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Abstract

Background: Magnetic resonance imaging (MRI) has unveiled specific alterations at different stages of Alzheimer’s
disease (AD) pathophysiologic continuum constituting what has been established as “AD signature”. To what extent
MRI can detect amyloid-related cerebral changes from structural MRI in cognitively unimpaired individuals is still an
area open for exploration.

Method: Longitudinal 3D-T1 MRI scans were acquired from a subset of the ADNI cohort comprising 403 subjects:
79 controls (Ctrls), 50 preclinical AD (PreAD), and 274 MCl and dementia due to AD (MCI/AD). Amyloid CSF was
used as gold-standard measure with established cutoffs (< 192 pg/mL) to establish diagnostic categories.
Cognitively unimpaired individuals were defined as Ctrls if were amyloid negative and PreAD otherwise. The MCl/
AD group was amyloid positive. Only subjects with the same diagnostic category at baseline and follow-up visits
were considered for the study. Longitudinal morphometric analysis was performed using SPM12 to calculate
Jacobian determinant maps. Statistical analysis was carried out on these Jacobian maps to identify structural
changes that were significantly different between diagnostic categories. A machine learning classifier was applied
on Jacobian determinant maps to predict the presence of abnormal amyloid levels in cognitively unimpaired
individuals. The performance of this classifier was evaluated using receiver operating characteristic curve analysis
and as a function of the follow-up time between MRI scans. We applied a cost function to assess the benefit of
using this classifier in the triaging of individuals in a clinical trial-recruitment setting.

Results: The optimal follow-up time for classification of Ctrls vs PreAD was At > 2.5 years, and hence, only subjects
within this temporal span are used for evaluation (15 Ctrls, 10 PreAD). The longitudinal voxel-based classifier
achieved an AUC =0.87 (95%Cl 0.72-0.97). The brain regions that showed the highest discriminative power to
detect amyloid abnormalities were the medial, inferior, and lateral temporal lobes; precuneus; caudate heads; basal
forebrain; and lateral ventricles.
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Conclusions: Our work supports that machine learning applied to longitudinal brain volumetric changes can be
used to predict, with high precision, the presence of amyloid abnormalities in cognitively unimpaired subjects.
Used as a triaging method to identify a fixed number of amyloid-positive individuals, this longitudinal voxel-wise
classifier is expected to avoid 55% of unnecessary CSF and/or PET scans and reduce economic cost by 40%.
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Background

Despite enormous efforts, there is yet no disease-modify-
ing treatment available for Alzheimer’s disease (AD). In
this scenario, a promising strategy aims to prevent AD by
developing interventions before the onset of symptoms
[1]. The main challenge to operationalize such strategy lies
in the detection of those individuals who are at increased
risk to develop symptoms in the short term and would
best benefit from these interventions [2].

Biomarker studies have demonstrated that AD path-
ology unfolds as a continuum [3]. AD starts with a dor-
mant asymptomatic stage—the “preclinical state”
(PreAD)—followed by the progressively impaired symp-
tomatic states of mild cognitive impairment (MCI) and
dementia. PreAD is characterized by unimpaired cogni-
tion, performance within norms taking into account age
and education, and abnormal amyloid biomarkers as
measured in cerebrospinal fluid (CSF) or by positron
emission tomography (PET). The PreAD stage can last
for decades and thus provides a window of opportunity
for potential preventive intervention with disease-modi-
fying therapies as long as the earliest pathophysiological
changes that precede the emergence of AD clinical
symptoms can be detected. However, CSF and PET are
not suitable techniques for the screening or triaging of
the general population given their invasiveness and high
cost.

Recent developments in magnetic resonance imaging
(MRI) permit the study of the neuroanatomy with un-
precedented detail. MRI has proven to be instrumental
at characterizing impending dementia and cognitive de-
cline due to AD both for research and in the clinic [4].
The neuroimaging AD signature has been established as
structural changes in AD-vulnerable structures (i.e., en-
torhinal cortex, hippocampus, and temporal lobe) that
constitute diagnostic markers of cognitive impairment
and AD progression [5, 6]. A preclinical AD signature
might also be present in structural imaging, as several
recent studies point out [7-10, 13], even though to a
lower degree as what is observed in the clinical stages of
the disease. On top of this, preliminary results by our
group [13] and others [11] show that brain anatomical
changes at the PreAD stage involve regions of the afore-
mentioned AD signature.

In this line, artificial intelligence, hand in hand with
MRI, come to the aid of early disease detection across a
variety of medical domains. In the scope of AD, many
efforts have been dedicated to the automated detection
of mild cognitive impairment and dementia due to AD
based on biomarkers and MRI-T1 images of subjects
[12]. However, the detection of PreAD from MRI data-
sets has received much less attention. In a previous
study based on brain regions of interest (ROIs), we
showed that MRI in combination with machine learning
can predict amyloid positivity with enough accuracy
(AUC =0.76) to be cost-effective as a pre-screening tool
[13]. In that report, the MRI’s predictive capacity was
validated in two independent cohorts and a similar
cross-sectional study achieved similar results in a third
population [14]. A good review of machine learning
methods (feature extraction, feature selection, cross-val-
idation, and classifier) using cross-sectional MRI can be
found in [38]. In the present voxel-wise study, instead,
we investigate how longitudinal brain structural changes
in preAD and AD subjects differ from normal brain
aging processes. Our longitudinal voxel-wise approach
utilizes tensor-based morphometry to make inferences
on local tissue gain or loss that occur over the different
stages of AD. In tensor-based morphometry, a Jacobian
determinant map is computed for the deformation field
between a reference and a target image [39], or an aver-
age group template [40]. Hence, Jacobian determinant
maps are interpreted as a measure of local tissue change,
and previous studies show that this approach can
achieve improved accuracy in the diagnostic classifica-
tion of AD/MCI vs. controls [41, 42]. Our work is based
on voxel-wise Jacobian determinant maps that capture
structural changes in the brain between two points in
time, and we focus on understanding how these changes
differ between subjects at risk of AD and those subjects
whose brain follow normal aging processes.

The objectives of this work are therefore twofold. On
the one hand, we seek to identify the most significant
features from the Jacobian determinant maps that can
distinguish normal subjects from those with early
asymptomatic AD stages. To achieve this aim, we imple-
ment a machine learning workflow with a cross-valid-
ation loop [24]. First, a voxel-wise feature selection step
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[43] distinguishes the most discriminant features in the
Jacobian maps, and then, we use these features to pre-
dict amyloid positivity in early AD stages using a ma-
chine learning classifier. This novel classification model
relies on longitudinal MRI images acquired throughout
two time points and is able to predict amyloid positivity
based solely on brain structural changes that are different
to those that pertain to normal brain aging as shown in
cognitively unimpaired and amyloid-negative individuals
used as controls. We establish that a voxel-wise machine
learning classifier based on Jacobian determinants pro-
vides higher accuracy than what was obtained using ROIs
in our cross-sectional study, and therefore shows potential
benefit as a screening tool in a clinical trial setting.

On a parallel and independent analysis, we seek to
characterize the PreAD signature, as compared to that
of AD. To achieve this aim, we carry out a statistical
analysis of voxel-wise Jacobian determinant maps across
the complete sample population and identify regions of
stage-specific change with volume increase or decrease.
At the voxel-wise level, we report a pattern of early brain
structural changes that can be associated with disease
progression and differ from normal aging and also to
those observed in later AD stages.

Methods

Subjects

Subjects for this study were selected from the ADNI
database [15] provided that they had two or more longi-
tudinal 3D-T1 MRI acquisitions and cerebrospinal fluid
(CSF) biomarker data publicly available. Subjects were
assigned biomarker-assisted diagnostic categories follow-
ing recently published guidelines [16]. Subjects labeled
as “Normal” in ADNI were classified as amyloid negative
cognitively unimpaired (Ctrl) if CSF Ap was above 192
pg/mL and preclinical (PreAD) if CSF AP was below
192 pg/mL. This threshold has been shown to optimally
discriminate between cognitively unimpaired individuals
and AD patients and has been extensively used as cutoff
value for amyloid positivity [17]. Subjects were catego-
rized as MCI or AD according to the ADNI diagnostic
categories reported in [18], and we selected only those
individuals with CSF AP levels below 192 pg/mL to ex-
clude subjects harboring non-AD pathological changes.
At baseline, this diagnostic algorithm yielded 79 Ctrl, 50
PreAD, and 274 MCI/dementia due to AD, a total of
403 subjects with complete imaging and CSF data. As
additional inclusion criteria, in follow-up visits, all
subjects remain in the same diagnostic category. We ex-
clude subjects that progress between diagnostic categor-
ies within the time span of the study due to small
sample size (13 PreAD converters from Ctrls, 13 MCI/
AD converters from PreAD, and 1 MCI/AD converter
from Ctrl).
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MRI data

Structural 3D-T1 MRI images were acquired across dif-
ferent scanners and institutions. Each image was associ-
ated with a cognition score and a set of CSF biomarker
values (amyloid-beta, total tau, and phosphorylated tau).
The date of the CSF extraction was selected to be within
90 days from the date of the MRI scan. Each subject had
at least one follow-up visit with the corresponding T1-
MRI image, cognition score, and CSF biomarker values.
The number of visits may differ across subjects (Table 1).
The total number of MRI scans analyzed was 980. The
time interval between visits was, at least, 6 months apart.

Image analysis

The SPM12 [19] neuroimaging software suite was used
for every step of this longitudinal analysis pipeline. All
image pairs corresponding to the same subject from the
ADNI database were processed with longitudinal
pairwise registration. Images in each pair were averaged
and their respective Jacobian determinant was calcu-
lated, which reflects the regional cerebral volumetric
changes between the respective time points. DARTEL
normalization [31] was applied onto average images to
normalize Jacobian determinant maps to MNI space [32]
and allow comparison across subjects. The intensity of
each voxel in the Jacobian image was normalized by the
interval of time between reference and follow-up visits
(i.e., At). The number of Jacobian determinant maps for
each subject’s diagnostic category is 184 Ctrl, 114
PreAD, and 543 MCI/AD.

On top of the voxel-wise analysis, a regional analysis
was also performed. To this end, regions of interest (ROIs)
in the AAL atlas were masked by each subject’s gray mat-
ter segmentation and the mean value of the remaining
voxels’ intensity per region was computed [20].

Automated recognition of PreAD volumetric changes
using machine learning

All Jacobian determinant maps from each subject were
labeled using subject’s label (i.e., PreAD, Ctrl), leaving a
study cohort of N=129 (Ncuw=79, Npreap =50).
Importantly, as mentioned before, we only consider pairs

Table 1 Distribution of the number of 3D-T1 MRI acquisitions
per subject

Number of visits N

2 295

3 63

4 27

5 15

6 3

Total 403 subjects

841 Jacobian maps




Petrone et al. Alzheimer's Research & Therapy (2019) 11:72

of images for which no transitions have been observed
across categories. This analysis was performed only on
the PreAD and Ctrl subjects.

Feature selection

Due to the limited sample size and high dimensionality
of the Jacobian determinant maps, we perform feature
selection to keep an optimal percentage of the most rele-
vant features. To this end, we use a filter feature selec-
tion method based on F test, taking into consideration
Jacobian features and subject labels. The F-test metric is
used to create a ranking of all Jacobian features and
finally a fixed percentage of the highly ranked features
are used for classification [22].

Classification and performance evaluation

Ridge logistic regression with hyperparameter C [23] is
used for binary classification of Jacobian features within
the nested cross-validation (CV) framework [24] defined
in Fig. 1. It consists of an inner CV loop for model selec-
tion and an outer CV loop for assessing model perform-
ance. First, in the outer loop, subjects are randomly
divided into 80% train set and 20% test set previously
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fixing a prevalence of interest (the percentage of samples
of the amyloid positive class). For each subject in either
set, all available Jacobian determinant maps are used for
classification. The train set is used for feature selection
and model optimization while the test set is left out for
final model evaluation. The random split by subject
ensures that there is no contamination of the test set
with Jacobian determinants of the train set.

Feature selection is computed using only the train
set. In the model optimization step, the train set is fur-
ther split into sub-train (2/3) and validation (1/3) sets
using a (k = 3)-fold cross-validation. A grid search strat-
egy is used to optimize the classifier hyperparameter C
by maximizing the fl-score on the validation set.
Finally, the model is estimated using the optimized
hyperparameter C on the whole train set. Then, the
model is applied to the test set to compute standard
performance metrics (i.e., area under the receiver oper-
ating curve (AUC), accuracy, precision, sensitivity,
specificity, and fl-score). Following the formulation in
[13], we also report the reduction of economic cost
(i.e., savings) of using this classification framework as a
tool for AD screening.
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Fig. 1 Workflow of the optimization and evaluation of the classification method. The performance of the final classifier is evaluated on a fresh
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This procedure is repeated n =100 times, and per-
formance results are reported using the average and
standard deviation. The overall implementation is based
on the scikit-learn Python library (version 0.18) [25].

Savings

Savings in a triaging process were calculated as the per-
centage difference in resources between the standard re-
cruitment protocol and using our proposed protocol in
[13] to obtain a desired number of PreAD subjects for
the clinical study. Savings were assessed in terms of eco-
nomic cost (Eq. 1) or participant burden (Eq. 2), i.e., the
amount of unnecessary PET/CSF tests spared through
MRI screening.

1
SaVingSCOST =1- 2. Cavg (p C;)ET CI};RI) (1)
. 1
SavmgsCSF/pET = l—p ﬁ (2)

Savings rely on the algorithmic precision (P) and re-
call/sensitivity (R) and on the prevalence of the popula-
tion (p). The costs of MRI and PET were estimated as
Cnmri =700 € and Ccse = 3000 €, and C,,, represents the
average cost among the screening tests which may
include additional costs (e.g., neuropsychological cogni-
tive testing).

Statistical analysis

The aim of the statistical analysis is to identify signifi-
cant group differences in brain volumetric change rate
between AD stages. We will investigate the location of
these stage-specific changes and whether they represent
a volume increase (positive changes) or decrease
(negative changes). Every Jacobian determinant map is
treated as an independent variable.

Two-sample £ test Statistical analyses were performed
by comparing any combination of two subject categories.
The uncorrected threshold for statistical significance was
p <0.005. Spatial clustering of regions with statistically
relevant voxels was applied to rule out false-positives,
with a clustering threshold of k >100 voxels under
which voxel clusters with smaller sizes were discarded.

Data normalization The effects of normal aging on brain
structural changes were considered as a confounder and
regressed out [21]. Coefficients for linear regression on
age were fitted using only Ctrls (ie., individuals that are
amyloid negative, asymptomatic in all visits).

The age corresponding to each Jacobian determinant
was defined as the mean age between the two visits, i.e.,

age = (agereference + agefollow»up)/z'

Page 5 of 13

Results

Demographic and follow-up comparisons

We included a total of 403 subjects at baseline with
at least one follow-up visit over three categories: Ctrl
(n=79), PreAD (n=50), and MCI/AD (n=274).
Demographic data and follow-up period are presented
in Table 2 split into different categories.

We denote as At the time interval between two follow-
up visits (i.e., reference and target images).

The distribution of the time interval (Af) between fol-
low-up visits on all subjects is given in Fig. 2. The
median of the distribution is 2.01 years.

A subset of the cohort for which 3.5 > At> 2.5 years
was used for some of the machine learning studies, given
that longer At account for more signal-to-noise ratio
into disease progression. Demographics for this subset
of subjects are provided in Table 3. Additional file 2:
Table S2 provides information about the research facility
and type of scanner that were used for each of the
subjects in this reduced cohort.

Machine learning

We use machine learning for voxel-wise prediction of
amyloid-positive subjects (PreAD) among cognitively
unimpaired subjects. A realistic prevalence for PreAD
subjects on middle-age adults is 20% [26]. We use this
prevalence to fix the proportion of PreAD on the test set
on all machine learning experiments, including the train-
ing of the classifier.

Another key parameter of the analysis is the temporal
distance (At) between reference and target images used
to compute the Jacobian determinant maps. In Fig. 3, we
report the performance of the classifier as a function of
minimal At values in the test set. It is observed that even
though we normalize each Jacobian determinant map
with respect to the At parameter, the preclinical signa-
ture is within the detection range when visits are at least
2.5 years apart. In the case in which At>2.5years, the
performance of the classifier based on structural changes
is much better than a classifier trained on individual im-
ages as reported in our previous cross-sectional study
that reports an AUC=0.76 [13]. When using Jacobian
determinant maps with smaller temporal distance (Af <
2.5years), the mean performance is worse than the
cross-sectional analysis, probably due to the low signal-
to-noise ratio between the changes due to normal brain
aging and the changes due to amyloid positivity [13].

The optimal temporal span in terms of AUC and
savings between data acquisitions is Af>2.5years. The
number of subjects with follow-up visits between
2.5 < At < 3.5 years from baseline is reduced to 15 Ctrls,
10 PreAD, and 38 MCI/AD subjects with 25, 16, and 52
Jacobian determinant maps, respectively. In what
follows, throughout the paper, we use only Jacobian
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Table 2 Dataset demographics at baseline

Category Ctrl (AB-) PreAD (AR+) MCI (AR+) AD (AB+) MCI/AD (AB+)
Number of subjects 79 50 196 78 274

Age (years) at baseline (mean; std) 7397 (5.97) 76.04 (6.25) 73.55 (6.55) 7544 (737) 74.1 (6.85)
Sex (F/M) 37/42 21/29 79/117 33/45 112/162
Follow-up (years) period (mean; std) 248 (1.38) 232 (1.32) 2.2 (1.09) 1.4 (046) 197 (1.02)

determinant maps within the optimal temporal span
(2.5 < At < 3.5 years) for evaluation purposes. The use of
Jacobians within this temporal span (2.5 < At < 3.5 years)
for training the system and evaluating it in all other
cases has also been tested, with poor generalization
(Additional file 4: Table S4).

Receiver operating characteristic curve (ROC) and pre-
cision-recall (PR) curves of the classifier are shown in
Fig. 4. A savings heatmap that responds to Eq. 1 is
overlaid on the PR curve, while the mean and standard
deviation of the model performance are plotted against
the random classifier on the ROC curve.

The impact of different number of features used to
train our multivariate algorithm is presented in Table 4,
evaluated on our dataset which is imbalanced (36% of
preclinical subjects). Note that the prevalence of preclin-
ical subjects on the test set is forced to 20% using per-
mutations. When using a low number of features, the
model underrepresents the preclinical signature, not be-
ing able to capture all data heterogeneity. In contrast,
when using a high number of features, the model is not

able to generalize results to unseen Jacobian determinant
maps, overfitting the development set. Hence, the best
results are obtained using a moderate number of
features that are able to both represent the preclinical
signature and still generalize well to the test set. We also
tested an embedded, multivariate feature selection
method based on ll-norm minimization resulting in
lower performance (Additional file 3: Table S3).

An optimal compromised solution between several
metrics is to design our model using 0.5% of the total
Jacobian features. In this case, after the 100 iterations of
the nested cross-validation framework, a heatmap of
selected features is shown in Fig. 5. As expected, the top
selected features correspond to typical regions affected
by AD pathology like the caudates, fusiform, or parahip-
pocampal gyrus, presenting high overlap with the statis-
tical analysis presented in the next section. This result
shows that a machine learning classifier trained on
changes in specific brain regions has the capacity to
predict the presence of early amyloid pathology in
asymptomatic individuals as measured by MRL

250 A

200 -

150 4

100 +

At distribution

0 500 1000

Fig. 2 Distribution of the interval At between reference and follow-up visits across the whole dataset
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Table 3 Demographics of the subset of the study cohort for which At > 2.5 used for machine learning classification

Category Ctrl PreAD McCl AD MCI/AD
Number of subjects 15 10 38 0 38

Age (years) at baseline (mean; std) 7651 (6.18) 76.0 (3.97) 72987 (6.11) - 72987 (£6.11)
Sex (F/M) 8/7 5/5 27/ - 27/
Follow-up (years) period (mean; std) 4.17 (1.035) 421 (0.98) 3.91 (0.82) - 3.91 (0.82)

Preclinical AD volumetric changes

In parallel to the machine learning classification model,
we carried out a voxel-wise statistical analysis using the
full dataset of Jacobian determinant maps to identify the
regions of volumetric change that are statistically signifi-
cant between the different categories Ctrl, PreAD, and
AD/MCI (Fig. 6).

Stable PreAD individuals show significantly higher
gray-matter (GM) atrophy in the parahippocampal and
fusiform gyri as compared to amyloid-negative cogni-
tively unimpaired subjects, as shown on the left hand
side of Fig. 6. Apparent mild GM increments are
detected in the caudate heads, probably as a surrogate
effect of ventricular expansion.

Furthermore, comparison of longitudinal volumetric
changes between amyloid-negative cognitively unim-
paired subjects and stable symptomatic ones (amyloid
positive MCI or AD subjects) reveals the well-known
AD signature involving temporo-parietal and posterior

cingulate areas, as well as most of the basal ganglia [27],
as shown on the right hand side of Fig. 6. Of note, ap-
parent GM increments are also detected in periventricu-
lar areas, including the caudates and medial thalamus.

Discussion

The goal of this work was to assess whether brain struc-
tural changes captured by subsequent magnetic reson-
ance images can indicate the presence of abnormal
amyloid levels in cognitively unimpaired subjects using
machine learning techniques. In addition, we also aimed
at characterizing the preclinical signature voxel-wise
using Jacobian determinant maps as a measure of
volumetric rate of change.

A machine learning framework was implemented for
the classification of amyloid-positive subjects using
Jacobian determinant maps as features for classification.
The best achieved performance in our longitudinal clas-
sifier (AUC 0.87) significantly improved the performance

1.0
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Fig. 3 AUC and savings (blue, green) reported using Jacobian determinant maps with different time intervals (At) between reference and target
and a fixed prevalence of 20% amyloid-positive subjects on the test set. To compute savings, we used optimal precision and recall values plotted
in dashed orange and red lines, respectively using the cost function defined in Eq. 1
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AUC = 0.857

True Positive Rate

Precision

0.0 02 04 06 0.8
False positive Rate

(a) ROC curve

\

Fig. 4 ROC and PR curves for Jacobian determinant maps with time spans in the range 2.5 < At < 3.5 years using 0.5% of the features. On the left, the
ROC curve is averaged across different development/test splits: the mean curve (blue) with the standard deviation (gray) and the curve of a random
classifier (red). On the right, the PR curve of the classifier (blue) is overlaid on a savings heatmap (Eg.
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Recall
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1). Black lines indicate points of equal savings

we previously reported for a cross-sectional classifier
(AUC 0.76) [13]. This performance is significantly higher
than what was reported in previous works that, on top
of using MRI ROI data, built classifiers adding demo-
graphics (AUC 0.63), demographics and genetics (AUC
0.62-0.66), and demographics, neuropsychology, and
APOE (AUC 0.74) [14, 28]. It is possible that adding
complementary information to the MRI such as demo-
graphics and genetic risk factors may improve the per-
formance of our machine learning classifier. While the
field strength of the scanners is 1.5T for all subjects,
there is large heterogeneity in the site ID, so we believe
this has had small or no influence on the performance
metrics of the classifier.

The increased performance of our classifier may be
accounted for two factors. On the one hand and unlike
similar previously reported classifiers, we used voxel-
wise data as features. Coupled with an efficient feature
selection strategy, this allowed the classifier to select the

most discriminant brain regions, independent of a priori
cortical parcellations. On the other hand, we used subse-
quent images that correspond to the same individuals,
thus eliminating an important percentage of the be-
tween-subject variability present in cross-sectional
setups.

In this regard, we observed that our classifier works
significantly better only when the pairs of MRI scans
that are used for evaluation are acquired more than 2.5
years apart. This time period is likely related to the pro-
tracted evolution of the neuroanatomical changes in pre-
clinical AD stages. At more advanced stages of the
disease, more rapid evolution of brain structural changes
is expected, and thus, the benefits of a longitudinal clas-
sifier would potentially be evident with shorter time in-
tervals. It remains to be explored how these promising
results would be affected by the use of different scan-
ners. Still, a time gap of 2.5 for resolving preAD is within
the timescale of relevance for AD screening or the

Table 4 Performance of the system using a different number of features evaluated on the interval 3.5 > At > 2.5 years

# features (%)  AUC (95% Cl)  Balanced accuracy Accuracy Precision Sensitivity Specificity F score
(95% Cl) (95% ClI) (95% Cl) (95% ClI) (95% Cl) (95% CI)
6 (0.00) 0.78 (0.50-0.99)  0.70 (0.375-0.875)  0.57 (0.20-0.80) 0.33 (0.13-0.50) 0.91 (0.33-1.00) 048 (0-0.75) 048 (0.19-0.67)
65 (0.01) 0.81 (0.60-097)  0.74 (0478-0.834)  0.63 (0.27-0.73) 0.38 (0.18-043)  0.91 (0.33-1.00) 0.56 (0.12-0.75) 0.50 (0.28-0.6)
653 (0.10) 0.85 (0.67-1.0) 0.77 (0.60-0.88) 0.65 (0.53-0.8) 037 (027-0.50) 097 (067-1.00)  0.57 (042-0.75)  0.53 (0.38-0.67)
1633 (0.25) 0.86 (0.72-1.00)  0.77 (0.67-0.88) 065 (046-0.8)  0.37 (0.27-0.50) 0.98 (0.67-1.00) 0.53 (0.33-0.75)  0.53 (0.43-0.67)
3266 (0.50) 0.86 (0.71-0.97) 0.77 (0.60-0.88) 0.64 (046-0.8) 0.36 (0.26-0.50)  0.97 (0.67-1.00) 0.56 (0.33-0.75) 0.53 (0.38-0.67)
6532 (1.00) 0.87 (0.72-0.97) 0.76 (0.58-0.88) 0.65 (0.53-0.80) 0.36 (0.25-0.50)  0.933 (0.67-1.00) 0.58 (0.42-0.75) 0.52 (0.36-0.67)
13,064 (2.00) 0.86 (0.64-1.00) 0.75 (0.50-0.88) 0.65 (0.46-0.80) 0.36 (0.20-0.50) 7 (067-1.00)  0.58 (0.33-0.75) 1(0.31-0.67)
32,661 (5.00) 0.80 (0.49-1.00) 0.67 (0.42-0.86) 0.57 (040-0.77) 0.30 (0.14-047) 0837 (0.33-1.000 050 (0.33-0.71) 044 (0.33-0.71)
65,323 (10.00)  0.77 (0.40-1.00) 0.66 (0.42-0.36) 0573 (04-0.77)  0.298 (0.14-0.47) 3(033-1.000 051(033-0.75) 043 (0.33-0.75)

Figures in bold represent the maximum for each performance criterion
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Fig. 5 Normalized feature maps of the 0.5% of features selected during the 100 different splits of the development/test sets, representing the frequency
of selection of each feature. Those features have optimal capacity to detect the presence of early amyloid pathology in asymptomatic individuals

follow-up of subjects enrolled in secondary prevention
clinical trials, which typically last a decade. In this con-
text, this work and our earlier study on MRI using ML
[13] show that even though the performance of the ML
classifier is not high, if implemented as a screening tool
it can save resources in a clinical trial setting.

The main discriminative features between amyloid
positive and healthy controls mostly included AD-re-
lated areas in the medial and inferior temporal lobe, as
well as the lateral ventricles which can be considered as
the preclinical AD signature. Increased expansion of the
lateral and inferior lateral ventricles in cognitively unim-
paired individuals with lower levels of CSF amyloid-beta
has been shown previously, along with increased atrophy
in the fusiform gyri as well as in middle temporal and
posterior cingulate cortices [33—37]. In this regard, the
preclinical AD signature found in our study does not
significantly depart from published reports and, as can
be seen in Fig. 6, is very much in line with the expected
pattern of atrophy in AD, though to a lesser magnitude
and extent.

In addition to (peri)ventricular regions, Fig. 5 also
shows the fusiform gyri and middle temporal regions to
display significant discriminative capacity to discriminate
amyloid-positive vs amyloid-negative CU individuals, as
expected [34]. Additional detail on the brain areas

contributing to such discriminative power is now
provided in Additional file 1: Table S1.

The predictive capacity achieved by this classifier does
not place this method as substitute of gold-standard
tests to detect amyloid abnormalities. Still, if used for
triaging of subjects, e.g., clinical trial recruitment, we
demonstrated that it could allow significant savings in
terms of the number of costly gold-standard tests that
would have to be performed to detect a fixed number of
amyloid-positive, cognitively healthy subjects. Used in
this way, in a cognitively unimpaired population with a
prevalence of amyloid positivity of 20%, the accuracy of
the longitudinal classifier would allow a reduction of up
to 55% of unnecessary PET or CSF tests, which trans-
lates to a 40% reduction of the total cost, according to
the savings model we previously proposed [13]. Never-
theless, in a clinical trial recruitment setting, it can be
more advantageous instead to optimize the sensitivity of
the classifier to maximize the number of detected at-risk
individuals, at the cost of a slightly poorer specificity
which might decrease these cost savings.

Due to the limited sample size for training and the
large inter-subject variability of cerebral morphology, we
use a simple but effective model for prediction of amyl-
oid positivity. Our method is fully automatic from fea-
ture extraction and signature learning to classification.
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Pre-AD signature

Fig. 6 Statistical maps for group comparison between Ctrl and PreAD (PreAD signature) and Ctrl and MCI/AD (AD signature) subjects. Statistical
significance was set to uncorrected p value < 0.005 and minimum spatial extent k> 100

AD signature

However, the presence of high-dimensional and low in-
formative features together with the overlap between
normal aging and AD processes in the brain reduces the
overall precision of the system. To account for that,
future efforts will need larger longitudinal datasets and
many initiatives are contributing to achieve this [14, 29].

We observe much higher sensitivity than specificity.
This is likely given the limited size and imbalance of the
cohort but also most likely due to the fact that we are
imposing an imbalance on the test set to simulate the
preAD prevalence of 20% typically found in a clinical
trial setting.

On top of this, given the limited sample size and the
large amount of features used for classification (voxels),
we might have incurred in an overfitting of the existing
data, potentially resulting in an overestimation of the
capacity of the classifier. Therefore, our results need to
be validated on independent datasets, but the scarcity of
longitudinal MRI datasets with CSF biomarker levels has
prevented us to conduct such validation in this work.
Still, in our previous ROI-based study, we successfully
validated a very similar classifier with two independent

datasets without a major loss of the classifier’s perform-
ance [13].

To further characterize the preclinical AD signature, a
statistical analysis was conducted and we report longitu-
dinal morphological changes in cognitively unimpaired
subjects with abnormal amyloid CSF levels. This preclin-
ical AD signature comprises atrophy of the parahippo-
campal and fusiform gyri and expansion of the lateral
ventricles. This pattern is in line with previous reports of
longitudinal volumetric changes associated with the
presence of abnormal amyloid levels from ADNI partici-
pants that have been replicated in an independent
cohort [10]. On the other hand, expansion of the caud-
ate heads falls beyond this known pattern. Being in the
proximity of the lateral ventricles, it may be questioned
whether the detected increase in the volume of the
caudates is an actual feature associated to preclinical AD
stages or an artifact of the processing methodology to
detect volumetric changes. By smoothing spatially con-
tinuous Jacobian determinant maps, it could be consid-
ered that the observed increase in caudate volumes
could be a side effect of the “spillover” of the Jacobian
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determinant maps due to the expansion of the ventricles.
To address this question, we performed a post hoc ana-
lysis of the caudate volumes between the Ctrls and
PreAD groups, but using the longitudinal Freesurfer
pipeline to compute change in caudate volumes. Since
the subcortical segmentation implemented in Freesurfer
uses an ROI approach based on a probabilistic atlas [30],
it can be considered to be virtually free from the poten-
tial spillover effect of continuous Jacobian determinant
maps. Results show that the changes in caudate volumes
are not significantly different between Ctrls and PreAD
individuals (p >0.3) and, thus, it can be concluded that
the observed caudate head expansion is artifactual and
secondary to ventricular expansion. Still, this signal
might contribute to the detection of the presence of
amyloid burden in cognitively unimpaired individuals.

This study has some limitations. Even though data
comes from a heterogeneous sample with different sites,
and MRI scanners, the MRI acquisition was harmonized
according to the ADNI protocol. Therefore, the per-
formance of our method when applied to MRI samples
using different acquisition protocols may deviate from
what is here reported. Actually, the ultimate validation
of the generalizability of the results here reported can
only be accomplished by applying the method here de-
veloped to an independent sample. In our previous work,
the performance of a similar cross-sectional classifier
was kept stable when derived and validated in two inde-
pendent cohorts. Therefore, it can be expected the same
behavior in this longitudinal extension of the classifier.
Our study relies on the ADNI cohort which is well-
known for its data quality and unique in having corre-
sponding MRI and CSF data and a longitudinal aspect
required for a study using Jacobian determinants. The
low amount of subjects with MRIs acquired with more
than 2.5 years needed for a good signal to noise ratio cer-
tainly impose a limitation to our results and encourage fu-
ture validation efforts. For example, one misclassification
error has a huge impact on the performance metrics. To
mitigate this effect, we repeated the workflow 100 times in
order to report mean performance metrics. Nevertheless,
the effect of misclassification can still be observed in the
large confidence intervals that are found for each one of
the metrics.

Finally, we used CSF amyloid as the gold-standard for
amyloid positivity and not PET imaging. It could be ar-
gued that the performance of the classifier could be sensi-
tive to the selection of the gold-standard method.
However, the agreement between CSF and PET determi-
nations of amyloid is very high, particularly in the inter-
mediate ranges where thresholds for positivity typically lie.

One interesting area for further exploration is the clas-
sification subjects that undergo a transition between
normal and preclinical amyloid biomarkers within the
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timeframe of two consecutive scans. In principle, one
could hypothesize that this category of “transitioning”
subjects will not necessarily follow the same pattern of
brain volumetric change as either the normal or the pre-
clinical group.

Unfortunately, only a subset of 13 subjects respond to
these criteria; from these, only 2 subjects undergo this
transition within a time frame of dt<2.5years between
consecutive scans. The sample size is therefore too small
for a machine learning workflow. Nevertheless, the predic-
tion of a transition from normal to preclinical AD stages
is a question of utmost importance to research (e.g., ob-
servational studies) and clinical practice (e.g., clinical tri-
als) and a natural follow-up to the present study.

To sum up, we here presented a machine learning
framework used to predict the presence of amyloid ab-
normalities in cognitively unimpaired individuals with a
moderate-to-high accuracy (AUC 0.87) when MRI scans
acquired 2.5 years apart are available. This performance
translates to improvements of up to 55% in the number
of necessary CSF/PET tests and a reduction of 40% of
the costs to detect a fixed number of amyloid-positive
individuals. This performance may still have room for
improvement by including demographic, genetic, and
cognitive data to the classifier. We further compare the
features used by the classifier with the characteristic pat-
tern of longitudinal morphological changes in preclinical
AD that is expressed in typical AD-related regions,
uncovering areas that appear to be specific to the pre-
clinical AD stage.

Conclusions

In this study, we used longitudinal structural brain MRI
scans to predict the presence of amyloid pathology in
cognitively unimpaired individuals and unveil the pre-
clinical AD signature. We applied machine learning
techniques on Jacobian determinant maps coding longi-
tudinal volumetric changes at the voxel level. This
allowed the classifier to significantly improve its per-
formance (AUC =0.87) with respect to previous cross-
sectional ROI-based approximations. Areas showing the
most discriminant capacity included medial, inferior,
and lateral temporal regions, along with the ventricles
and caudate heads. The volumetric changes in these
areas are in line with those observed in symptomatic
stages, but are expressed to a lower extent. Even though
the performance of the classifier does not allow for it to
substitute gold-standard methods to determine the pres-
ence of amyloid pathology, its use as triaging tool would
lead to significant reductions of 55% of unnecessary
gold-standard tests and of 40% of the cost to detect a
fixed number of cognitively healthy individuals in pre-
clinical AD stages. High overlap by the features used by
the classifier and the preclinical AD signature is found,
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characterized by parahippocampal and fusiform gyri
atrophy and expansion of the ventricles. To sum up,
machine learning over brain longitudinal MRI data can
represent a valuable tool for the implementation of
secondary prevention trials. Statistical analysis of this
longitudinal MRI data identified patterns of longitudinal
brain structural changes specific to preclinical AD, as
compared to those in MCI/AD subjects.
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