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Abstract 

Background Current research on the epigenetic repercussions of exposure to a combination of pollutants is limited. 
This study aims to discern DNA methylation probes associated with exposure to multiple pollutants, serving as early 
effect markers, and single‑nucleotide polymorphisms (SNPs) as surrogate indicators for population susceptibility. 
The investigation involved the analysis of urine exposure biomarkers for 11 heavy metals (vanadium, arsenic, mer‑
cury, cadmium, chromium, nickel, lead, manganese, copper, strontium, thallium), polycyclic aromatic hydrocarbon 
(PAHs) (1‑hydroxypyrene), genome‑wide DNA methylation sequencing, and SNPs array on all study participants. The 
data were integrated with metabolomics information and analyzed both at a community level based on proximity 
to home addresses relative to the complex and at an individual level based on exposure biomarker concentrations.

Results On a community level, 67 exposure‑related CpG probes were identified, while 70 CpG probes were associ‑
ated with urine arsenic concentration, 2 with mercury, and 46 with vanadium on an individual level. These probes 
were annotated to genes implicated in cancers and chronic kidney disease. Weighted quantile sum regression 
analysis revealed that vanadium, mercury, and 1‑hydroxypyrene contributed the most to cg08238319 hypomethyla‑
tion. cg08238319 is annotated to the aryl hydrocarbon receptor repressor (AHRR) gene, and AHRR hypomethyla‑
tion was correlated with an elevated risk of lung cancer. AHRR was further linked to deregulations in phenylalanine 
metabolism, alanine, aspartate, and glutamate metabolism, along with heightened oxidative stress. Additionally, three 
SNPs (rs11085020, rs199442, and rs10947050) corresponding to exposure‑related CpG probes exhibited significant 
interaction effects with multiple heavy metals and PAHs exposure,  and have been implicated in cancer progression 
and respiratory diseases.

Conclusion Our findings underscore the pivotal role of AHRR methylation in gene‑environment interactions 
and highlight SNPs that could potentially serve as indicators of population susceptibility in regions exposed to multi‑
ple heavy metals and PAHs.
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Introduction
It is estimated that 70–90% of the human disease bur-
den could be attributed to environmental exposures 
[1]. Traditionally, studies in environmental health have 
focused on understanding the toxic effects and biologi-
cal mechanisms related to exposure to single pollutants, 
such as heavy metals and polycyclic aromatic hydro-
carbons (PAHs) [2, 3]. However, real-world scenarios 
involve humans being exposed to complex mixtures of 
pollutants simultaneously. Even when individual pollut-
ants do not surpass toxicity or regulatory limits, their 
cumulative exposure might still lead to additive effects. 
Once these pollutants enter the body, they interact with 
different substrates, including genome, epigenome, and 
metabolome. These interactions are key in determining 
how an individual responds to pollutants and subsequent 
health effects. The emerging field of precision environ-
mental health advocates for a comprehensive approach 
that considers multi-pollutant and integrates multi-
omics analysis. This approach aims to achieve a thorough 
understanding of exposure effects and how they vary 
from person to person. By examining how multiple pol-
lutants interact with our biological systems, we can gain a 
deeper insight into their collective impact on overall dis-
ease burden [4, 5]. This could be instrumental in identify-
ing individuals who are more susceptible to health issues 
due to environmental exposures. Such knowledge is 
essential for creating and implementing evidence-based 
targeted prevention and intervention strategies.

Residents living near petrochemical complexes could 
be exposed to multiple industrial pollutants due to the 
consortium of high pollution facilities including coal-
fired power plants and oil refineries. We have conducted 
a series of studies near the largest petrochemical complex 
in Taiwan and applied exposomics approach to identify 
exposure biomarkers, early health effect biomarkers, 
and metabolomic changes linking multiple-pollutant 
exposure with multiple adverse health outcomes, includ-
ing cancer, chronic kidney disease (CKD), liver injuries, 
hyperlipidemia, and respiratory diseases [6–23]. The 
exposome is the sum of all the exposures that an indi-
vidual has from birth to death and exposomics is the 
comprehensive evaluation of all exposures and their 
contribution to disease causation or progression. It is 
recommended in exposomics studies to employ omics 
methods to identify links between exposures and health 
outcomes, understand the mechanisms of disease devel-
opment and progression, and potentially developing new 
biomarkers for exposure and early health effects [1, 24, 
25]. We showed novel omics tools could help identify the 
complex relationship between well-characterized mul-
tiple exposures and health impacts in residents living 
near a petrochemical complex, but we still lack genomics 

information. Clarifying the relationship on a genetic and 
epigenetic level could provide insight on the affected 
molecular mechanisms and potential public health impli-
cations including individual susceptibility to environ-
mental exposures.

Gene-environment interaction is the interplay between 
gene functions and environmental stress, which could 
influence phenotypes such as health outcomes. Epige-
nome has become a focus in gene-environment interac-
tions due to the modifiable characteristics of epigenetic 
modulators. This suggests a potential role as a biomarker 
of previous exposures and early effects [4, 5]. DNA meth-
ylation is the most extensively studied epigenetic modu-
lator in response to environmental stimuli. Alterations 
in DNA methylation involves the addition of a methyl 
group (-CH2) to the fifth carbon position of the cytosine 
base, a process facilitated by the DNA methyltransferases 
(DNMTs) enzymes [26]. This modification has the poten-
tial to influence gene expression and subsequent protein 
expression without altering the primary DNA sequence. 
It reflects the organism’s immediate adaptation to envi-
ronmental exposures, possibly triggered by pollutants 
exposure stimulating the binding of transcription fac-
tors to CpG sites. This, in turn, affects DNMT access and 
therefore influences gene-specific DNA methylation [27].

Epigenetic studies have investigated heritable altera-
tions in global and gene-specific DNA methylation fol-
lowing exposure to heavy metals such as arsenic (As), 
cadmium (Cd), nickel (Ni), lead (Pb), mercury (Hg), and 
chromium (Cr), as well as PAHs. These investigations 
have revealed associations between these alterations and 
adverse health effects, including oxidative stress, car-
diovascular diseases, cancer, and respiratory diseases 
[28–33]. However, most of these studies focus on single 
pollutant exposure, leaving room for exploring exposure 
to multiple-pollutant mixtures [32]. The identification of 
gene-specific DNA methylation alterations induced by 
multiple-pollutant exposure could be used in finding sur-
rogate biomarkers indicative of early health effects.

Individuals carrying distinct single-nucleotide poly-
morphisms (SNPs) may exhibit varying sensitivity to the 
toxicity of heavy metal and PAHs exposures [34–36]. 
SNPs refer to variations in DNA sequences where more 
than two types of nucleotides can exist at a specific posi-
tion in DNA, differing among individuals. It is recognized 
as a useful and widely applicable biomarker to locate 
genetic distribution and predicting individual responses 
to specific disease or external stimuli [37–40]. Analyz-
ing SNPs within populations residing in a highly polluted 
areas could unveil potential genetic markers that could 
serve as susceptibility biomarkers for risk assessment.

We systematically collected exposure, genetic, epi-
genetic, and metabolomic information on our study 
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subjects, integrating and analyzing the data on both 
community and individual levels (Fig.  1). Our objec-
tive was to identify multiple-pollutant exposure-related 
DNA methylation probes, serving as possible mark-
ers for early effects, and SNPs that could act as poten-
tial surrogate marker for population susceptibility 
to the health impact of multiple exposures. We then 
integrated these findings with metabolomics data to 
strengthen the link between exposure and early health 
effects observed in residents. We successfully identified 
exposure-related CpG probes that annotate to genes 
associated with cancers and chronic kidney disease. 
Our findings include the aryl hydrocarbon receptor 
repressor (AHRR), which has been linked to an elevated 
risk of lung cancer. We further linked AHRR to deregu-
lations in phenylalanine metabolism, alanine, aspartate, 
and glutamate metabolism, along with elevated oxida-
tive stress. We also identified three SNPs that corre-
sponded to exposure-related CpG probes and showed 
significant interaction with multiple heavy metals and 
PAHs exposure. These SNPs have been implicated in 
cancer progression and respiratory diseases.

Our study employed a precision environmental health 
approach in a region heavily influenced by a large pet-
rochemical industry. Our SNPs finding could contribute 
to the identification of individuals at higher risk, and the 
epigenetic alterations we found may indicate early effects 
in residents living closer to the petrochemical complex 
and have been exposed to multiple industrial pollut-
ants. Furthermore, our study enhances the understand-
ing of the impact on critical biological mechanisms that 
could be precursors to chronic and acute diseases. This 
comprehensive information offers valuable insights for 

risk prediction and developing precision prevention and 
intervention strategies.

Results
Table 1 shows the basic characteristics, health data, and 
exposure levels for 159 study subjects. There was no sig-
nificant difference between high and low exposure groups 
for age, sex, smoking, drinking, and betel nut chewing 
history, body mass index (BMI), systolic blood pressure 
(SBP), alanine transaminase (ALT), aspartate transami-
nase (AST), high-density lipoprotein cholesterol (HDL-
C), and low-density lipoprotein cholesterol (LDL-C). All 
12 exposure biomarkers were increased in high exposure 
group compared to low exposure group. In high exposure 
group, PAHs exposure biomarker urinary 1-hydroxypyr-
ene (1-OHP) concentrations (0.23 ± 0.56  µmol/mol-
creatinine) was significantly elevated compared to 
low exposure group (0.03 ± 0.01  µmol/mol-creatinine) 
(p < 0.0001). The same trend was found for urinary 
vanadium (V) (high exposure group: 1.62 ± 1.15  µg/g-
creatinine; low exposure group: 0.24 ± 0.11  µg/g-
creatinine; p < 0.0001). 1-OHP and V had the largest 
contrast between the two exposure groups with 7.67- and 
6.75-fold change in urine concentrations, respectively. Hg 
had 3.02-fold change (p < 0.0001), Cr, manganese (Mn), 
and Ni with 2.3 (respectively, p = 0.011, < 0.0001, 0.024), 
strontium (Sr) 2.19 (p < 0.0001), As 1.90 (p < 0.0001), and 
thallium (Tl) 1.59 (p < 0.0001). Pb and copper (Cu) had 
1.24- and 1.17-fold change with borderline statistical 
significance (p = 0.054 and 0.057, respectively). Cd was 
1.39 times higher in high exposure group compared to 
low exposure group, but with no statistical significance 
(p = 0.646).

Fig. 1 Analytical flowchart of exposure, SNPs, DNA methylation, and metabolite profile on community and individual level
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Despite the significant differences between high and 
low exposure groups, none of the exposure biomarkers 
we analyzed exceeded the acute toxicological thresh-
olds. In the high exposure group, the pollutants’ con-
centration range was approximately equal to or lower 
than general occupational exposure levels. We had also 
excluded study subjects who reported to have worked 
at the petrochemical complex. Therefore, the exposure 
levels discussed in this study should represent local 
environmental exposure levels.

For community-level analysis, we examined the dif-
ferences between high and low exposure groups for 
SNPs and DNA methylation. We did not find any sig-
nificant association between SNPs and exposure status, 
indicating there are no distinctive genetic differences 

and no selection bias between our two exposure groups 
(Figure S5). We did identify 67 probes with DNA meth-
ylation levels significantly different between high and 
low exposure groups (p < 0.05 and ∆β >|0.1|), with 62 
being hypomethylated and five hypermethylated, corre-
sponding to 41 and 4 known human genes, respectively 
(Fig.  2; Table 2). These 45 genes were put through the 
Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) platform’s functional annotation 
chart and 16 pathways were found (p < 0.05) (Table S2) 
[41]. These results indicated the multiple-pollutant 
exposure could impact the epigenomic layer and the 
probes we identified may potentially serve as surrogate 
early biomarkers for increased risk of adverse health 
effects.

The 67 CpG probes we identified correspond to 11 
SNPs in our SNPs array. We used both quantitative and 
qualitative models to analyze whether these 11 SNPs are 
indeed associated with the methylation alteration of the 
corresponding probes. We then applied a linear regres-
sion model to investigate whether the interaction effect 
between exposure status and SNPs has significant influ-
ence on DNA methylation levels. We found in quantita-
tive model all 11 SNPs were significantly associated with 
methylation alteration of corresponding CpG probes 
(p < 0.05). Linear regression analysis showed SNPs 
rs11085020 in Nuclear Factor I C (NFIC) and rs199442 in 
N-ethylmaleimide-sensitive factor (NSF) had significant 
interaction effects with exposure status that influenced 
DNA methylation level of corresponding CpG probe 
(p < 0.05) (Figures S6A and B). In qualitative model, all 11 
SNPs were significantly associated with the methylation 
alterations of corresponding CpG probes (p < 0.05), and 
when the SNP variable was coded based on whether the 
minor allele was carried, rs10947050 in Ring Finger Pro-
tein 39 (RNF39) had significant interaction effects with 
exposure status that influenced DNA methylation level 
of corresponding CpG probe (p < 0.05) (Fig. S6C). How-
ever, when SNP variable was coded based on whether the 
major allele was carried, linear regression analysis did 
not identify any significant interaction effects between 
SNPs and exposure status. These results identified SNPs 
that could potentially serve as a surrogate marker for 
susceptibility.

We found that out of the 67 exposure-related CpG 
probes, 40 had DNA methylation levels significantly 
associated with at least one exposure-related metabolite 
we previously identified (p < 0.01) [11–13]. Methylation 
level of CpG probe cg01625212 was significantly asso-
ciated with 9 exposure-related metabolites (7 urinary 
metabolite and 2 lipids), cg10632770 with 6 urinary 
metabolites, cg08238319 with 3 urinary and 2 serum 
metabolites (5 in total), cg21499289 with 5 urinary 

Table 1 Comparison of basic characteristics, health data, and 
exposure levels in 159 study subjects

Comparison of basic characteristics between the high and low exposure groups 
for continuous variables was made using Student’s t-test, and for discrete 
variables, Chi-squared test or Fisher’s exact test. Urinary exposure biomarker 
concentrations are log-transformed, high and low exposure groups compared 
by ANCOVA test adjusting age, gender, smoking, alcohol consumption, betel 
nut chewing, and fish consumption with a post-comparison by Scheffe test. For 
1-OHP, unit: µmol/mol-creatinine; for heavy metals, unit: µg/g-creatinine

High exposure
(n = 78)

Low exposure
(n = 81)

p value

Basic characteristics

Age, mean ± SD 40.23  ± 22.99 40.03  ± 22.45 0.955

Sex, n (%) 49 (62.82) 46 (56.79) 0.438

Smoke history, n (%) 10 (12.82) 13 (16.05) 0.563

Drink history, n (%) 10 (12.82) 11 (13.58) 0.888

Betelnut history, n (%) 7 (8.97) 11 (13.58) 0.360

BMI, mean ± SD 23.96  ± 3.98 23.77  ± 4.08 0.766

SBP, mean ± SD 132.70  ± 19.84 126.80  ± 20.00 0.065

ALT, mean ± SD 26.00  ± 24.98 26.62  ± 26.00 0.879

AST, mean ± SD 27.62  ± 18.53 26.59  ± 16.96 0.717

HDL‑C, mean ± SD 56.81  ± 15.27 52.77  ± 14.43 0.088

LDL‑C, mean ± SD 105.9  ± 32.60 109.1  ± 44.20 0.607

Internal exposures, mean ± SD

1‑OHP 0.23  ± 0.56 0.03  ± 0.01  < 0.0001

Vanadium (V) 1.62  ± 1.15 0.24  ± 0.11  < 0.0001

Arsenic (As) 91.43  ± 105.45 48.21  ± 34.40  < 0.0001

Mercury (Hg) 3.69  ± 3.25 1.22  ± 0.79  < 0.0001

Cadmium (Cd) 0.82  ± 0.92 0.59  ± 0.62 0.646

Chromium (Cr) 6.36  ± 9.01 2.76  ± 1.48 0.011

Nickel (Ni) 9.71  ± 14.93 4.24  ± 2.50 0.024

Lead (Pb) 0.99  ± 0.99 0.80  ± 1.04 0.054

Manganese (Mn) 3.23  ± 5.17 1.41  ± 1.37  < 0.0001

Copper (Cu) 18.33  ± 15.01 15.72  ± 11.47 0.057

Strontium (Sr) 176.70  ± 162.50 80.52  ± 51.61  < 0.0001

Thallium (Tl) 0.27  ± 0.18 0.17  ± 0.13  < 0.0001
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metabolites, cg00303108 with 4 metabolites (1 urinary, 1 
lipid, and 2 serum metabolites), and cg02617100 with 4 
urinary metabolites (Table  3). For cg01625212, 3 out of 
the 9 associated metabolites, palmitic acid, myristic acid, 
and stearic acid, are involved in fatty acid biosynthesis 
pathway. Cg21499289 (corresponding gene C9orf171) 
and cg02617100 (corresponding gene LINC00673) were 
also associated with both palmitic acid and stearic acid. 
Cg08238319 (corresponding gene AHRR) was associated 
with phenylalanine, an important exposure-related inter-
mediate biomarker, as well as γ-Aminobutyric acid and 
oxoglutaric acid, both involved in alanine, aspartate, and 
glutamate metabolism, an exposure-related pathway we 
identified in our previous study. These results suggest a 
link from DNA methylation alterations caused by multi-
ple exposure affected to biological mechanisms and early 
health effects we previously identified through metabo-
lomics studies.

For individual-level analysis, Pearson’s correlation 
analysis identified 70 probes with DNA methylation lev-
els associated with As urine concentration, 2 with Hg, 
and 46 with V (p < 1 ×  10−5), corresponding to 62, 0, and 
32 known human genes, respectively (Table 2). Interest-
ingly, for As, the associated probes were mostly hypo-
methylated, while for V it was the opposite. This suggests 
different pollutants could have varying effects on DNA 
methylation. When we compare these results with 

community-level findings, only two genes significantly 
different between high and low exposure groups were 
also associated with urinary As concentrations (DFNA5
、TSPY4). Gene-Set Enrichment Analysis (GSEA) path-
way analysis results showed four pathways related to uri-
nary As and Hg exposure levels each (p < 0.05), while no 
pathways were identified to be related to V exposure lev-
els (Table S3) [42].

We employed weighted-quantile sum (WQS) regres-
sion for multi-pollutant analysis at an individual level. 
Figure  3 shows the association between the mixture of 
eight exposure biomarkers with the highest fold-change 
between high and low exposure groups (V, 1-OHP, Hg, 
Cr, Mn, Ni, Sr, and As) and the six exposure-related CpG 
probes that were linked to exposure-related metabolites 
(cg01625212, cg10632770, cg08238319, cg21499289, 
cg00303108, and cg02617100), respectively. For all six 
CpG probes, the association was statistically signifi-
cant (p < 0.05), and V was the main contributor except 
for cg08238319. In Fig.  3A, V predominated the mix-
ture index for cg01625212 as the largest (weight = 0.65) 
contributor to the mixture effect (cutoff weight 
defined as 0.125, the inverse of the number of variables 
included in the mixture) (p = 0.006). For cg10632770, 
V (weight = 0.45), Mn (weight = 0.22), and As 
(weight = 0.16) were the major contributors to the index 
(p = 0.011) (Fig.  3B). Hg was the main contributor for 

Fig. 2 Heatmap of 67 CpGs with significantly different methylation levels between high and low exposure groups
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cg08238319 (weight = 0.39) with 1-OHP (weight = 0.27) 
(p < 0.001) (Fig. 3C). In cg21499289, V (weight = 0.38), As 
(weight = 0.15), 1-OHP (weight = 0.14), Sr (weight = 0.14) 
reached the cutoff weight for significant contribution 
(p = 0.010). V (weight = 0.35), 1-OHP (weight = 0.24), and 
Mn (weight = 0.18) contributions were most significant 
in the mixture effect for cg00303108 (p = 0.009) (Fig. 3E). 
Figure  3F shows that for cg02617100, V contributed to 
over half of the mixture index (weight = 0.59) followed by 
Hg (weight = 0.17) (p < 0.001).

Our results identified three SNPs that could poten-
tially act as surrogate markers for susceptibility to 

multiple-pollutant exposure. We also found DNA 
methylation probes that could be affected by multi-
ple-pollutant exposure, suggesting they could serve as 
possible surrogate biomarkers for early health effects. 
Additionally, we discovered DNA methylation altera-
tions that could link multiple-pollutant exposure to 
metabolic changes and early health effects, includ-
ing oxidative stress. However, due to the limited sam-
ple size, further studies are required to validate these 
findings.

Table 3 Association between exposure‑related CpG probes and exposure‑related metabolites

p values are shown
1 Only CpG probes with at least four significantly associated metabolites are included
2 N = 49 (high exposure group N = 21; low exposure group N = 28)
3 N = 43 (high exposure group N = 23; low exposure group N = 20)
4 N = 44 (high exposure group N = 20; low exposure group N = 24)

CpG  probe1 cg01625212 cg10632770 cg08238319 cg21499289 cg00303108 cg02617100
Annotated gene None KIAA1199 AHRR C9orf171 RBM41 LINC00673

Urinary metabolite2

(S)‑3‑Hydroxyisobutyric acid 0.002

2‑Ethylhydracrylic acid 0.004

2,4‑Dihydroxybutanoic acid 0.008 0.005

Acetoin  < 0.001

Diacetone alcohol 0.004

Dodecane 0.004

Glyceric acid 0.006

Hypoxanthine 0.001

Inositol 0.010

Myristic acid 0.003

Palmitic acid 0.003 0.002 0.009

Phenol 0.002

Phenylalanine 0.003

Rhamnose  < 0.001

Serine 0.007

Stearic acid  < 0.001 0.003 0.005

Thiodiacetic acid 0.009

Tridecane 0.009 0.007

Uracil 0.003

γ‑Aminobutyric acid 0.003

Serum metabolite3

Carnitine 0.006

Inosine 0.007

Oxoglutaric acid 0.002

Pyroglutamic acid 0.002

Serum lipid4

LPC (18:1/0:0) 0.003

PC (18:2/20:5) 0.002

SM (d18:1/25:0)  < 0.001
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Discussion
This is the first study to apply a multi-omics approach 
to investigate DNA methylation and SNPs profiles in 

industrial area residents chronically exposed to multi-
ple pollutants. Previous studies mainly focused on single 
toxic exposure or specific SNPs and CpG sites. Through a 

Fig. 3 Combined associations between biomarkers V, 1‑OHP, Hg, Cr, Mn, Ni, Sr, and As with CpG A cg01625212 (p = 0.006), B cg10632770 (p = 0.011), 
C cg08238319 (p < 0.001), D cg21499289 (p = 0.010), E cg00303108 (p = 0.009), and F cg02617100 (p < 0.001) based on weighted quantile sum (WQS) 
regression analysis in 159 study subjects
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comprehensive analysis of various omics layers, our study 
epitomizes the principles of precision environmental 
health [4]. We have identified and linked potential under-
lying individual risk factors (SNPs) and exposures (multi-
ple pollutants) that contribute to early health effects with 
specific molecular endotypes (DNA methylation altera-
tions and exposure-related metabolites). Our findings 
contribute to the understanding of the health impacts 
on the local community and population and could guide 
future prevention and intervention strategies.

Of the 45 differentially methylated genes we identi-
fied in community-level analysis, only aryl hydrocarbon 
receptor repressor (AHRR) had been reported in epi-
genetic studies for toxic exposure. Smoking-related Cd 
exposure and occupational PAHs exposure have been sig-
nificantly associated with differentially methylated CpGs 
that annotate to AHRR gene [43–45]. In Taiwan, Tantoh 
et  al. reported non-smoking adults living in areas with 
higher  PM2.5 level had lower AHRR methylation [46].

Previous studies reported correlation between AHRR 
methylation and lung cancer risk, and Jacobsen et  al. 
suggested adding AHRR (cg05575921) methylation as 
an eligibility criterion could enhance the specificity 
of low-dose computer tomography (LDCT) lung can-
cer screening [47]. We did not identify the same CpG 
probe cg05575921 in our study; however, we did find 
cg08238319 which also annotated to AHRR and was sig-
nificantly hypomethylated in high exposure group com-
pared to low exposure group (Table  2). There was no 
significant difference in smoking history between our 
high and low exposure groups (Table  1). However, due 
to the small sample size of our study subjects, we could 
not rule out the possible effects of smoking on AHRR 
methylation in our study subjects. We did establish con-
nection between combined exposure biomarkers and 
cg08238319 DNA methylation in our study subjects, with 
Hg contributing to almost half the mixture index, fol-
lowed by 1-OHP and V (Fig.  3C). Previous studies had 
not reported Hg and V exposure to be associated with 
AHRR methylation. Interestingly, we also did not iden-
tify association between Hg and AHRR or V and AHRR 
through individual-level analysis, which further suggest 
that it was the combined effect of multi-pollutant expo-
sure that influenced AHRR methylation (Table 2).

We further linked AHRR methylation to five previ-
ously identified exposure-related metabolite features: 
2-ethylhydracrylic acid, phenylalanine, γ-Aminobutyric 
acid, carnitine, and oxoglutaric acid (Table  3). We had 
reported in the same study area that As, Cd, and Ni expo-
sure could affect phenylalanine metabolism pathway, and 
phenylalanine could be linked to oxidative stress bio-
markers 8-OHdG, HNE-MA, 8-isoPGF2α, and 8-NO2Gua 
[11]. In the same study, we showed PAHs, As, Cu, Cd, Ni, 

and Hg exposure was associated with γ-Aminobutyric 
acid and oxoglutaric acid from alanine, aspartate, and 
glutamate metabolism and could also be linked to 
increased oxidative stress. Our findings suggest a poten-
tial gene-environment interaction from multi-pollutant 
exposure to AHRR DNA hypomethylation that could be 
further linked to deregulations in phenylalanine metabo-
lism, alanine, aspartate, and glutamate metabolism, and 
elevated oxidative stress.

For the other differentially methylated genes we iden-
tified in community-level analysis, several have been 
reported in cancer studies including DFNA5, KIAA1199, 
and LINC00673 which were all hypomethylated in our 
high exposure group compared to low exposure group. 
DFNA5 methylation has been suggested as a biomarker 
for breast cancer, colorectal cancer, and gastric cancer 
[48–50]. Kuscu et  al. reported KIAA1199 expression is 
upregulated in breast cancer through DNA methyla-
tion regulatory mechanisms [51]. LINC00673 is highly 
expressed in prostate cancer tissues [52]. MAD1L1 was 
hypermethylated in our study, and in previous studies 
methylation of MAD1L1 was negatively associated with 
cancer incidence [53]. For other diseases, DNA methyla-
tion differences for PTPRN2 was found in CKD patients 
[54]. We had previously reported elder and female resi-
dents living in the high exposure area had increased car-
cinogenic exposure and elevated risk of all cancers after 
the complex had been operating for 10 years [15, 16]. We 
also found increased risk of CKD associated with prox-
imity to the complex and urine As and 1-OHP levels [18, 
19]. These findings suggest the DNA methylation probes 
we identified could be considered as potential biomarkers 
for cancer and CKD after multiple-pollutant exposure.

For individual-level analysis, we found DNA meth-
ylation of 62 known human genes, including FOXM1, 
HDAC2, and SATB2, were associated with As urinary 
concentrations (Table  2). This supports previous stud-
ies that showed As exposure led to upregulation of gene 
transcription for proto-oncogene FOXM1, deregulation 
of HDAC2 protein levels, and overexpression of SATB2 
in cell models [55–57]. Hg urine concentrations did not 
correspond to any known human genes, and although 
urinary levels of V were associated with DNA meth-
ylation of 32 genes, we did not find any previous studies 
reporting similar findings. This suggests that the DNA 
methylation probes we found could provide insight in 
understanding the epigenetic changes induced by heavy 
metals exposure.

There was little overlap between the exposure-related 
CpG probes identified through community-level analy-
sis and individual-level analysis (Table  2). However, the 
CpG probes we identified through community-level 
analysis were significantly associated with the mixture 



Page 11 of 15Chen et al. Clinical Epigenetics          (2024) 16:111  

of exposure biomarkers with major contributions from 
V, 1-OHP, Hg, and As (Fig.  3). This corresponded with 
our previous study where Hg and V were most promi-
nent in the mixture effect associated with oxidative stress 
biomarkers [12, 13]. Our findings showed the difference 
between using multi-pollutant model and single pollut-
ant models to identify epigenetic changes, reaffirming the 
importance of acknowledging and considering the com-
bined effect of simultaneous exposure to multiple pollut-
ants in real-world settings.

The three SNPs we identified that corresponded to 
exposure-related CpG sites with significant interac-
tion effects with exposure status: rs11085020 in NFIC, 
rs199442 in NSF, and rs10947050 in RNF39 have not 
been reported in previous studies. However, NFIC is a 
transcription factor that plays a role in cell proliferation, 
differentiation, and migration during organ development 
and has been reported as a tumor suppressor gene in 
breast carcinomas, osteosarcoma, and T-cell lymphomas 
[58]. Lee et al. suggest through animal model results that 
NSF mediates inflammation responses in respiratory dis-
ease [59]. These SNPs we found could potentially serve 
as genetic markers for health-related risk evaluation in 
populations living in this area, especially based on our 
previous reports all cancers in elder female residents and 
respiratory diseases in children and adolescents [15, 22].

Although the exposure levels detected in this study 
does not exceed acute toxicological thresholds, heavy 
metals could still accumulate and/or have synergistic 
effects in the body after exposure. Residents living near 
petrochemical industrial areas are likely to experience 
long-term and stable low-dose exposure to heavy met-
als due to the continuous operation of these complexes. 
Previous studies we conducted in this area have shown 
that even at such low exposure levels, significant corre-
lation between the level of exposure and health effects 
can still be observed, including early health effects such 
as increased oxidative stress and alterations in metabolite 
profiles in high exposure group compared to low expo-
sure group [11–13].

There are limitations to this study. Firstly, we applied 
genome-wide DNA methylation sequencing analysis 
which still has the possibility of inaccurate identification 
and we could not provide exact quantification of DNA 
methylation levels. Secondly, to maximize the possibility 
to identify potential loci, we used a loose p value thresh-
old. However, it allowed us to extend the coverage of 
more loci. Lastly, our study subjects were selected from 
a prospective cohort of 3230 participants. Due to sample 
availability and required sample quality for multi-omics 
analyses, our sample size was limited. However, our 
selection criteria minimized bias and ensured represen-
tation of the cohort. Additionally, it is a cross-sectional 

study and therefore we were unable to verify the stabil-
ity of the quantitative changes we identified and thus 
large samples size is required to further validate the find-
ings before its applications. It is also possible that other 
confounding factors such as preexisting physical condi-
tions, dietary habits, and occupational exposures could 
have influenced exposure levels, DNA methylation, and 
metabolomics results. We minimized these biases by 
selecting participants with no prior chronic diseases and 
no prior work experience at the pollutants’ main emis-
sion source, No. 6 Naphtha Cracking Complex, according 
to their interview-administered questionnaire surveys.

Conclusion
In this study, we applied a precision environmental health 
approach in a highly polluted industrial community and 
identified DNA methylation probes that could serve as 
surrogate markers for early effects of multiple-indus-
trial-pollutant exposure, three SNPs that could poten-
tially be used to identify vulnerable populations more 
susceptible to multiple-industrial-pollutant exposure, 
and gene-environment interactions that linked multiple-
pollutant exposure with epigenetic changes and biologi-
cal pathways related to adverse health outcomes such as 
increased oxidative stress and cancer. Our findings char-
acterized the complexity of exposure and health impacts 
and can provide information for risk prediction models 
and the development of precision prevention and inter-
vention strategies in this area.

Materials and methods
Study area and subjects
Our study comprised 159 subjects selected from a pro-
spective cohort of 3,230 participants who had resided 
in communities surrounding No. 6 Naphtha Cracking 
Complex for at least five years. All subjects completed 
interview-administered questionnaire surveys to gather 
information on age, gender, smoking, alcohol consump-
tion, and betelnut chewing habits. Additionally, they 
underwent a health examination, including measure-
ments of height, weight, and blood pressure.

Each participant provided a morning spot urine sam-
ple for the analysis of exposure biomarkers and a fasting 
blood sample to measure ALT, AST, HDL-C, and LDL-C.

We categorized the study area based on the proxim-
ity of home addresses to the complex, resulting in a high 
exposure community (three townships closest to the 
complex) and a low exposure community (seven town-
ships further away) (see Fig. S1).

We used urine exposure biomarkers, specifically V 
levels and PAHs exposure biomarker 1-OHP, along with 
home addresses to define the high and low exposure 
groups. Out of our 159 study subjects, 78 residing in the 
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high exposure community, with urinary 1-OHP and V 
levels in the top 60% of the cohort, were identified as the 
high exposure group. The remaining 81 subjects, living in 
the low exposure community with urine concentrations 
of 1-OHP and V in the bottom 40% of the cohort, were 
identified as the low exposure group.

The No. 6 Naphtha Cracking Complex commenced 
operations in 1999 and is situated in Yunlin County on 
the west coast of central Taiwan, covering a total area of 
2,603 hectares. The complex comprises 53 plants, includ-
ing a coal-fired power plant with a total capacity of 1.8 
million kW, oil refinery plants processing 530,000 barrels 
of crude oil per day, three naphtha cracking plants pro-
ducing 2.935 million tons of ethylene annually, and co-
generation plants with a capacity of 2.75 million kW [60].

The prospective cohort used in this study was 
recruited from 2009 to 2011. Approval for this study 
was granted by the Research Ethics Committee of the 
National Health Research Institutes (accession number: 
201704053RIND), and informed consent was obtained 
from each participant.

Internal exposure
Urinary levels of V, As, Hg, Cd, Cr, Ni, Pb, Mn, Cu, Sr, 
and Tl were analyzed using inductively coupled plasma 
mass spectrometry (ICP-MS) and 1-OHP using high-
performance liquid chromatography (HPLC) following 
previously reported methods [9–11]. Standard reference 
materials were used to confirm accuracy (SERO, Billing-
stad, Norway). In each experiment batch, we ensured the 
relative error of ten spiked samples was below 10% for 
measurement stability. Batches with a recovery rate lower 
than 85% were reanalyzed.

The method detection limit (MDL) for each exposure 
biomarker was 0.016 (V), 3.325 (As), 0.440 (Hg), 0.129 
(Cd), 0.155 (Cr), 1.204 (Ni), 0.300 (Pb), 0.060 (Mn), 1.444 
(Cu), 3.920 (Sr), and 0.041 (Tl) μg/L. 1-OHP analysis had 
an MDL of 0.01 ng/mL with an 89.6% recovery rate, and 
the coefficient of variation was 4.0% for repeated meas-
urements. Urine concentration of exposure biomarkers 
below the MDL was replaced by half of the MDL for data 
analysis.

To minimize batch variations, we included the analy-
sis of standard tune solution in each batch before sample 
detection to ensure instrument stability and adjust sig-
nal quantification. National Taiwan University Hospital 
medical diagnosis laboratory analyzed urinary creatinine 
by enzyme-linked immunosorbent assay, and we used 
the creatinine concentrations to adjust urinary exposure 
biomarker levels. All urine samples underwent creatinine 
analysis, and samples with urinary creatinine concentra-
tions below 30 or above 300 mg/dL were excluded from 

further data analysis due to potential abnormalities of 
unknown reasons.

DNA extraction
Two hundred microliters of whole blood was utilized for 
DNA extraction in each study subject, employing the 
QIAamp Blood Mini Kit (QIAGEN). The extracted DNA 
concentration must exceed 100  ng/μL, with an A260/
A280 ratio between 1.6 and 2.0, A230/A260 greater than 
1.6, A320 near 0, and levels of fragmentation checked via 
electrophoresis. These criteria ensure compliance with 
the quality standards required for DNA methylation and 
SNP analysis.

SNPs analysis
The DNA from each study subject was individually 
adjusted to a concentration of 15  ng/μL, and 50 μL of 
each individual’s sample was then placed into ABgene 
96-well plates. These prepared samples were sent to 
the National Center for Genome Medicine for analysis 
using the Affymetrix Axiom genome-wide array TWB 
2.0 (Thermo Fisher Scientific), which contains 752,921 
probes.

DNA methylation analysis
Five hundred nanograms of DNA samples from each 
study subject was used for genome-wide DNA meth-
ylation sequencing analysis. Samples were prepared 
using the Illumina Infinium Human MethylationEPIC 
BeadChip platform following the manufacturer’s stand-
ard protocol. Subsequently, the prepared samples were 
scanned with Illumina HiScan (Illumina, Inc.), and DNA 
methylation levels were analyzed using GenomeStu-
dio software v2011.1. The analysis covered more than 
850,000 CpG sites.

Exposure‑related metabolite features
Exposure-related urinary metabolite features, serum 
metabolite features, and serum lipid features were iden-
tified in previous studies [11–13]. A total of 103 metab-
olite features were included for data integration and 
analysis, comprising 76 urinary metabolite features, 9 
serum metabolite features, and 18 serum lipid features 
(Table  S1). Of the urinary metabolites, data were avail-
able for 49 study subjects, including 21 from the high 
exposure group and 28 from the low exposure group. 
Serum metabolite data were available for 43 study sub-
jects (high exposure group N = 23, low exposure group 
N = 20), and lipid information was available for 44 study 
subjects, with 20 in the high exposure group and 24 in 
the low exposure group.
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Community‑level analysis
We first examined the differences between high and low 
exposure groups across various parameters, including 
basic characteristics, urinary exposure biomarkers, SNPs, 
and DNA methylation. To compare basic characteristics, 
we used Student’s t-test for continuous variables and 
Chi-squared test or Fisher’s exact test for discrete vari-
ables. For exposure biomarkers, urinary concentrations 
underwent log transformation and were subsequently 
compared using ANCOVA, adjusting for age, gender, 
smoking, alcohol consumption, betel nut chewing, and 
fish consumption. Post-comparisons were made using 
Scheffe test. For SNPs array data, a Pearson correlation 
test was applied to clarify the association between SNPs 
and exposure. For DNA methylation, all β-values from 
the microarrays were first transformed into M-values 
for improved consistency and robustness. Wilcoxon’s 
rank sum test was performed to identify exposure-
related probes, considering the probes with p < 0.05 and 
∆β >|0.1| as significant (Figure S2). To further explore the 
biological relevance, gene annotation was performed to 
identify known human genes corresponding to the expo-
sure-related probes. The identified genes were then put 
through pathway analysis using the Database for Anno-
tation, Visualization, and Integrated Discovery (DAVID) 
platform [41].

Association between SNPs and DNA methylation level 
of corresponding CpG probes was examined using Fish-
er’s exact test and Wilcoxon’s rank sum test. Addition-
ally, a linear regression model was applied to investigate 
whether the interaction effect between SNPs and expo-
sure status has significant influence on DNA methylation 
levels (Fig. S3). These analyses were conducted under 
both quantitative and qualitative models. In quantitative 
model, an SNP variable would be coded as “0”, “1”, or “2” 
based on the allele pair, while in the qualitative model, 
the SNP variable were encoded as “0” or “1” depending 
on whether the corresponding allele was carried (Figure 
S4). For Fisher’s exact test, study subjects were catego-
rized into two DNA methylation groups using two dis-
tinct approaches: hypermethylated (β < 0.3)/unchanged 
(β ≥ 0.3) or hypomethylated (β > 0.7)/unchanged (β ≤ 0.7) 
(Figure S4).

To ascertain the association between exposure-related 
CpG probes and exposure-related metabolites, we con-
ducted Pearson’s correlation analysis to examine the sig-
nificance of difference between high and low exposure 
groups (p < 0.01).

Individual‑level analysis
Pearson’s correlation analysis was applied to iden-
tify DNA methylation probes exhibiting a significant 

association to urinary As, Hg, and V concentrations, 
respectively (p < 1 ×  10−5). All 865,918 CpG probes from 
the DNA methylation microarray along with individ-
ual urine As, Hg, and V concentrations data were put 
through Gene-Set Enrichment Analysis (GSEA) for path-
way analysis by random walk approach [42].

For multi-pollutant analysis at an individual level, WQS 
regression analysis was applied to analyze the associa-
tion between combined exposure biomarkers with CpG 
probes, using 100 bootstrap samples (p < 0.05).
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