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Abstract 

The Illumina Methylation array platform has facilitated countless epigenetic studies on DNA methylation (DNAme) 
in health and disease, yet relatively few studies have so studied its reliability, i.e., the consistency of repeated measures. 
Here we investigate the reliability of both type I and type II Infinium probes. We propose a method for excluding unre‑
liable probes based on dynamic thresholds for mean intensity (MI) and ‘unreliability’, estimated by probe‑level simula‑
tion of the influence of technical noise on methylation β values using the background intensities of negative control 
probes. We validate our method in several datasets, including newly generated Illumina MethylationEPIC BeadChip 
v1.0 data from paired whole blood samples taken six weeks apart and technical replicates spanning multiple sample 
types. Our analysis revealed that specifically probes with low MI exhibit higher β value variability between repeated 
samples. MI was associated with the number of C‑bases in the respective probe sequence and correlated negatively 
with unreliability scores. The unreliability scores were substantiated through validation in a new EPIC v1.0 (blood 
and cervix) and a publicly available 450k (blood) dataset, as they effectively captured the variability observed in β val‑
ues between technical replicates. Finally, despite promising higher robustness, the newer version v2.0 of the Meth‑
ylationEPIC BeadChip retained a substantial number of probes with poor unreliability scores. To enhance current 
pre‑processing pipelines, we developed an R package to calculate MI and unreliability scores and provide guidance 
on establishing optimal dynamic score thresholds for a given dataset.
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Introduction
DNA methylation (DNAme) is a chemical modification 
of DNA that entails the addition of a methyl group to a 
cytosine (C) residue resulting in 5-methylcytosine, and 
most commonly occurs in the context of CpG dinucleo-
tides in humans [1]. The study of epigenetics and DNAme 
has become one of the most topical areas of genomic 
research in recent years, both from a functional point 
of view and a clinical perspective, owing to its potential 
application in cancer risk prediction and early detection 
strategies [2, 3].

The two most widely used techniques to study epi-
genome-wide DNAme are whole-genome bisulphite 
sequencing (WGBS) and Illumina methylation arrays. 
Both technologies require bisulfite pre-treatment of DNA 
to enable distinction of methylated from unmethylated 
cytosine residues in the context of CpG dinucleotides. 
Whereas WGBS provides information of  the DNAme 
status of a series of neighbouringCpGs, Illumina methyl-
ation arrays allow for more affordable and high-through-
put assessment of the methylation status of a subset of 
single CpG dinucleotides throughout the genome.

The Illumina bead  array technology has undergone 
substantial re-development over the years and the total 
number of CpGs that can be simultaneously analysed has 
increased substantially from ~ 25,000 in 2008 (Human-
Methylation27 BeadChip), to ~ 485,000 in 2011 (Human-
Methylation450 BeadChip), to over ~ 850,000 CpG sites 
in 2016 (MethylationEPIC BeadChip v1.0), and finally to 
over ~ 935,000 CpG sites in 2022 when the Methylatio-
nEPIC BeadChip v2.0 was released. Illumina methylation 
microarrays include two different types of bead chem-
istry, Infinium type I and II probes [4, 5]. Type I probes 
have two separate probe sequences per CpG dinucleo-
tide (one each for methylated and unmethylated CpGs), 
whereas type II probes have only one probe sequence per 
CpG dinucleotide. Consequently, type II probes take up 
less physical space on the arrays than type I probes and 
are the most abundant type on the latest MethylationE-
PIC arrays, constituting ~ 85% of all probes. For type II 
probes, discrimination of methylated (M) versus unmeth-
ylated (U) alleles is made possible by single nucleotide 
primer extension which results in the incorporation of 
Cy3 or Cy5-labelled nucleotides into the target sequence, 
emitting green or red fluorescence, respectively. For type 
I probes, discrimination of methylated versus unmeth-
ylated alleles is made by constructing corresponding 
probes sequences M (methylated) and U (unmethylated) 
which are measured in the same channel, either Red or 
Green. Thereafter, we will distinguish between them as 
type I-Red and I-Green probes, respectively. The level 
of methylation at specific CpG sites is expressed as 
beta (β  value), which represents a constant between 0 

(unmethylated) and 1 (fully methylated) and can be writ-
ten as:

with α representing  a small positive constant (typically 
100) added to the equation to avoid dividing by zero 
when both M and U signals are equal to 0. If β = 0, then 
the interrogated CpG is unmethylated (there is no M 
signal), if β = 1, then the interrogated CpG is methylated 
(there is no U signal).

When assessing Illumina methylation array data, basic 
pre-processing steps would typically include identify-
ing probes and/or samples with a low signal to noise 
intensity which should be excluded [6], correcting for 
background intensity and dye bias [7], performing 
within-array normalization to reduce differences in β dis-
tributions obtained from Infinium I and II probes [8], and 
imputing missing data [9]. For this, several established 
methods have been benchmarked and implemented into 
pre-processing pipelines available as R packages, such 
as minfi [10], ChAMP [11], SeSAMe [12] and the latest 
ENmix [13]. Additionally, previous studies have iden-
tified the necessity to exclude low-specificity probes 
that can bind to multiple sequences within the genome, 
as well as probes that contain genetic variants in their 
underlying sequence [5, 14]. Lastly, recent studies by 
Sugden et  al. [15] and Ross et  al. [16] identified a large 
set of ‘unreliable’ probes that poorly reproduced meth-
ylation values when samples from the same DNA source 
were measured either on the HumanMethylation450 
or MethylationEPIC BeadChip and ‘batch-susceptible’ 
probes that performed excessively variable in different 
datasets, respectively. However, to date a  comprehen-
sive understanding of the factors  that  influence the reli-
ability, i.e., the consistency of repeated measurements, of 
Illumina methylation  array probes is lacking, and exist-
ing solutions of removing a fixed list of unreliable [15] or 
batch-susceptible [16] probes may not translate well to 
new datasets that were not included into the respective 
reliability investigations. This has substantial implications 
for the accurate interpretation of methylation array data, 
especially since a typical experimental design for Illumina 
methylation arrays does not include technical or biologi-
cal replication.

In this study, we present a series of comprehensive 
analyses to investigate yet unexplored factors affecting 
the validity of Illumina methylation array data. To facili-
tate this exploration, we generate  paired longitudinal 
MethylationEPIC BeadChip v1.0  data from 142 paired 
blood samples from 71 volunteers collected 6 weeks apart  
that  enabled us to distinguish inter-individual DNAme 
variability with intra-individual DNAme data over time, 

(1)β =
M

M + U + α
;
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as well as an additional technical replicate set spanning 
multiple sample types from the same group of individu-
als. Our results reveal new insights into factors affect-
ing the variability of DNAme data derived from Illumina 
methylation arrays and we thus propose a novel, data-
driven method for the assessment of probe reliability. We 
expect that these findings will further improve existing 
pre-processing pipelines and the subsequent interpreta-
tion and reliability of next-generation Illumina methyla-
tion array results.

Materials and methods
Sample collection and DNAme profiling in the clinical 
intervention study
93 individuals were recruited to the TACT (Tur-
meric-Anti-Inflammatory and Cell Damage Trial-clinical 
trial number NCT02815475) for a 6-week intervention 
study. There were three study arms: one group (‘Turmeric 
Capsule’ group; 25 patients: 17 females, 8 males) received 
a 400  mg Turmeric capsule providing 0.27  g curcumi-
noids/day, a second group (‘Placebo’ Group; 24 patients: 
16 females, 8 males) a sugar placebo (xylitol), and a third 
group were asked to regularly cook with Turmeric pow-
der (‘Turmeric Powder’ group; 22 patients: 20 females, 2 
males) providing 0.24  g curcuminoids/day in their food 
every alternate day, all for a period of 6  weeks. Ethical 
approval number 16-WAT-23 was granted by Newcastle 
University’s SAgE ethics committee. 71 participants (53 
females and 18 males) completed the study and provided 
full sets of usable 12-h fasting whole blood samples, 
which were collected at the start and end of the 6-week 
intervention into PAXgene blood  DNA tubes (BD  Bio-
sciences, 761165). Full blood counts were complemented 
with measurements of lymphocyte subsets (T, B, and NK 
cells) using the fluorescently labelled antibodies: anti-
CD3 (T cells), -CD4 (T helper cells), -CD8 (cytotoxic T 
cells), -CD19  (B lymphocytes), and -CD56  (NK cells; 
 CD3-), respectively. Briefly, 50  µL blood were added to 
the antibody mix and incubated for 20’ at room tem-
perature in the dark. To lyse red blood cells, the mixture 
was incubated 10’ with 3  mL lysis buffer, washed (PBS-
1%FBS) and cells were resuspended prior to flow cytom-
etry analysis using a FACSCanto II (Becton Dickinson). 
DNA from blood samples collected in PAXgene types was 
extracted using the Machery Nagel NucleoMag® Blood 
200 µL extraction kit (cat, 744501) and 500 ng total DNA 
were bisulfite modified using the EZ-96 DNA Methyla-
tion-Lightning kit (Zymo Research Corp, cat, D5047). 8 
µL of modified DNA were subjected to methylation anal-
ysis on the Illumina Infinium MethylationEPIC BeadChip 
(Illumina, CA, USA) at UCL Genomics, according to the 
manufacturer’s standard protocol.

Normalization of Illumina MethylationEPIC data 
and immune cell subtype inference
Downstream analyses of the TACT study utilized raw β val-
ues, obtained by formula (1) with raw intensities, as well as 
normalized β values obtained from three distinct pipelines: 
minfi [10], using the preprocessFunnorm function with 
default parameters, including background (NOOB) and 
dye bias correction; ChAMP [11], using the champ.norm 
function with default parameters for beta-mixture quan-
tile normalization (BMIQ), and ENmix [13]. For ENmix, no 
samples and probes were removed (parameter qc = FALSE). 
β  values were regressed against the FACS-measured neu-
trophil and lymphocyte cell fractions for the first and 
second visits separately, and probes were considered cell 
type-dependent when FDR < 0.05 for both p-values associ-
ated with the slope of two linear regressions.

Methylation changes linked to the clinical intervention
Two approaches were used to investigate differential 
methylation between two visits across the three treat-
ment groups in the TACT study, either considering abso-
lute differences in the original β-values between visits or 
considering differences in residuals from linear regres-
sion models (β  values versus real neutrophil cell frac-
tion, the largest blood cell fraction) fitted on samples 
from the first visit only and then applied to all samples. 
Pairwise comparisons of the treatment groups were done 
using the Wilcoxon test, as well as a common compari-
son of all three groups using a Kruskal–Wallis test. Since 
the proportion of males in the ‘Turmeric Powder’ group 
was lower than in the other two groups, all tests were 
repeated on the female samples only.

Single nucleotide polymorphism (SNP) analysis
SNPs were identified from probes with underlying genetic 
sequence variation at target CpG sites listed by Pidsley 
et al. (Supplementary Table S4 in [5]). SNPs affect meth-
ylation profiles in specific ways depending on the posi-
tion of the SNP relative to the target site. We defined the 
‘SNP-II-0-effect’ associated with a 0-position (C base of 
target CG pair) of a type II probe, which can cause false 
M (if the SNP is a G base) or false U signals (if the SNP is 
a T or A base), and the ‘SNP-II-1-effect’ associated with 
a 1-position (G base of target CG pair) of a type II probe, 
which may cause degradation of the total signal intensity 
(see Supplementary Fig. S1). The ‘SNP-II-0-effect’ results 
in a tri-modal distribution of β values of the type II probe 
where each mode is represented by carriers of one of 
three variants: CC–C on both chromosomes, C(SNP) or 
(SNP)C–C only on one chromosome, or (SNP)(SNP) for 
NON C on both chromosomes. Conversely, the ‘SNP-II-
1-effect’ results in a tri-modal distribution of intensity lev-
els of the type II probe, where each mode is represented 
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by carriers of one of three variants: highest level for 
GG–G on both chromosomes, middle level for G(SNP) 
or (SNP)G–C only on one chromosome, and lowest level 
for (SNP)(SNP) for NON G on both chromosomes. On 
the level of β values, the ‘SNP-II-1-effect’ results in a bi-
modal distribution, with one mode corresponding to the 
(SNP) variant and the second mode to the other two vari-
ants. Notably, SNPs in the other closest positions towards 
the end of the probe (likely 2–5 bp away) or large inserts 
and deletions in more distant positions can have the same 
‘SNP-II-1-effect’. For type I-Red and I-Green probes, more 
SNP cases are possible that ultimately result in the same 
effects as described for type II probes, either a tri-modal 
β  value distribution (~ ‘SNP-II-0-effect’), a tri-modal 
intensity distribution (~ ‘SNP-II-1-effect’), or a combina-
tion of both (see Supplementary Fig. S2).

Estimation probe sequence melting temperature
The melting temperature  (Tm) of individual probe 
sequences was estimated with empirical formulas based 
on GC content using the Tm_GC() function imple-
mented in the R package TmCalculator (version 1.0.3) 
[17]. Empirical constants for the calculation were set with 
the parameter variant = Primer3Plus, and the salt correc-
tion method described by Owczarzy et al. [18] was used. 
Remaining parameters were kept to default, except for the 
allowing ambiguous sequences and mismatches (ambigu-
ous = TRUE, mismatch = TRUE) and adjusting buffer 
concentrations to the Illumina MethylationEPIC  Bead-
Chip  v1.0 hybridization protocol (Na = 50, Tris = 10). 
Probe sequences were retrieved from the official Infinium 
MethylationEPIC BeadChip v1.0 B5 Manifest File and  Tm 
for unmethylated (AlleleA) and methylated (AlleleB) type 
I sequences were calculated separately.

Mean Intensity (MI) score calculation
We calculate the Mean normalized Intensity of each 
Infinium type probe (MI score) as follows:

For n samples, calculated across all type II or type 
I-Red or type I-Green probes separately:

For each ith sample and each jth type II or type I-Red 
or type I-Green probe:

(2)Mi and Ui; average raw methylated and unmethylated signal of ith sample

(3)
AISi = Mi + Ui; Average Intensity of ith Sample

(4)Nij =
Mij +Uij

AISi
; Normalized intensity of jth Probe on ith Sample

For each jth type II or type I-Red or type I-Green 
probe:

Unreliability score calculation
First, intensities recorded in the Green and Red channels 
of the negative control probes on each array are collected 
(Green and Red noise, respectively) to create a Reliabil-
ity Map (RM) for each probe type/colour separately, i.e., 
RM-II, RM-I-Green, RM-I-Red (see also Fig.  2d). Each 
RM is a grid of pairs of fixed methylated and unmethyl-
ated values Mk , Ul with boundaries and resolution for 
all analyses arbitrarily set to k, l = (min = 0, max = 5000, 
step = 100). For each pair of Mk and Ul in a RM, noise val-
ues are randomly selected 1000× and methylated noise 
Merr(k ,l) and unmethylated noise Uerr(k ,l) defined as fol-
lows, for m = 1:1000:

– for type II probes:

– for type I-Green probes:

– for type I-Red probes:

(5)MIj =
1

n

n∑

i=1

NIij; MI Score

Merr(k ,l) : M
m

err(k ,l) = G
m

err(k ,l)(Gerr = Green noise) and

Uerr(k ,l) : U
m

err(k ,l) = R
m

err(k ,l)(Rerr = Red noise);

Merr(k ,l) : M
m

err(k ,l) = G
m

err(k ,l)(Gerr = M Green noise) and

Uerr(k ,l) : U
m

err(k ,l) = G
′m

err(k ,l)(G
′
err = U Green noise);

Merr(k ,l) : M
m

err(k ,l) = R
m

err(k ,l)(Rerr = M Red noise) and

Uerr(k ,l) : U
m

err(k ,l) = R
′m

err(k ,l)(R
′
err = U Red noise);

For each pair k and l we generate the artificial distribu-
tion of β values by repeatedly adding Um

err(k ,l) and Mm
err(k ,l) 

noise values to Mk and Ul respectively:
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Then we calculate a Q score for a given distribution:

Thus, for each probe type the Reliability Map is a two-
dimensional grid ( Gk , Rl ), of M and U signal intensities, 
where each cell is assigned the Qk ,l value, which is associ-
ated with the unreliability of the β value obtained at the 
corresponding intensities. For each real (i.e., not mod-
elled) pair of Mij and Uij signals from the ith sample and 
each jth probe average noise values are subtracted in the 
corresponding channels and the closest point (G*,R*) on 
RM and associated its Q*-value is retrieved to finally cal-
culate the unreliability score for each jth probe across all 
n samples in the data set:

For intensity values outside the grid, then Q∗ is assigned 
0, that is very reliable.

Unreliability and MI score dynamic thresholding
The relationship between unreliability and MI scores was 
examined for each probe type/colour separately, con-
structing smoothed curves using a generalized additive 
model (GAM). Because the dependence of Unreliability 
on MI rapidly decreases and then stabilizes after a so-
called “critical point”, we propose a dynamic threshold 
for determining which probes are deemed unreliable in 
a given dataset, by determining the maximum of the sec-
ond derivative of the smoothed curve.

Unreliability and MI score validation
Two DNA methylation datasets comprised of technical 
replicates were used to validate the utility of the unreli-
ability and MI scores for probe reliability estimation. The 
first dataset was GSE174422, accessed from NCBI Gene 
Expression Omnibus (GEO). This dataset comprised 128 
technical replicates   of female blood samples collected 
within a Sister Study analyzed on the Illumina Human-
Methylation450 Beadchip v1 [13]. To complement this 
first dataset with Illumina MethylationEPIC data, we 
generated a second dataset derived from four technical 
replicates from the same DNA (2x) and bisulfite con-
verted DNA mixtures (2x) obtained from three different 
sample types, i.e., fresh blood, frozen blood and cervical 
smears, from four female subjects that participated in 
the TirolGESUND study  [NCT05678426] (n = 3 × 4; see 

βm
(k ,l) =

(Mk +Mm
err(k ,l))

(Mk +Mm
err(k ,l))+ (Uk +Um

err(k ,l))
,m = 1 : 1000;

(6)Qk ,l = MAD(mean absolute deviation) distribution of β
(1...1000)
(k ,l) ; Q score.

(7)

Unreliability =
1

n

n∑

i=1

Q∗
; Unreliability score

Supplementary Fig.  S3; "Repeatability dataset"). Blood 
samples (2.5  mL) were stored in PAXgene blood DNA 
tubes (BD Biosciences) and DNA was isolated from fresh 
blood within a week after sample collection. The remain-

ing blood was kept frozen at − 20°C. DNA was addi-
tionally isolated from the frozen left-over samples and 
treated as a separate sample type. Cervical smears were 
collected and stored at room temperature with Thin-
Prep® Collection Kit (Hologic). Within a week after sam-
ple collection, cells sediments were transferred, washed 
(PBS) and pelleted (2500 RPM, 10 min). Cell pellets were 
kept frozen at − 80°C. DNA was isolated according to 
the tissue protocol of the Mag-Bind® Blood and Tissue 
DNA 96 Kit (#M6399-01, Omega Bio-tek) and quanti-
fied using the Quantifluor® dsDNA System (#E2670, 
Promega). 2 × 500  ng of DNA were bisulfite modified 
with the EZ DNA Methylation-Lightning kit (\#D5030, 
Zymo) and standardized to a concentration of 25 ng/µL 
BC-DNA. From each BC-DNA mixture, 2 × 100 ng were 
processed on the Illumina HumanMethylationEPIC v1.0 
(#20042130) according to the manufacturer’s instruc-
tions. To minimize batch effects, modified DNA from 
each sample type was processed randomly on array posi-
tions across two beadchips.

Results
Unexpected DNAme variability in repeated blood samples
We initially studied whole blood DNA methylation pro-
files of 71 volunteers in the TACT study at two time 
points separated by a six-week interval (nsamples = 142). 
Although participants were allocated to one of three 
treatment groups (‘Placebo’, ‘Turmeric Capsule’ or ‘Tur-
meric Powder’), no significantly differentially methylated 
CpG sites (FDR < 0.05) were found with champ.dmp() for 
any of the four variants of β values analyzed (raw or nor-
malized with distinct published preprocessing pipelines; 
results not shown). For each CpG locus, we then calcu-
lated SDβ, i.e., standard deviation of the β values within 
the population at visit 1, and Δβ, i.e., the average (over all 
individuals) of absolute differences in β values between 
visits (over time) for the same person. This revealed a 
spectrum of CpGs targeted by Infinium probes in terms 
of DNAme variability with tendencies towards two 
extreme scenarios (Fig.  1a): some sites exhibited a wide 
range of variability across the population of samples of a 
single visit (time point 1), while other sites showed a high 
degree of variability over time for the same individual. 
This pattern was observed for both the raw and normal-
ized β values.
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Fig. 1 Variability associated with genetic factors (sex and genetic variants) in the TACT study. a Sex chromosome‑associated probes 
demonstrate high variability both within population at visit 1 (SDβ, x‑axis) and over time (∆β, y‑axis). b Example of β value and intensity 
of an X‑chromosome‑associated probe in males and females. c Example of β value and intensity of a Y‑chromosome‑associated probe in males 
and females. d Two types of type II probes SNPs and their impact on signal intensity: SNPs in position 0 (SNP‑II‑0) result in false green or red 
signals, while SNPs in position 1 (SNP‑II‑1) result in a loss of signal (for type I probes see Supplementary Fig. S2a). e SNPs in position 0 and 1 
both demonstrate high variability in the population at visit 1 (SDβ), but SNPs in position 1 furthermore demonstrate high variability over time (∆β; 
for type I probes Supplementary Fig. S2b). f Example of a probe with 0‑position SNP (SNP‑II‑0) showing a tri‑modal  β value distribution. g Example 
of a probe with 1‑position SNP (SNP‑II‑1) showing a tri‑modal intensity distribution
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Consequently, we checked to what degree the observed 
patterns of variability were linked to the genetic back-
ground of the targeted sites, in particular with sex chro-
mosomes and single nucleotide polymorphisms (SNPs), 
sites typically removed or removed during preprocess-
ing [14]. When grouping probes by their chromosomal 
location (X, Y, and “other”), sex chromosome-associated 
probes within our dataset exhibited a high variabil-
ity across the population, which is partially expected as 
our participant cohort included both men and women. 
However, strikingly, methylation values in probes tar-
geting sex chromosomes also showed a high variability 
over time. This effect was less pronounced for minfi and 
ENmix normalized β values, likely due to the special nor-
malization performed for sex chromosome-associated 
probes in these pipelines. As expected, M and U signal 
intensities at sex chromosomes were influenced by bio-
logical sex and sex chromosome copy number (Fig. 1b,c). 
The total signal intensity (M + U) of CpG probes mapping 
to the X chromosome is higher in females than males, 
since females have two X chromosomes. Conversely, the 
total signal intensity of CpG probes mapping to the Y 
chromosome is close to ‘0’, since females do not carry a Y 
chromosome, although some Y-CpGs might be in pseu-
doautosomal regions.

Infinium type I and II probes are based on inherently 
different designs, therefore we consider them separately 
for the remainder of our analyses. With respect to the 
Infinium type II probes, the two most relevant positional 
types of SNPs occur at position ‘0’ immediately after 
the 3’ end of the probe (SNP-II-0), where the SNP spe-
cifically affects the cytosine residue of the interrogated 
CpG, or at position ‘1’ at the very end of the 3’ end of 
the probe (SNP-II-1), where the SNP specifically affects 
the guanidine residue of the interrogated CpG (Fig. 1d). 
These two SNPs have distinct impacts on signal: a SNP-
II-0 can result in false U or M signals, depending on the 
nature of the SNP replacing the ‘C’ residue, while a SNP-
II-1 impairs hybridization and extension and results in a 
loss of signal (see Materials and Methods section). Other 
studies [5, 14] previously identified probes on the Meth-
ylationEPIC BeadChip v1.0 whose reliability is impacted 
by SNPs within the sequence they target, and we have 

highlighted these probes in our dataset (see Fig.  1e for 
type II probes). Interestingly, the subset of probes with 
the highest Δβ, were neither a SNP-II-0 nor a SNP-II-1. 
Thus, like the sex-chromosome associated probes, SNP-
associated probes contribute to a high degree of variabil-
ity within the population, but they do not fully explain 
the high variability in DNAme data over time within 
individuals. We further found that SNP-II-1 resulted in 
bimodal β distributions (corresponding to signal or loss 
of signal; Fig. 1g), where the “true” variant is represented 
by the upper layer of intensity. SNP-II-0 that gives rise to 
either false U or M signals yielded a trimodal β distribu-
tion (Fig.  1f ), and the nature of the polymorphism, i.e., 
which base has replaced the cytosine residue, determined 
which particular mode corresponded to the values of the 
“true” (C/C) variant (see Supplementary Fig. S1).

Modelling the impact of signal intensity on β value 
reliability
Since the properties of both SNP-related and sex chro-
mosome-associated probes are closely related to signal 
intensity (either through DNA quantity, false signals, or 
a loss of signal), but cannot fully explain the observed 
variability in repeated blood samples from the same 
individuals, we further scrutinized the impact of probe 
intensities on DNAme variability. For each probe on the 
array, we calculated a mean intensity (MI) value, which 
represents the corrected mean overall signal strength 
of the probe. Overall, probes with the highest level of 
time-dependent variability have a low MI value (Fig. 2a). 
Probes on the lower end of the MI scale in our data-
set show a low reproducibility in paired blood samples 
(example cg21373150; Fig.  2b), whereas probes on the 
higher end of the MI scale exhibited a high reproducibil-
ity (cg17588455; Fig.  2c). We hypothesize that this high 
variability at low intensity levels is caused by a relatively 
higher impact of signal to noise. Therefore, the MI score 
may potentially allow for the identification of ‘noisy’ or 
‘unreliable’ probes, i.e., probes which do not yield con-
sistent β values between two time-points or replicates.

We created a simulation model to estimate the impact 
of noise on each probe’s “unreliability” by collecting the 
background intensities recorded by the negative control 

Fig. 2 Impact of probe intensity on β value reliability in the TACT study. a Association of probe variability within participants at visit 1 (SDβ) 
and over time (∆β) with mean intensity (MI). Probes with low MI have high variability over time. Examples of a probe with low MI (b) or high MI 
(c). Lines are connected by points corresponding to the individual in two different visits. β values from the same individual are closer for a probe 
with a high MI than on a probe with a low MI. d Reliability map of β values. e Smoothed curve shows the dependence of type II probe unreliability 
on mean intensity (MI). The point highlighted on the graph is the “critical point” marking a sharp change in dependence decline, which we 
recommend as a dynamic threshold for determining which probes are deemed unreliable (for type I probes and other datasets see Supplementary 
Figs. S4–S6). f Dependence of the type II probe unreliability on MI, highlighting probes which are detected using the p‑value method at different 
threshold stringency (for type I probes and other datasets see Supplementary Fig. S12)

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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probes on the array and repeatedly adding methylated 
and unmethylated noise values, M-noise and U-noise, to 
a fixed grid of M and U signal pairs (Fig. 2d, see Material 
and Methods section for further details). The resulting 
reliability maps summarize for each probe type/colour 
the mean absolute deviation of the resulting β distribu-
tions for each point in the grid (Q score) and are then 
subsequently used to assign an unreliability score for 
each probe in the final dataset, by averaging the match-
ing Q scores for the measured β values across all samples. 
Dynamic thresholding for defining unreliable probes in 
each dataset is then achieved by examining the depend-
ence of the unreliability scores on MI and finding the 
critical point of a smoothed curve where the dependence 
of unreliability (mirroring Δβ estimates) on MI stabilizes 
(Fig. 2e; Supplementary Figs. S4–S6). The β values in the 
unreliability Map are only generated for the purpose of 
estimating unreliability. Independently, different QC pro-
cedures may be applied to call β values, and we noted 
that, especially for type II probes, the choice for a specific 
pipeline influenced the obtained average β distributions 
substantially (Supplementary Figs. S4–S6a).

Compared to the popular p-value detection method 
(detP) to remove outlier probes as implemented in the 
minfi package [10], we improve probe filtering by model-
ling the effect of noise on β values obtained at different 
intensity levels, rather than comparing total intensities 
(across all genomic position in every sample) with dis-
tribution of total intensities on negative control probes 
(which only allows to estimate the ‘distance’ of probe 
intensities from the noise intensity, but does not allow to 
estimate the influence of noise on the final β values). Fur-
thermore, by allowing for data-driven thresholding we 
detect more unreliable probes than the statistical outli-
ers alone, even compared to a very stringent threshold of 
p = 1.e − 40 [6] for detP (Fig. 2f,e).

Linking mean intensity with probe sequence composition, 
target sequence copy number and unreliability scores
Investigating probe composition to identify factors 
associated with reliability, we found that probes with a 
low MI score tend to have a lower C content and tar-
get sequences with a lower G content (Fig. 3a; Supple-
mentary Fig.  S7). Stronger physical binding between 
G–C base pairs than A–T base pairs could result in an 
increase of bound targets and thus  fluorescent signal. 
We tested this for each probe type, i.e., I-Green, I-Red 
and II, and corresponding probe sequences, including 
unmethylated/methylated probes for Infinium type I, 
by checking the association of MI with estimated probe 
melting temperature  (Tm; Supplementary Fig.  S8). 
For all probe types, we find a significant positive cor-
relation of MI with  Tm (Pearson correlation > 0.21, 
p-value < 0.01). This was most pronounced for the 
Infinium type II probes (Pearson correlation = 0.39). 
Infinium type II probes predominantly target open sea 
regions. Furthermore, probes targeting island, shore, 
shelf, and open sea regions inherently differ in their 
CG content (Fig. 3b). Correspondingly, open sea region 
probes have a lower MI and higher unreliability scores 
than probes located in island regions (Fig.  3c, d). As 
previously shown, the raw signal intensity of the probe 
is also influenced by the degree to which 3’ end subse-
quences (3’ nested subsequences) non-uniquely bind 
to different regions of the human genomes [14]. Here 
we additionally show that mean intensities (MI scores) 
depend both on the copy numbers of 3’ nested subse-
quences of different length and the C content of the full 
length probe (Fig.  3e). When 3’ nested subsequences 
uniquely bind to the genome, MI scores are higher with 
higher C content. For short non-unique overlaps (3’ 
nested subsequences = 10–20 bp length), MI drops with 
copy number only for high C content probes. For longer 
non-unique overlaps, MI increases with copy number, 
independent of the C content of the full length probe.

(See figure on next page.)
Fig. 3 Type II probe features impacting signal intensity and reliability. a Dependence of mean signal intensity (MI) on C content of the probe 
(for type I probes and other datasets see Supplementary Fig. S7). b Odds ratio for C enrichment in different DNA regions: Islands, due to their 
inherently high CG content, have a strong enrichment of probes with a large C content, which leads to the fact that on average MIs are higher. 
Odds ratios and associated p‑values were obtained with a two‑sided Fisher test (full results given in Additional file 2). Non‑significant (FDR‑adjusted 
p‑value > 0.05) results are shown in grey. Significant results (FDR‑adjusted p‑value ≤ 0.05) with an odds ratio > 1 or ≤ 1 are shown in red and blue, 
respectively. c, d Differences in MI and unreliability scores depending on the CpG context of the probe target. e Dependence of MI (Y‑axis) 
on the degree of non‑unique overlap for 3’ nested subsequences (estimated copy number; X‑axis) and C content of the probe sequence (color 
scale). Copy numbers for 10–50 bp long 3’ nested subsequences were calculated by Zhou et al. [14] by scanning 3΄‑subsequence of the probe’s 
source sequences (‘G’s converted to ‘A’s) and of the specified length in the bisulfite converted genome (GRCh38 assembly) for matches. f Reliability 
scores proposed by Sugden et al. [15] versus unreliability scores defined here. g Association of Reliability scores proposed by Sugden et al. [15] 
with SNPs and MI. h Methylation status (β) and intraclass correlation coefficient (ICC) for example SNP‑associated CpGs and probes yielding low 
signal intensity of probes
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Interestingly, our unreliability score was not associ-
ated with a reliability measure proposed by Sugden 
et  al. [15], which was calculated using ICC (Intraclass 
Correlation Coefficient) on β values of repeat measure-
ments of the same DNA samples (Fig. 3f ). Furthermore, 

the reliability score from Sugden et al. does not corre-
late with MI (Fig. 3g, lower panel), and SNP-associated 
probes were deemed the most reliable using this meas-
ure (Fig. 3g, upper panel), which seems to be due to the 
high spread of β values in SNP 0 and SNP 1 (Fig.  3h, 

Fig. 3 (See legend on previous page.)
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upper panels). Of note, some probes which have a simi-
lar Sugden reliability score had different ICC, MI and 
unreliability in our TACT data (Fig.  3h,  lower panels). 
In contrast to the method proposed by Sugden et  al., 
our method of assessing probe reliability is not based 
on cross-correlation of samples (which can be different 
in intensity, and therefore result in β bias), but instead 
offers insights into the reliability of probes based purely 
on intensity and noise distribution.

Consistency of unreliability scores and probe MI 
with respect to biological and technical variation
Our method to estimate unreliability of Infinium probes 
is based on the analytical modeling of the effect of noise 
on probe intensities and explains the high values of Δβ 
well. However, since the TACT dataset consists of paired 
biological replicate samples, we investigated the mag-
nitude of changes in cell type composition between 
repeatedly drawn blood samples that may have occurred, 
despite the absence of a treatment effect, using flow 
cytometry. Fractions of cell subtypes in the blood can 
change rapidly, for example the proportion of lympho-
cytes in peripheral blood can rapidly increase due to 
acute illness, influencing the β values that integrate the 
methylation status from all cell subtypes in the samples, 
and further explaining the variation seen in time for the 
same individuals. Only for the two main immune blood 
cell subtypes, i.e., neutrophils and lymphocytes, fractions 
changed between the two visits (see example for type II 
probes in Supplementary Fig. S9a,b). Furthermore, large 
proportional changes (> 0.1) were only noted for 5 out 
of 53 individuals. Next, we selected probes whose β val-
ues are strongly influenced by these two immune sub-
types (see Supplementary Fig.  S9c) and evaluated the 
variability for these cell type-dependent probes between 
patients at visit 1 (SDβ) and over time (∆β; see Supple-
mentary Fig.  S9d). Large variation over time (∆β) was 
not restricted to longitudinal (biological) variation cap-
tured by these cell-type dependent probes (Supplemen-
tary Fig.  S9d) and a significant portion of high ∆β/low 
MI probes were not amongst the cell type dependent 
probes (Supplementary Fig.  S9e). Taken together, a sig-
nificant portion of the observed variation over time could 
not be explained by longitudinal changes in cell type 
composition.

To further demonstrate the consistency of the unrelia-
bility scores on true technical replicates, we analyzed two 
additional datasets: a previously described IlluminaHu-
manMethylation450 Beadchip dataset (GSE174422) from 
128 duplicate female blood samples, and a new Human-
MethylationEPIC v1.0 “Repeatability” dataset gener-
ated for this study from 4 quadruplicate fresh blood, 4 
quadruplicate frozen blood and 4 quadruplicate cervical 

smear samples. Using raw β  values, we estimated vari-
ability between technical replicates by mean, absolute β 
differences (Δβ) for each probe, confirming that technical 
variability increased with increasing unreliability scores 
and decreased with MI in the datasets with technical rep-
licates (Fig. 4a,b; Supplementary Figs. S10–S11). Also, for 
the technical replicate datasets, we detect more unreli-
able probes than the statistical outliers alone detected by 
the detP method with different thresholds and remove a 
significant portion of the lower variable probes deemed 
unreliable (Fig.  4c; Supplementary Figs.  S12–S16). The 
raw β values from all three datasets showed a large skew 
towards probes on the array that displayed a low stand-
ard deviation across all samples, independent of the pre-
processing pipeline used (Supplementary Figs. S17–S20). 
Our more stringent unreliable probe detection method 
detects proportionally more of such probes with lower 
overall variability (SDβ across all samples) compared to 
the detP method. Among the unreliable probes, probes 
that target SNPs, the Y chromosome or Open Sea Cpgs, 
as well as probes with a low C content tended to be 
overrepresented in all three datasets (Supplementary 
Figs. S21–S23). Furthermore, MI scores, which we use for 
dynamic thresholding in our unreliability method, corre-
late well across datasets (Fig. 4d), despite marked differ-
ences in total signal intensities for samples in the different 
datasets (Fig.  4e) and their noise distributions recorded 
from the negative control probes (Fig.  4f ). Regardless 
of the preprocessing pipeline used to call β values, the 
dynamic thresholds were set close to the minimum Δβ 
values (Supplementary Figs.  S24–S27) and SDβ values 
(Supplementary Figs.  S28–S31) in each dataset. Finally, 
we noted a strong correlation between the unreliability 
scores calculated (Supplementary Figs.  S32–S34) and a 
considerable overlap in the unreliable probes detected 
for the three datasets (Supplementary Figs.  S35–S37). 
Nonetheless, depending on the probe type and study, 
between 381 and 13,807 unique, unreliable probes were 
detected with our method, demonstrating the impor-
tance of evaluating signal intensity in a dataset-specific 
manner for the detection of unreliable probes.

Implications for the newer MethylationEPIC BeadChip v2.0
A new Illumina  HumanMethylationEPIC BeadChip 
v2.0 was released in November 2022. The new manifest 
reports that ‘underperforming’ probes were removed 
compared to the v1.0 manifest (approximately 140,000, 
i.e., 23% of all type I probes and 15% of all type II probes). 
However, we found no evidence of an enrichment for 
probes with high unreliability or low MI in those dis-
carded for v2.0 (Supplementary Fig. S38). Therefore, we 
assume that the issues raised here will remain of high 
importance also for the newer version of the EPIC array. 
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We also note that despite the announced large-scale 
removal of SNPs, some SNP 0 (~ 15%) and 1 (~ 25%) 
probes remained on v2.0. In addition, we observed that 
some probes are not marked as containing SNPs (nei-
ther by Pidsley [5] or Zhou lists [14], nor by the Illumina 
Manifest), but clearly demonstrate SNP-II-0 (Supple-
mentary Fig. S39) or SNP-II-1 behaviour (Supplementary 
Fig. S40).

Discussion
Despite considerable investment in improving exist-
ing analysis pipelines for popular Illumina methylation 
arrays, room for improvement remains. To facilitate 
the generation of meaningful findings that will not only 
increase our understanding of the epigenome and its rela-
tionship with health and disease, but also translate into 
clinically useful tools, it is vital that we fully understand 
how robust these DNA methylation arrays perform. Here 

Fig. 4 Validation of the unreliability method on datasets with technical replicates. Association of type II probe variability estimated by the averaged, 
absolute methylation differences between repeated samples (∆β) with a the unreliability score and b the mean intensity (MI) in the TACT study 
(n = 2 × 71 longitudinal paired blood samples), the Repeatability set (n = 4 × 4 × 4 technical replicates for fresh blood, frozen blood and cervical 
smear samples) and GSE174422 (n = 2 × 128 technical replicates for blood samples). For type I probes see Supplementary Figs. S10–S11. c 
Distribution of Δβ for all type II probes (grey) or those removed by the p‑value detection method at different threshold settings (red, orange, 
yellow) and the unreliability method (black) in the different datasets. d Correlation of MI measured for type II probes across datasets. e Mean 
red versus green total signal intensities of the samples in the different datasets. f Noise distributions obtained from the negative control probes 
in the different datasets
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we show that DNAme data from paired whole blood 
samples taken from the same individuals display variabil-
ity over time which cannot be attributed to underlying 
genetic or biological factors alone. Much of the ‘unex-
plained’ temporal variability in the current study can be 
attributed to probe quality, which is primarily dictated by 
the probe sequence complexity and genome location.

Noise affects methylation values differently at different 
intensity levels: it has a dramatic effect on β values at low 
intensity, while at high intensities, the signal cancels out 
the effect of noise. We therefore developed an approach 
for assessing the unreliability of β values in a data-driven 
manner, using the negative control probes on the arrays 
to model the contribution of noise to any of the final sig-
nal intensities in a specific data set. Our new unreliability 
score correlates well with increasing degrees of variability 
observed between repeated samples, both in longitudi-
nal dataset as well as in two validation sets with techni-
cal replicates. By modeling the noise distribution for each 
dataset for type II and type I/color probes independently, 
we were able to detect more unreliable probes compared 
to an existing detP method for detecting outlier probes 
(standard detP in minfi with 0.01 p-value threshold 
[10, 19] with 1.e−16 p-value threshold, [6] with 1.e−40 
p-value threshold).

There is a marked difference in signal intensity and 
quality based on the C-content of the probe sequence 
and CpG content. On the one hand, this observation can 
help Illumina to achieve leveling of such an effect within 
the technological process, on the other hand, it will allow 
scientists to provide more qualitative comparisons on 
different regions of DNA, for example separating Islands 
and the Open Sea CpGs. Excluding low-intensity or unre-
liable probes  from the analysis could help increase the 
detection of differentially methylated CpGs for different 
phenotypes and improve both the accuracy and precision 
of existing and emerging predictive models on this type 
of DNAme data. Beyond the mere exclusion of unreliable 
probes, new correction or normalization methods may 
emerge in the future based on the results of this work 
that could instead salvage the data generated from these 
probes.

Factors contributing to laboratory or methodologi-
cal bias, such as sample storage and hybridization pro-
cedures, are relatively underexplored. Samples from 
different studies tend to be of different quality, yielding 
different average intensities depending on the instru-
ments used and the exact laboratory protocols, which 
in turn can also affect the reproducibility of β values on 
probes with different intensities and estimated probe reli-
ability. Therefore, accounting for probe reliability and raw 
signal intensities during initial quality control may also 

improve the reproducibility of DNAme studies across 
laboratories.

In summary, we developed a new computational 
method to further refine existing preprocessing methods 
for Illumina methylation array data by excluding unreli-
able probes from downstream analyses. We implemented 
our methods to calculate MI and unreliability scores 
into an R package, epicMI, which is publicly available on 
GitHub [20].
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