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Abstract

Background: Ad Networks connect advertisers to websites that want to host advertisements. When users request
websites, the Ad Network decides which ad to send so as to maximize the number of ads that are clicked by users.
Due to the difficulty in solving such maximization problems, there are solutions in the literature that are based on
linear programming (LP) relaxations.

Methods: We contribute with a formulation for the Ad Network optimization problem, where it is cast as a Markov
decision process (MDP). We analyze theoretically the relative performance of MDP and LP solutions. We report on an
empirical evaluation of solutions for LP relaxations, in which we analyze the effect of problem size in performance loss
compared to the MDP solution.

Results: We show that in some configurations, the LP relaxations incur in approximately 58 % revenue loss when
compared to MDP solutions. However, such relative loss decreases as problem size increases. We also propose new
heuristics to improve the use of solutions achieved by LP relaxation.

Conclusions: We show that solutions obtained by LP relaxations are suitable for Ad Networks, as the performance
loss introduced by such solutions are small in large problems observed in practice.

Keywords: Ad network; Markov decision process; Linear programming

Background
In this paper, we analyze, theoretically and empirically,
the performance of linear relaxations in Ad Network opti-
mization — an essential component of online marketing.
Online marketing is a form of marketing and advertising
which uses the Internet to deliver promotional market-
ing messages to consumers. The economic importance of
such a task is apparent. Indeed, online marketing revenue
has grown quickly since mid-nineties, with a compound
annual growth rate of 20 %. In the first semester of 2014,
this market achieved a revenue of 23.1 billion dollars
(USD) only in the USA, an astonishing growth of 15.1 %
over the first semester of 2013 [1]. Revenue comes from
search-related marketing (39 %), banner displaying (28 %),
mobile advertising (23 %), and other activities (10 %).
Online advertising companies usually follow either an

online or an offline model. Both models assume the
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existence of a broker that has contracts with websites.
These websites have spaces where banners can be dis-
played. The online model works by real-time bidding; in
this model, advertisers participate in auctions, normally
a Vickrey auction [2], where the value to be paid by the
auction’s winner is the second largest bid, competing for
specific user profiles. In the offline model, advertisers
establish contracts with a broker, from now on called the
Ad Network. Advertisers create campaigns specifying a
set of ads, a pricing model, a budget, a minimal number of
impressions (an impression corresponds to the display of
an ad to a user), and time restrictions (that is, how long the
campaign will be available and its starting time). The Ad
Network decides how to distribute these ads to the users,
so as to maximize the Ad Network revenue, and respect-
ing the conditions specified by the advertisers. This paper
focuses only on the offline model.
There are several pricing models [3, 4]; however, the

most used ones are cost per impression (CPI), cost
per action (CPA), and the cost per click (CPC). In the
CPI model, the advertiser pays only for a number of
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impressions of the campaign. In the CPA model, the
advertiser pays by specific users’s actions, e.g., filling in
a form or buying a product in the advertisers’ store. In
the CPC model, the advertiser pays when the user actu-
ally clicks in the advertisement. In 2014, advertisers paid
34 % of online advertising transactions on a cost-per-
impression basis, 65 % on customer performance (e.g.,
cost per click or cost per acquisition), and 1 % on hybrids
of impression and performance methods. CPC’s market
share has grown each year since its introduction, eclipsing
CPI to dominate two-thirds of all online advertising pric-
ing methods [5]. This paper focuses on the CPC pricing
model.
The offline business model is, in essence, a sequen-

tial decision process: the Ad Network must decide which
campaign to display to each user at a specific time, given
campaign budgets, values that campaigns pay per click,
time constraints of the campaigns, and the relationship
between campaigns and user profiles. Ad Network deci-
sions are evaluated based on some utility function; for
example, expected revenue.
This sequential decision process can be modeled as

a Markov decision process (MDP), as noticed by some
authors [6].
The solution of this MDP yields the policy for the Ad

Network, indicating the best decision for each possible
combination of user profile, budget, and time constraints.
However, this approach is computationally intractable
even for small problems, as the state space grows expo-
nentially with the number of state variables of the
problem.
One way to avoid the curse of dimensionality in Ad

Network optimization is to convert this decision process
into a simpler, relaxed problem: Instead of deciding which
campaign to allocate for each user profile at each time
step, one then selects only the number of impressions of
each campaign in a given interval of time. Some well-
known formulations of this relaxed problem rely on linear
programming (LP), which have produced good results [6, 7].
In this paper, we contribute with an explicit MDP for-

mulation for the Ad Network problem and we compare it
with the LP formulation for the relaxed problem. We have
expanded the results of a previous paper [8] to present
a detailed analysis of the behavior of the two formula-
tions. In our analysis, we build scenarios that clearly show
the loss of performance resulting from the use of the
LP formulation when compared with the MDP formula-
tion. However, we show that the LP results are indeed
close to results obtained with MDP models when rela-
tively large budgets are assigned to campaigns. Thus, the
performance loss of the LP formulation drops when the
campaign budgets reach realistic sizes. Finally, we also
propose new heuristics to improve the use of solutions
achieved by LP relaxation.

The remainder of this paper is organized as follows.
“Problem definition” section formalizes the problem of
Ad Network optimization. In “Ad Networks as a Markov
decision process” section, we formulate the problem as an
MDP, and in “A linear programming relaxation” section,
we formulate the problem as a relaxed problem to be
solved by LP. “Methods” section builds cases that are unfa-
vorable for the LP formulation. “Results and discussion”
section describes the experiments that allow us to high-
light and discuss the differences between the solutions for
theMDP and LPmodels. “Conclusions” section concludes
the paper.

Problem definition
Ad Networks promote the distribution of ads to websites
[9]. Advertisers create ads, grouped in campaigns, and
publishers are websites that own spaces for the display of
ads. Campaigns are designed by advertisers.
The campaigns processed by the Ad Network are

described by the campaign set C. A campaign k ∈ C is
defined by a tuple < Bk , Sk , Lk , cck >, where Bk is the bud-
get of campaign k in number of clicks, Sk is the starting
time of the campaign, Lk is the lifetime of the campaign,
and cck is the monetary value that the campaign pays per
click. Campaigns can be active or inactive, and only active
campaigns can be chosen by the Ad Network. A campaign
is active at a specific time t if Sk ≤ t < Sk + Lk and the
remaining budget is larger than zero.
The advertisers contract the service of an AdNetwork to

display ads of campaigns in websites, providing to the Ad
Network a set of campaigns. It is also assumed that these
contracts occur previously to the beginning of the distri-
bution of ads. Figure 1 depicts the flow of ad distribution
in online marketing.
Every time a user requests a page in a website (step 1 in

Fig. 1), the website requests an ad to be displayed (step 2).
Users are characterized by their profiles, and these are
known by the Ad Network. The Ad Network decides
which campaign to allocate to the received request, and an
ad of the selected campaign is sent to the website (step 3).
Then, an impression is made, i.e., the ad is displayed as a
banner to the user (step 4), who may or may not click on
the ad (step 5).
This sequential process can be formalized as follows. At

each time t, there is a probability that a request is received
by the Ad Network; that is, a probability of a user request-
ing a page in a site in the Ad Network’s inventory. We
assume that the requests follow a Bernoulli distribution
with a success probability Preq. This modeling decision
is justified as the Bernoulli distribution is well suited
to encode the arrival of random requests from a large
unknown population [10].
Users are classified into different profiles, and the set

of possible user profiles is denoted by G. A probability
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Fig. 1 Dynamics of the ad distribution process

distribution PG : G →[ 0, 1] yields the probability that a
user belongs to a user profile i.
Once the campaign k is selected, one of its ads is dis-

played to the user with profile i in a banner inside a page
in a website.
The user may or may not click on this ad with proba-

bility CTR(i, k), where CTR stands for click-through rate.
That is, CTR : G × C →[ 0, 1] is the probability of a click
given a user profile and a campaign. In real problems, CTR
values are typically on the order of 10−4 [6]. One click gen-
erates a revenue equal to cck ; a percentage of this amount
goes to the website and the remaining revenue stays with
the Ad Network.
The goal of the Ad Network is to choose which cam-

paign to allocate to each request, while maximizing a util-
ity function. We assume the Ad Network to be interested
in maximizing expected revenue.

Ad Networks as a Markov decision process
We now formulate the Ad Network problem as an MDP.
The formulation is based on our previous work on Ad
Network optimization [8, 11].
A finite discrete-time fully observable MDP is a tuple

〈S ,A,D, T ,R〉 [12], where:

• S is a finite set of fully observable states of the process;
• A is a finite set of all the possible actions to be

executed at each state;A(s, t) denotes the set of valid
actions at instant t when the system is in state s ∈ S ;

• D is a finite sequence of natural numbers that
correspond to decision epochs, in which the actions
should be chosen and performed;

• T : S × A × S × D →[ 0, 1] is a transition function
that specifies the probability T (s, a, s′, t) that the
system moves to state s′ when action a is executed in
state s at time t;

• R : S × A × S × D → R is a reward function that
produces a finite numerical value r = R(s, a, s′, t)

when the system goes from state s to state s′ as a
result of applying an action a at time t.

An MDP agent is continuously in a cycle of perception
and action (Fig. 2): at each time t the agent observes the
state s ∈ S and decides which action a ∈ A(s, t) to per-
form; the execution of this action causes the transition
to a new state s′ according to the transition probability
function T and the agent receives a reward r. This cycle
is repeated until a stopping criterion is met; for example,
until there are no more valid decision epochs.
It is important to notice that this system is not determin-

istic. Given a transition function T , when the same action
is performed in the same state and at the same instant of
time, the system may move to different states.
To solve an MDP is to find a policy that maximizes the

accumulated reward sequence. A non-stationary deter-
ministic policy π : S × D → A specifies which action
a ∈ A will be executed at each state s ∈ S and at time
t ∈ D,D = {0, 1, . . . , τ − 1}.
The expected total reward of a policy π starting at time

t at state s ∈ S is defined as:

Vπ (s, t) = E
[

τ−1∑
i=t

R(si,π(si, t), si+1, t)

∣∣∣∣∣ st = s,π
]
.

(1)

Fig. 2 Perception and action cycle — The agent observes the state,
applies an action, receives a reward, and observes the new state
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The value function V ∗ of an optimal policy can be defined
recursively for any state s ∈ S and time t < τ by:

V ∗(s, t) = max
a∈A(s,t)

{∑
s′∈S

R(s, a, s′, t) + T (s, a, s′, t)V ∗(s′, t + 1)
}
,

(2)

where A(s, t) is the subset of A which contains the
possible actions to be applied in state s at time t, and
V ∗(s, τ) = 0 for any state s ∈ S [13].
Given the optimal value function V ∗(·), an optimal pol-

icy can be chosen for any state s ∈ S and time t < τ

by:

π∗(s, t) = arg max
a∈A(s,t)

{∑
s′∈S

R(s, a, s′, t)+ T (s, a, s′, t)V ∗(s′, t + 1)
}
.

The intuition behind the expressions above is exploited
by the value iteration algorithm [14], described in
Algorithm 1.

Algorithm 1: Value iteration
Input: S : state space,A: action set,D: decision epochs,

T : transition function,R: reward function
Output: π∗: optimal policy
V ∗(s, τ) ← 0 ∀s ∈ S ;
t ← τ − 1;
repeat

foreach s ∈ S do
V ∗(s, t) ← maxa∈At

[∑
s′∈S R(s, a, s′, t)+

T (s, a, s′, t)V ∗(s′, t + 1)
]
;

π∗(s, t) ← argmaxa∈At

[∑
s′∈S R(s, a, s′, t)+

T (s, a, s′, t)V ∗(s′, t + 1)
]
;

t ← t − 1;
until t = 0;
return π∗;

Once the optimal policy π∗ is available, just apply it at
every decision epoch: the agent observes the state s and
instant of time t and applies the action defined by the
optimal policy, a = π∗(s, t).
For the problem of Ad Networks, the network observes

its current state, given by the configuration of the cam-
paigns and the user profile, and then the optimal policy
defines the campaign to be displayed on the website.
We now contribute with a model for the Ad Network

problem as an MDP by specifying its states, actions, tran-
sitions, and rewards.

States
The state is modeled as:

s = [B1,B2, . . . ,Bk ,G] ,

where Bi is the remaining budget of campaign i and G ∈
G ∪ {0} is the user profile that is generating a request.
When the variable G is equal to 0, there is no request to
attend to. For example, consider 5 campaigns and 3 user
profiles, a state could be:

[
Campaign information︷ ︸︸ ︷

10, 3, 4, 2, 3 ,
Request information︷︸︸︷

3 ]︸ ︷︷ ︸
State

.

Here, campaign 1 can afford 10 clicks, campaign 2 can
afford 3 clicks, and so on. The request information con-
tains the information of which user profile has generated
a request; in this example, user profile i = 3 has gen-
erated the request. From this state, possible next states
are: [9, 3, 4, 2, 3,G], [10, 2, 4, 2, 3,G], [10, 3, 3, 2, 3,G],
[10, 3, 4, 1, 3,G], [10, 3, 4, 2, 2,G], and [10, 3, 4, 2, 3,G],
where G can be any user profile in G or even 0, if there are
no requests in the next time step.

Actions
An action allocates an ad from a campaign in the set C
to a request from a user profile in set G. Given our prob-
lem definition, the set of actions can be defined by A =
{0, 1, . . . , |C|} and an action is simply an integer k. If k > 0,
then k is the campaign index, k ∈ {1, 2, . . . , |C|}. If k = 0,
then the Ad Network does not allocate any campaign to
the user request.
Recall that campaigns can be active or inactive, hence at

any time t a subset of actionsA(s, t) is available, consisting
of action 0 plus all k > 0 such that Sk ≤ t < Sk + Lk and
such that Bk > 0.

Transitions
For all actions a and all states s and s′, the function T must
satisfy the following requirements: 0 ≤ T (s, a, s′, t) ≤ 1,
and

∑
s′∈S T (s, a, s′, t) = 1.

The variable G in the state does not depend on the pre-
vious state. The component of the state B′

k depends only
on the previous Bk and on the occurrence of click events.
Given s = [

B1,B2, . . . ,Bj,G
]
and s′ =

[
B′
1,B′

2, . . . ,B′
j,G′

]
,

the transition function T is:

T (s, a, s′, t) = Pt(G′) ×
∏
k∈C

P(B′
k|Bk , a,G), (3)

where P(B′
k|Bk , a,G) is equal to:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if B′
k = Bk and (a �= k or G = 0 or Bk = 0),

CTR(G, k) if B′
k =Bk − 1 and (a=k and G>0 and Bk >0),

1 − CTR(G, k) if B′
k = Bk and (a = k and G > 0 and Bk > 0),

0 otherwise,
(4)
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and

Pt(G′) =
{

(1 − Preq) if G′ = 0,
Preq × PG(G) if G′ ∈ G, (5)

where Preq is the probability that a request is received by
the Ad Network, and PG is the probability of a user being
of a given user profile. Note that the transition function T
is time-invariant.
As an example, consider the problem in which Preq =

0.9, G = {1, 2}, B1 = B2 ≥ 2, PG(G) = 1
|G| = 0.5, and

CTR(i, k) = i × k × 10−4. From the state s =[B1,B2, 1],
there is the possibility of 12 future states. Figure 3 illus-
trates some examples; therein, if a = 1 then

• P1 = Preq × PG × (1 − CTR(1, 1)) × 1 = 0.9 × 0.5
×(1 − 1 × 1 × 10−4) × 1,

• P2 = Preq × PG × CTR(1, 1) × 1 = 0.9 × 0.5
×(1 × 1 × 10−4) × 1,

• P3 = (1 − Preq) × CTR(1, 1) × 1 = (1 − 0.9)
×(1 × 1 × 10−4) × 1,

• P4 = Preq × PG × (1 − CTR(1, 1)) × 0 = 0.9 × 0.5
×(1 − 1 × 1 × 10−4) × 0.

Rewards
In our model, we assume that the reward does not vary
over time, and that it is independent of the next state.
Thus, the reward function is R : S × A → R. In our
problem, we have:

R(s, a) =
{
cck × CTR(G, k) if a > 0, a = k, G > 0 and Bk > 0,
0 otherwise,

(6)

where cck and CTR(G, k) were defined in “Problem defi-
nition” section and specify respectively the CPC for cam-
paign k and the CTR for campaign k and user profile G.

Fig. 3 Some examples of next states when action 1 is performed in
state s =[ B1, B2, 1]

The intuition behind the reward function is that it rep-
resents the local revenue after choosing to display an ad
from campaign k.

A linear programming relaxation
Here, we formulate the Ad Network problem as an LP
relaxation. LP focuses on maximization or minimization
of a linear function over a polyhedron [15]. In canonical
form, we must find

max cTx
s.t. Ax ≤ b, x ≥ 0,

where c and b are vectors, A is a matrix, and x is a vector
of variables. There are several algorithms to solve an LP
problem, even strongly polynomial time algorithms [16].
The simplex method is the most commonly used [17];
despite its worst-case exponential time, this method is in
average very efficient [18].
In the Ad Network relaxation, we are interested in dis-

covering the number of ad displays to be allocated for
each campaign in a given interval of time. The description
that follows is based on previous efforts [6, 7] with minor
modifications1.
Let I be a sorted list obtained by sorting the set defined

by {Sk} ∪ {Sk + Lk}; that is, the ordered list of start-
ing and ending times of all campaigns, and let Jj be the
(right-open) set of intervals defined by the campaign time
constraints. Define Tj to be the length of the interval j.
For example, in Fig. 4, we have three campaigns, with

their starting times and ending times, defining five inter-
vals. Consider that Ek = Sk + Lk . In this example, we
have that: I = {S2, S3, S1, S3 + L3, S2 + L2, S1 + L1}, then
J1 =[ S2, S3[, J2 =[ S3, S1[, J3 =[ S1,E3[, J4 =[E3,E2
[ ,J5 =[E2,E1[, and T1 = S3 − S2, T2 = S1 − S3, T3 =
E3 − S1, T4 = E2 − E3, T5 = E1 − E2.
We can state the LP approach to Ad Network optimiza-

tion problem as follows:

max
∑
j∈J

∑
i∈G

∑
k∈C

cck × CTR(i, k) × xj,i,k (7)

Fig. 4 Interval starting and ending points



Freire et al. Journal of the Brazilian Computer Society  (2015) 21:13 Page 6 of 13

s.t.
∑
k∈Cj

xj,i,k ≤ Preq × PG(i) × Tj,∀i ∈ G,∀j ∈ J (8)

∑
i∈G

∑
j∈J

CTR(i, k) × xj,i,k ≤ Bk ,∀k ∈ C (9)

xj,i,k ≥ 0,∀j ∈ J ,∀k ∈ C,∀i ∈ G (10)

Variable xj,i,k indicates how many ads from campaign k
should be displayed to users with user profile i at the inter-
val j. The objective function maximizes the total expected
revenue of the Ad Network. The first set of constraints
ensures that the solution does not exceed the expected
number of requests for each user profile i in interval j.
The second set of constraints ensures that the expected
number of clicks for each campaign does not exceed its
budget. The last set of constraints ensures that the solu-
tion is positive and therefore feasible for real problems.
Without the last set of constraints, it would be possible to
create requests for allocations with negative values of xj,i,k .
Clearly, xj,i,k should be an integer because it is not possible
to allocate a fraction of an ad, but we ignore (relax) this for
now. Table 1 summarizes the list of symbols that we use.

Policies for setting the ad to be displayed from the LP solution
Note that the LP solution indicates how many ads from
campaigns should be shown to each user profile at each
interval, but it does not provide any clue on how to apply
this solution. Girgin et al. [6] proposed two ways to use the
solution of this LP problem:

1. The highest LP policy (HLP), πLP(i, j), selects the
campaign in Tj, where

πLP(i, j) = argmax
k

xj,i,k/
∑
k

xj,i,k .

2. The stochastic LP policy (SLP) selects stochastically
with respect to “probabilities”

xj,i,k/
∑
k

xj,i,k .

Complexity of theMDP and the LP formulations
Here, we compare the complexity of theMDP formulation
and the LP relaxation.
In the LP formulation, if the constraint (10), xj,i,k ≥ 0,

is not considered, the number of constraints is of order
O(|J | × |G| + |C|). But by definition 1 ≤ |J | ≤ 2 × |C|.
Then, the number of constraints is of order O(|G||C|),
while the number of variables is of orderO(|G||C|2) for the
same reason.
On the other hand, in the MDP formulation, the size of

the policy to be found is equal to |S|×|{0, 1, 2, . . . , τ −1}|,
and |S| = (|G|+1)×∏

k∈C(Bk +1). If we consider Bmin =
mink∈C{Bk}, it follows that |S| ≥ (|G| + 1)× (Bmin + 1)|C|.
This makes the MDP solution intractable even for small

Table 1 List of symbols

Symbol Definition

C Campaign set

k ∈ C A campaign

Bk Budget of campaign k in number of
clicks

Sk Starting time of the campaign

Lk Lifetime of the campaign

Preq Probability that a request is received
by the Ad Network

G Set of possible user profiles

PG : G →[ 0, 1] Probability that a user belongs to a
user profile i

i ∈ G A user profile

CTR(i, k) Click-through rate indicates the
probability that user i clicks on ad k

cck Revenue generated by a click on
campaign k

S Set of fully observable MDP states

s ∈ S A state of the MDP model

A Set of possible actions

a ∈ A An action of the MDP model

A(s, t) Set of valid actions at instant t in state
s ∈ S

D Set of decision epochs

t ∈ D A decision epoch

T : S × A × S × D →[ 0, 1] Transition function

T (s, a, s′ , t) Transition from state s to s′ when
executes action a in time t

R : S × A × S × D → R Reward function

π : S × D → A Non-stationary deterministic policy

Vπ (s, t) Value function of policy π

V∗(s, t) Value function of optimal policy π∗

G ∈ G ∪ {0} User profile that is generating a request
(0 stands for no request to attend to)

Jj Set of intervals defined by the
campaign time constraints

Tj Length of the interval j

xj,i,k Variable that indicates how many ads
from campaign k should be displayed
to users with user profile i at the
interval j

ηk Average cost per impression of
campaign k

ctrk CTR(1,k) for one-profile scenario

R Expected revenue when the Ad
Network applies the solution of the
LP relaxation

γ Variable that artificially increases the
budget, B

′
k = γ Bk , γ > 1



Freire et al. Journal of the Brazilian Computer Society  (2015) 21:13 Page 7 of 13

problems because of its memory requirements. In real set-
tings, there are hundreds of campaigns with budgets of
thousands of clicks.
Thus, despite the fact that the MDP formulation is a

more faithful scheme, the LP formulation is computation-
ally much more attractive. However, the LP formulation
only indicates howmany campaigns should be allocated in
a given time interval, leaving the actual action to auxiliary
schemes (for instance, HLP and SLP).

Methods
As discussed in the previous section, the relaxed LP for-
mulation requires less computational effort than theMDP
formulation. The LP relaxation approximates discrete
actions by continuous ones, and its computational cost
does not depend on budgets and time horizons. Because
the relaxation ignores features of the original problem, it
does not guarantee optimality.
In this section, we investigate the performance of LP

relaxations by constructing simple scenarios where MDP
optimal policies are clearly superior. We look at scenar-
ios that are quite unfavorable for the LP formulation
in order to understand how much can be lost with its
use. At the end of this section, we propose a heuristic
that can improve the use of solutions found with the LP
formulation, based on insights obtained in our analysis.

A two-campaign one-profile scenario
Suppose we have just two campaigns and one user profile;
to simplify the analysis, suppose both campaigns last for
very long time, i.e., long enough to spend the budget for
each campaign.We use ηk for the average cost per impres-
sion of campaign k; that is, ηk = cck×CTR(1, k). We name
ctr1 = CTR(1, 1) and ctr2 = CTR(1, 2). Without loss of
generality, we take η1 > η2, that is, campaign 1 pays more
than campaign 2 and we say that campaign 1 is better than
campaign 2.
When both campaigns have no time overlap, both MDP

and LP solutions consist of showing the active campaign
ads in the time slot in which the respective campaign is
active. In this case, there is no difference between the
performance of the two solutions.
Now suppose that the two campaigns have distinct start-

ing times. The case where campaign 1 starts first is clearly
less favorable to the LP formulation than the case where
campaign 2 starts first. To conclude this, first consider the
latter case; that is, the worst campaign starts first. In this
case, we have T1 = S1 − S2, E1 = E2 = E → ∞, and
T2 = E − S1. The two solutions (for the MDP and the LP
formulations) show the ads of the campaign 2 in T1. Since
campaign 2 is the worst campaign, campaign 1 is always
preferred to be showed unless all the budget B1 is spent.
Notice that budget B2 is not spent unless there is enough
time in intervals where only campaign 2 is active or budget

B1 is spent. Finally, intervals where only campaign 2 is
active do not influence intervals where both campaigns
are active. Then, in a relative performance comparison,
intervals where only the worst campaign 2 is active favor
the worse method, LP formulation.
Now consider the former case; that is, the best cam-

paign starts first. This is a case where the optimal
solution of the MDP formulation can be “smarter” than
the solution of the LP formulation. In this case, we have
T1 = S2 − S1, E1 = E2 = E → ∞, and T2 = E − S2. The
expected number of clicks in T1 is β = T1 × Preq × ctr1.
If β < B1, then the LP solution considers that budget
B1 is not spent in interval T1 and assigns impressions
to both campaigns during T2. If instead β > B1, then
the LP solution considers that after T1 budget B1 was
spent, and in interval T2, the LP relaxation only assigns
impressions to campaign 2; this can be sub-optimal with
respect to the MDP solution in case actual operation
does not exhaust B1 during T1. And the worst case from
the point of view of the LP relaxation is β = B1. For in
this case, in interval T2, the LP relaxation only assigns
impressions to campaign 2, while the MDP solution can
flexibly use impressions from campaign 1 during T2 to
exhaust B1.
We analyze this latter case in greater depth, which is

depicted in Fig. 5.
In this case, the solution to the LP relaxation selects

campaign 2 during T2, regardless of η2; it is clear that we
subject the relaxation to larger loss (relative to optimal
behavior) if we drive down η2. Consider then that η2 =
0; this may be an unrealistic scenario, but it does cause
the solution to the LP relaxation to behave sub-optimally.
Note that in such a case, we know that the MDP solution
will reap the benefits of complete look-ahead, thus pro-
ducing a value function V ∗ = B1. On the other hand, the
Ad Network gets the following expected revenue when it
applies the solution of the LP relaxation:

R = cc1
T1∑
b=1

min{b,B1}
(
T1
b

)
(Preq ctr1)b(1−Preq ctr1)T1−b.

Fig. 5 Two campaigns, best campaign starts first
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Consequently, the relative performance is B1/R; that is,

B1

cc1
T1∑
b=1

min{b,B1}
(
T1
b

)
(Preq ctr1)b(1 − Preq ctr1)T1−b

.

(11)

We can obtain a closed-form solution in some special
cases. In particular, we consider one case that can bemoti-
vated as follows. In Expression (11), the numerator is the
expected value of a binomial distribution with parame-
ters (T1,Preqctr1), while the denominator is the expected
value of the same binomial distribution now truncated at
B1. The difference between these distributions increases
as the variance of the binomial distribution increases. To
increase the distance between these quantities, we must
choose B1 and ctr1 so as to maximize the variance of the
binomial relative to its mean.We can do so by reducing B1
and ctr1; at a fixed B1, we reduce ctr1 by increasing T1 as
we have the constraint B1 = T1Preq ctr1.
So, take B1 = 1. Then, we have the relative performance:
B1
R

= 1
1 − (1 − Preq ctr1)T1

;

in the limit, as T1 grows, we have:
B1
R

= lim
T1→∞

1
1 − (1 − Preq ctr1)T1

.

Now recall that Preq ctr1 = B1/T1 = 1/T1 under our
assumptions, so we have the limiting relative performance

B1
R

= lim
T1→∞

1
1 − (1 − 1/T1)T1

= e
e − 1

≈ 1.582.

This result suggests that, at least under some rather
extreme circumstance, the LP relaxation can lead to a sig-
nificantly poorer solution than the optimal one. What we
will see experimentally later is that in realistic scenarios
this potentially big difference is not at all realized; in fact,
our ultimate conclusion is that the LP relaxation performs
quite well in practical situations. Before we do so, we pro-
pose in the next section methods that can further improve
the existing LP relaxations.

Improving solutions to the LP formulation
Girgin et al. [6] suggest that one should artificially increase
the budget of high average-cost-per-impression cam-
paigns, although it is difficult to determine how much
should be increased to improve performance. More pre-
cisely, in the LP relaxation , one should take B′

1 = γB1
with γ > 1.
In this section, we propose a value of γ , by comparing

two possible scenarios, one which is unfavorable to the
LP relaxation, and the other which is favorable to the LP
relaxation.

Our first scenario is this. Given a factor γ , consider the
Ad Network with two campaigns where η1 > η2, S1 < S2,
S2 − S1 = T1 → ∞, E1 = E2 = T2 → ∞, B1 = 1, ctr1 =

γB1
T1Preq , and ctr2 = 0. Following the same reasoning as in
the previous section, we find that the relative performance
of the solutions for the MDP and the LP formulations is:

VπMDP

VπLP
=

(
eγ

eγ − 1

)
.

Now, consider a second scenario. Given a factor γ , con-
sider the Ad Network with two campaigns where η1 > η2
and η2 → η1, S1 = S2, L1 = 2 and L2 = 1, B1 = 1, B2 = 2,
ctr1 = γB1

L1Preq , ctr2 → ctr1, and cc1 = cc2.
Note that the solution to the LP relaxation uses cam-

paign 1 in both intervals; and the solution to the LP
relaxation does not use campaign 2. Then, the expected
revenue of the LP relaxation is:

cc1
L1∑
b=1

min{b,B1}binopdf
(
b; L1,

γ

2

)

= cc1
(
1 −

(
1 − γ

2

)2) = cc1
(

γ − γ 2

4

)
,

where binopdf(s; n, p) is the binomial distribution of
s with n trials and probability p. By taking η2 → η1,
the solution to the MDP formulation may choose any
campaign, with value:

cc1
L1∑
b=1

b binopdf
(
b; L1,

γ

2

)
= cc1

(
2
γ

2

(
1 − γ

2

))

+ 2cc1
γ 2

4
= cc1γ .

Hence, the relative performance of an optimal solution
(MDP) against the solution for the LP relaxation is:

4γ
4γ − γ 2 .

Figure 6 shows how performances in these two scenar-
ios vary with γ . Taking the best value in both scenarios,
we have γ = 1.202 as the best choice and relative perfor-
mance 1.430.

Results and discussion
To compare the results given by the MDP and the LP
formulations, we conducted experiments with the two
scenarios described in “Improving solutions to the LP
formulation” section. We explore different settings for
parameters B1, B2, T1, T2, and ctr2, with cc1 = cc2. In the
first scenario described, we set:

ctr1 = B1
PreqT1

,
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Fig. 6 Relative performance of the solution of the MDP formulation against the solution of the LP relaxation with B
′
1 = γ B1

while in the second scenario, we set:

ctr1 = B1
Preq(T1 + T2)

.

First scenario
Consider the first scenario. We conducted experiments to
study how the ratio VπMDP/VπLP evolves when the budget
increases in four different settings. In all such settings, we
set T1 = 50, 000. The first setting focuses on the LP for-
mulation unfavorable scenario (shown in Fig. 5), named
here as “the worst case scenario,” where B1 = 1, T2 → ∞,
ctr2 = 0. The second setting changes the size of the sec-
ond interval by using T2 = 50, 000. In this case, the Ad
Network does not have infinite time to consume the bud-
get of campaign 1. The third setting changes the budget
and ctr2 by using B2 = B1, ctr2 = 0.1 × ctr1. In this
case, campaign 1 is much more attractive than campaign
2, but the LP formulation can now get some revenue dur-
ing the second interval. The fourth setting changes ctr2 to
be closer to ctr1, by setting ctr2 = 0.5 × ctr1. Note that
from the first to the fourth settings, the value of the solu-
tion of the LP formulation gets closer and closer to the
value of the MDP formulation.
The idea in this experiment is to verify the relative per-

formance of the two formulations. We go from a clearly
unfavorable scenario for the LP formulation (the worst
scenario) to a more realistic scenario by gradually increas-
ing the budget. The experiment is conducted for this
scenario in the four described settings.

Figure 7 shows the relative performance of solutions in
these four settings for the first scenario.We can clearly see
that the difference between the optimal solution (MDP)
and the approximated solution (LP) is a decreasing func-
tion of the budget size. For clarity, Fig. 7 stops at Bk = 50
and Fig. 8 considers values of Bk from 150 up to 200.
With a budget of 20 clicks, the relative performance in all
settings is less than 10 %; with a budget of 50 clicks, all
settings have a relative performance smaller than 6 %. In
Fig. 8, we can see that the setting with ctr2 = 0 leads to
the same result of the unfavorable scenario, and the rela-
tive performance still decreases. For Bk = 200, we obtain a
difference of about 2.90 % in the worst scenario and about
0.96 % in a slightly better setting.
Thus, we observe that the performance loss by the LP

formulation decreases significantly as we explore more
realistic situations.

Second scenario
Consider now the second scenario. Again, we build four
settings for this scenario. The first setting we consider
is the worst case one, B1 = B2 = T1 = T2 varying
from 1 to 200, Preq = 1.0 and ctr1 = ctr2 = B1

T1+T2
.

The second setting changes the size of intervals by using
T1 = T2 = 50, 000 and B1 = B2 varying from 1 to 200.
The third setting changes ctr2 by using ctr2 = 0.9 × ctr1;
in this case, campaign 1 is more attractive than campaign
2, and the MDP formulation cannot get full revenue if
campaign 2 is chosen. The fourth setting changes ctr2 by
using ctr2 = 0.5 × ctr1. Again, from the first to the fourth
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Fig. 7 Relative performance of MDP against LP formulations for T2 = 50, 000 and T2 → ∞ (the worst scenario), and budgets from 1 to 50

settings, the value attained by applying the LP relax-
ation increasingly approaches the value achieved using the
MDP formulation.
Figures 9 and 10 depict the relative performance of

the solutions in the four settings for the second scenario.
We can see a behavior similar to the first scenario;
however, an important difference is that the unfavor-
able case is no longer systematically the worst case
because when we increase the budget, another setting

(T2 = 50, 000 and ctr2 = 0) becomes the case with worse
performance.
We also calculated the relative performance for a budget

of 500 clicks in the various settings of the two scenarios.
Table 2 shows the results. In addition, we also considered
a real-life CTR, budget and time horizon, but consid-
ering our scenario 1 in the worst setting (B2 = ∞,
T2 = ∞ and ctr2 = 0). Real-life problems tend to
have a budget of B1 = 10, 000 clicks on average (in

Fig. 8 Relative performance of MDP against LP formulations for T2 = 50, 000 and T2 → ∞ (the worst scenario), and budgets from 150 to 200
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Fig. 9 Relative performance of MDP against LP formulation for T1 = T2 = 50, 000 and T1 = T2 = B1 (the worst scenario), and budgets from 1 to 50

this case, the MDP model has a huge state space where
|S| = 108), time horizon T1 = 108, and click-through rate
ctr1 = 10−4. In this case, we have a relative performance
of 1.0040, meaning that the MDP formulation offers
less than 0.4 % improvement when compared to the LP
formulation.
Finally, we consider the heuristic of taking an increased

budget size for the campaign that returns the best average

cost. In the previous section, we demonstrated that by
choosing γ = 1.202, the worst case reported can be
reduced from 1.582 to 1.430. Figure 11 shows that in
smaller budget sizes, such as B1 = 100 and B1 = 500, the
best value of γ is no greater than 1.005. Here, the first sce-
nario is used with ctr1 = 1

T1
and ctr2 = 0.1×ctr1, whereas

in the second scenario we set ctr1 = 1
T1+T2

and ctr2 =
0.9 × ctr1. For both of them, we took T1 = T2 = 50, 000.

Fig. 10 Relative performance of MDP against LP formulation for T1 = T2 = 50, 000 and T1 = T2 = B1 (the worst scenario), and budgets from 150
to 200
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Table 2 Relative performance of MDP against LP formulation
(every setting considers Preq and B1 = 500)

Setting 1 Setting 2 Setting 3 Setting 4

Scenario 1

B2 ∞ B1 = 500 B1 = 500 B1 = 500

T1 50,000 50,000 50,000 50,000

T2 ∞ 50,000 50,000 50,000

ctr1
B1
T1

= 0.01 0.01 0.01 0.01

ctr2 0 0 0.1ctr1 = 0.001 0.5ctr1 = 0.005

Performance 1.0181 1.0181 1.0148 1.0060

Scenario 2

B2 B1 = 500 B1 = 500 B1 = 500 B1 = 500

T1 500 50,000 50,000 50,000

T2 500 50,000 50,000 50,000

ctr1
B1

T1+T2
=0.5 B1

T1+T2
=0.005 0.005 0.005

ctr2 ctr1=0.5 ctr1=0.005 0.9ctr1=0.0045 0.5ctr1=0.0025

Performance 1.0128 1.0181 1.0123 1.0027

Conclusions
We have investigated the difference between the MDP-
based optimal solution and the solution given by a linear
programming relaxation for the problem of Ad Network
optimization, using the cost per click model. We have cre-
ated an unfavorable scenario for the LP relaxation when
compared to the MDP formulation, showing that in such
scenario, theMDP-based solution is 58.2 % better than the
LP-based solution.

However, the difference in relative performance
between these solutions decreases with budget size. We
have examined four settings, one of them being an unfa-
vorable case for the LP-based solution. Our experiments
show that as campaign budgets grow, this difference
between the solutions for the MDP and for the LP formu-
lations decreases quickly. Indeed, when we have a budget
that resembles real problems (say 10,000 clicks as budget),
the difference is only about 0.4 %.
Hence, we conclude that the LP relaxation is quite effec-

tive, as it produces solutions that are not far away from
the optimal solution in real problems. Because finding the
solution to the MDP formulation requires a much larger
computational effort than required to solve the LP formu-
lation, the latter seems to be the recommended approach
for the Ad Network problem.
However, the solution provided by the LP formulation

indicates only the number of ads to be allocated during a
time interval. In the literature, there is a suggestion that
we should fictitiously increase the value of the campaign
budget by a γ factor in order to get a better solution for
the LP approach. Nothing is said on how to set this value.
In this paper, we have also proposed a method to set the
γ value by exploiting the best possible solution calculated
by LP formulation.
The Ad Network problem still offers many challenges.

Several questions need to be addressed in the decision of
not only choosing which ad to display but also in posi-
tioning it on the webpage, in deciding how many ads
to display simultaneously, and so on. There are studies
that indicate that the number of competing ads appearing

Fig. 11 Different values of γ for the heuristic that changes budget size B
′
1 = γ B1, for different values of B1
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on the webpage affects buying behavior of the con-
sumer [19]. Other studies indicate that advertisements
served in higher positions increase both the click-through
and conversion rates [20].
We intend to extend our analysis to other similar prob-

lems. We wish to study the relationship of MDP and LP
formulations in other applications and also from a theo-
retical point of view. In particular, what features should
the MDP formulation have, so that there is a small loss in
the effectiveness of its solution when compared to a solu-
tion of the relaxed problem? Which approximate MDP
solution techniques can we consider as an alternative
for future work? Another goal is to deal with non-linear
objectives. How can they affect the relative performance
between exact and relaxed solutions? In MDPs, non-
linear objectives can be treated by state-space extensions,
with an increase in complexity. Non-linear programming
methods can be used as relaxed formulations to treat
non-linear objectives.

Endnote
1We have added an explicit sum over the profile set G

(Eq. 7), and the constraint that xj,i,k is positive (Eq. 10).
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