
classifier from Experiment A5.

Classifier prediction

Ground‑truth (2‑year) HC MCI AD

HC
 HC stable 36 12 4

 MCI transition to HC 4 4 0

MCI
 MCI stable 29 13 10

 HC transition to MCI 2 1 3

AD
 AD stable 0 5 18

 HC transition to AD 0 0 1

 MCI transition to AD 4 7 19
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A MRI‑based ML classifier: performance comparison 
with previous reports
Several recent studies claim classifier interpretability or 
report feature weights for the classifiers. Those which 
developed classifiers for AD diagnosis (“HC vs. AD”) 
obtained accuracies of 85.0% [51] and 87.2% [52], simi-
lar to ours of 90.6% BAC on the combined ADNI+OASIS 
dataset (experiment B5); MCC of 0.666 [53], lower than 
our ours of 0.811 MCC (experiment B5); and AUC of 
98.0% [54], 95.1% [55], and 90.6% [56], comparable to 
ours of 97.4% (experiment B5). Importantly, all these 
studies, except [52] and [56], report feature importances 
at the level of the individual, which we do not. Only one 
study [53] used an additional AD dataset besides ADNI. 

Another study [57] using simple ML classifiers and both 
the ADNI and OASIS obtained a performance similar to 
ours of 87% BAC on the ADNI dataset, but a lower per-
formance of 70% on the OASIS dataset. While feature 
weights where not reported, the authors mention having 
extracted them from the classifiers. Finally, a study [58] 
reporting landmarks with high discriminative power, 
when using ADNI-1 for classifier training, obtained 
an MCC of 0.819 testing in ADNI-2 and 0.839 testing 
in MIRIAD, which is better than both our experiments 
where test data was from a different dataset than train-
ing data (experiment B8, trained on OASIS and tested on 
ADNI, had an MCC of 0.739; experiment B9, trained on 
ADNI and tested on OASIS, had an MCC of 0.674). This 
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study, however, might have suffered from data leakage in 
the form of biased transfer learning [59].

Our achieved performance on the ADNI dataset alone 
for the multi-diagnostic “HC vs. MCI vs. AD” (experi-
ment A5: 62.1% BAC, whereas a random classifier would 
have a BAC of 33%) is comparable to that of recent stud-
ies which also report feature weights for the classifiers or 
claim classifier interpretability. These range from 51.9 to 
71.2% in accuracy [54, 60–62]. One study [54] achieved 
a higher multi-diagnostic “HC vs. MCI vs. AD” accuracy 
(albeit unbalanced) of 71.2% using a region abnormal-
ity score obtained using a deep neural network which, 
despite providing individual-level abnormality scores, 
does not make evident how the characteristics of the 
scan contribute to a region’s abnormality score. Further-
more, this study only considered baseline diagnosis for 
this classifier, with MCI subjects who had transitioned to 
AD being labeled as MCI. A second study [60] obtained 
a “HC vs. MCI vs. AD” multi-diagnostic BAC similar to 
ours of 62.5% on the ADNI dataset using an ensemble of 
random forest classifiers, which is highly interpretable. 
A third study [61] reporting feature importances from a 
random forest classifier obtained an “HC vs. MCI vs. AD” 
multi-diagnostic BAC of 51.9%, which was lower than 
ours. A fourth study [62] obtained a similar (vs. ours) 
“HC vs. MCI vs. AD” multi-diagnostic BAC of 61.9% 
using an ensemble of linear SVMs, but do not report fea-
ture importances, only the frequency with which each 
feature was selected by the ensemble. Finally, the latter 
three studies only considered MCI-to-AD transitions 
when labeling subjects [60–62].

Hippocampal and cingulate, frontal, and other temporal 
changes contribute most
Extracted feature contributions by brain regions obtained 
from the “HC vs. AD” classifiers (experiments A5 and B5, 
in Figs. 3A and 4A, respectively) are in accordance with 
our current etiological and neuroscientific understand-
ing of AD. Hippocampal features were the strongest con-
tributors to the classification, at approximately 25–45%, 
which is consistent with the understanding that hip-
pocampal atrophy is a structural hallmark of AD in the 
brain [63]. Temporal regions were the next most highly 
weighted, at approximately 13%, followed by cingulate 
and frontal regions, each contributing approximately 
8–12% for the classifier decision, and all have been 
independently associated with AD and its progression 
[64–66]. The remaining regions combined contribute 
approximately 25–40%, and all regions make meaning-
ful contributions to the decision, speaking to the fact that 
AD is a disease with brain-wide effects.

Volume changes contribute most
Extracted feature contributions by feature type obtained 
from the same “HC vs. AD” classifiers as above (experi-
ments A5 and B5, in Figs. 3B and 4B, respectively) reveal 
that volumes are the strongest contributors to the clas-
sification, at approximately 45–55%, followed by cortical 
thicknesses, at approximately 17–21%, which is in line 
with evidence of brain atrophy [39] and cortical thin-
ning in AD [40]. The combination of gyrification meas-
ures (mean curvature, Gaussian curvature, folding index, 
and curvature index) contributed 12–17% to the deci-
sion, which is consistent with previous evidence asso-
ciating cortical gyrification with AD [41]. While we did 
not investigate the performance gained from introduc-
ing different types of measures, we show that all types 
of measures used had an important contribution to the 
classification decision. Furthermore, care should be taken 
not to interpret these contributions outside of the clas-
sification context, as the predictive value of features does 
not necessarily reflect biological contribution to the dis-
ease [49].

MRI morphometric‑based graph theory complexity may be 
unnecessary
When introducing complex features, such as GT-based 
ones, it is important to determine whether this brings 
an improvement, as complexity sacrifices clinical inter-
pretability in ML. In fact, we did not observe a statisti-
cally significant improvement when GT features were 
used as input along with morphometric features (p = 
0.060–0.998). However, the fact that both the classi-
fier built to distinguish protocols (“ADNI MPRAGE vs. 
ADNI IR-SPGR”) and the classifier built to distinguish 
datasets (“OASIS vs. ADNI”) did not “choose” to use 
GT-based metrics even when these were given as input, 
this indicates that GT metrics may be more robust to 
protocol and dataset differences, which could have 
implications in classifier generalizability. It is important 
to note, as a limitation, that since models were trained 
exclusively on either morphometric or graph theory 
data, complementarity of these data might have been 
lost. The same is true for complementarity across GT 
binarization thresholds. This loss of complementarity 
could be particularly relevant when using larger data-
sets and more complex models. Altogether, the fact 
that no improvement is obtained from inputting GT 
metrics suggests that these may be unnecessary when 
small sample sizes and simple models are used and that 
the benefit of their inclusion (which might be observed 
with larger samples and more complex algorithm) 
should be evaluated as they introduce additional com-
plexity in the models.
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Generalizability across the two most common acquisition 
protocols
Comparing the results of experiments A1 and A2 with 
those of experiment A5 from Table 2 shows that combin-
ing IR-SPGR and MPRAGE scans in training and testing 
results in similar performance when compared to build-
ing classifiers on a single scanning protocol (“HC vs. 
MCI vs. AD”: 0.350 MCC for MPRAGE-only (p = 0.285) 
and 0.263 MCC for IR-SPGR-only (p = 0.160) vs. 0.438 
MCC for the combination). Importantly, the consider-
ably larger training set for the combination classifier (n 
= 379 for the combination vs. n = 106 for the IR-SPGR-
only classifier and n = 295 for the MPRAGE-only classi-
fier) did not result in any improvement, suggesting that 
the disease effects are fairly large and can be detected 
with small sample sizes using simple ML classifiers and 
thus that more complex models for AD diagnostic may 
be unnecessary.

Moreover, the results from experiments A3 and A4 
demonstrate that despite the protocols being almost 
perfectly distinguishable by the classifiers, a classifier 
trained on one protocol can classify scans of another 
protocol with similar performance as a classifier trained 
on that other protocol (“HC vs. MCI vs. AD”: 0.350 
MCC on experiment A1 vs. 0.372 MCC on experiment 
A4 (p = 0.766); 0.262 MCC on experiment A2 vs. 0.424 
MCC on experiment A3 (p = 0.207)). This similarity 
in performance shows that a biomarker using our fea-
tures and algorithm, although trained in one dataset, is 
well adapted to classify patients whose scan is acquired 
using other MRI acquisition protocols. This is the case 
because the underlying physiopathology dominates in 
the algorithm’s decision as opposed to eventual sequence 
differences or image signal differences. Finally, we dem-
onstrated that MPRAGE and IR-SPGR protocols are 
almost perfectly distinguishable using only morphomet-
ric features (0.968 MCC; 99.2% BAC) — ascertaining that 
these protocols should not be merged without balancing 
them across diagnoses, as otherwise a classifier might 
be biased if it learns to use disease-irrelevant protocol-
related differences in features to attribute labels.

Generalizability across independent patient datasets
Similarly to what was observed in the acquisition proto-
col comparison, comparing the results of experiments B1 
and B2 with those of experiment B5 from Table 5 shows 
that combining ADNI MPRAGE and OASIS MPRAGE 
scans in training and testing can significantly increase 
performance when compared to building classifiers on a 
single dataset (“HC vs. AD”: 0.814 MCC for ADNI-only 
(p = 0.955) and 0.564 MCC for OASIS-only (p = 0.028) 
vs. 0.811 MCC for the combination). These results dem-
onstrate that combining data from different sources can 

be preferential to training a classifier for each data source, 
as not only performance can significantly increase, but 
also a more robust classifier is being trained, as it can 
classify subjects from multiple sources. Importantly, the 
OASIS-only classifier from experiment B2 had a larger 
training sample than the dataset combination classifier 
from experiment B5 (n = 365 and n = 295, respectively), 
meaning that the increase in performance observed can-
not be attributed to a larger training set. Furthermore, 
when showing that ADNI and OASIS datasets are not 
perfectly distinguishable (MCC = 0.680; 83.6% BAC), we 
consequently also show that that applies to the MPRAGE 
scans with a 2-factor acceleration (which were used in 
OASIS) vs. those with non-accelerated MPRAGE scans 
(used in ADNI). This contrasts with the “MPRAGE vs. 
IR-SPGR” distinction (0.968 MCC; 99.2% BAC), which 
was nearly perfect, and is consistent with previous evi-
dence showing that acceleration has little impact on 
brain atrophy metrics, with effects being dominated by 
MPRAGE vs. IR-SPGR differences [15]. Finally, results 
from experiments B3 and B4 demonstrate that a classi-
fier trained on one dataset can classify scans of another 
dataset with similar performance as a classifier trained on 
that other dataset (“HC vs. AD”: 0.814 MCC on experi-
ment B1 vs. 0.722 MCC on experiment B3 (p = 0.211); 
0.564 MCC on experiment B2 vs. 0.641 MCC on experi-
ment B4 (p = 0.461)). These results are in line with previ-
ous evidence showing that a classifier trained on ADNI 
data can be used to classify OASIS data with similar 
performance as a classifier trained on OASIS data [57], 
although we obtained a slightly higher performance of 
87.2% BAC compared to 75.6% BAC when training with 
ADNI and testing with OASIS.

Sex‑stratified results
Sex-stratified data showed no difference in performance 
between males and females within the ADNI dataset for 
the multi-diagnostic classifier (experiment A5) (0.424 
MCC females, 0.454 MCC for males, 0. MCC overall, p 
= 0.438), nor in the combined ADNI and OASIS data-
sets for the “HC vs. AD” task (experiment B5) (0.875 
MCC females, 0.749 MCC for males, 0.811 MCC over-
all, p = 0.219). Despite no differences being observed in 
our biomarkers, reporting sex-stratified data remains 
important as differences in performance between sexes 
have implications on the potential translation of the clas-
sifiers into clinical practice. Balancing testing sets for sex 
is essential to ensure that sex proportions in the training 
set do not inflate test results, especially when there is a 
significant difference between diagnoses in sex, such as 
in our datasets. While sex proportions could be adjusted 
in the training set, this could mean reducing the size of 
the test set, and also it would not allow for reporting of 
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sex-stratified results with the same confidence for both 
sexes.

Performance in stable and transitioning diagnoses
Our classifier from experiment A5 performed equally 
well with stable (0.420 MCC) and transition cases 
(0.327 MCC), which suggest that imaging changes 
might precede diagnostic changes. Importantly, the 
classifier performed poorly on the HC to MCI pro-
gression and MCI to HC regression transitions. Given 
the small number of these transitions in the test set 
(7 MCI-to-HC and 6 HC-to-MCI), their estimated 
performance has a wide error margin. Nonetheless, 
the poor performance estimated for these cases dem-
onstrates that excluding transitions we cannot reli-
ably predict may artificially inflate model performance. 
This is due to the fact that when using the classifier as 
intended, there is no way to exclude these transitions, 
as the future state of the patient is unknown (which 
is exactly what the classifier is being used to predict). 
Therefore, it is important to train and test the classifier 
with a population that best resembles the intended use 
of the classifier (i.e., including all possible transition 
cases) even if including these transitions reduces clas-
sifier performance. Furthermore, while many studies 
differentiate stable from progressing MCI [14], failure 
to account for other transitions reduces their poten-
tial applicability, as predicting a progression from MCI 
to AD is not necessarily more useful than predicting 
a progression from HC to MCI, or a regression from 
MCI to HC. For example, accurately predicting future 
MCI in currently HC patients indicates that their brain 
already shows some pattern of structural change before 
symptom onset. Early intervention in these cases (rec-
ommending mentally stimulating activities, monitor-
ing the appearance of symptoms, etc.) could result in 
better outcomes and delayed onset of symptoms. Simi-
larly, predicting regression from MCI to HC could be 
a good indicator that the current clinical intervention 
and therapies are working.

Clinical applicability and usefulness
Both the classifiers we evaluated obtained a clini-
cal applicability score of 6 (“HC vs. MCI vs. AD” from 
experiment A5 and “HC vs. AD” from experiment B5). 
Despite the better performance of the second classifier, 
we consider that the multi-class has more potential to 
be clinically useful, as it more closely approximates the 
decision the clinicians face. Given this evidence, we con-
sider that the present MRI biomarker should undergo 
evaluation in future RCT to compare it to current prac-
tices in terms of real-world clinical usefulness, which 
should include measures of risk, convenience, cost, 

number-needed-to–assess and outcome relevance, at 
least [32], as it may have potential to improve clinicians’ 
performance as a first-line biomarker — before invasive, 
less available, and more expensive ones such as PET or 
CSF readings are used — at an initial stage.

Limitations and future work
The present study was limited by the fact that only one 
of the data sources included patients with MCI. Fur-
thermore, the testing set is not identical to the clinical 
situation faced by physicians in the clinical decision 
process. This or any future classifier built using the 
proposed approach on a larger, longitudinal, multi-site 
dataset would have to be thoroughly evaluated in the 
clinical setting before it can be adopted. As such, as 
mentioned in the previous section, future work should 
assess the clinicians’ performance with and without the 
information from the algorithm so its potential impact 
on patients can be understood. Also, our classifiers did 
not make use of cognitive features or scores, which 
could be of high predictive value and can be easily 
acquired. Finally, while we provide some insight into the 
classifier decision with the goal of improving interpret-
ability, whether classifier outputs would be correctly 
interpreted by clinicians without a good understand-
ing of the statistical rationale behind ML algorithms 
remains to be verified.

Conclusions
In sum, our approach allowed us to develop ML classi-
fiers with high performance in the distinction between 
HC and patients with AD, as well as with reasonable 
performance in the multi-diagnostic distinction of HC, 
MCI, and AD subjects. Importantly, these classifiers are 
robust to transition cases and identify some future AD 
cases earlier than clinicians. Our approach of using an 
ensemble of classifiers using linear or tree-based algo-
rithms allowed for the development of a complex classi-
fier which outputs the importance that each brain region 
had on the classifiers’ predictions, which may allow 
for easier interpretation by clinicians. It also outputs a 
probability of a diagnosis which allows clinicians to con-
sider the confidence of the classifier when evaluating its 
output. Our work also demonstrated the possibility of 
combining different MRI protocols and datasets in the 
training of these algorithms and opens the road for the 
future development of algorithms using a similar strat-
egy and features with larger and more diverse datasets. 
Given the performance of our most inclusive multi-diag-
nostic classifiers, they may be clinically useful provided 
they are successful in future prospective RCT controlled 
studies [32].
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