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Abstract

in phenotypes associated with hearing loss.

Background DNA methylation may have a regulatory role in monogenic sensorineural hearing loss and complex,
polygenic phenotypic forms of hearing loss, including age-related hearing impairment or Meniere disease. The
purpose of this systematic review is to critically assess the evidence supporting a functional role of DNA methylation

Results The search strategy yielded a total of 661 articles. After quality assessment, 25 records were selected (12
human DNA methylation studies, 5 experimental animal studies and 8 studies reporting mutations in the DNMTT
gene). Although some methylation studies reported significant differences in CoG methylation in diverse gene pro-
moters associated with complex hearing loss phenotypes (ARHI, otosclerosis, MD), only one study included a replica-
tion cohort that supported a regulatory role for CoG methylation in the genes TCF25 and POLE in ARHI. Conversely,
several studies have independently confirmed pathogenic mutations within exon 21 of the DNMTT gene, which
encodes the DNA (cytosine-5)-methyltransferase 1 enzyme. This methylation enzyme is strongly associated with a rare
disease defined by autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN). Of note, rare variants
in DNMTT and DNMT3A genes have also been reported in noise-induced hearing loss.

Conclusions Evidence supporting a functional role for DNA methylation in hearing loss is limited to few genes
in complex disorders such as ARHI. Mutations in the DNMTT1 gene are associated with ADCA-DN, suggesting the CpG
methylation in hearing loss genes deserves further attention in hearing research.
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Introduction

Hearing loss in humans is one of the major burdens
of disease worldwide [1]. Sensorineural hearing loss
(SNHL) is the most common type, and it results from
abnormal sound processing in the organ of Corti, the
auditory pathway or auditory cortex. According to its eti-
ology, SNHL is classified as genetic SNHL and acquired
SNHL. Most non-syndromic genetic deafness are mono-
genic disorders and their inheritance can be autosomal
dominant, recessive, X-linked or mitochondrial [2]. Con-
versely, age-related hearing loss (presbycusis) or noise-
induced hearing loss (NIHL) is defined by a progressive
course involving initially high frequencies and is consid-
ered multifactorial conditions with an environmental ori-
gin (i.e., vascular risk factors or noise exposure) [3].
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Familial segregation and sequencing studies have
been invaluable in developing our understanding of
monogenic SNHL since a genetic component is present
in~50% of all hearing loss cases. However, the underly-
ing molecular mechanisms of acquired SNHL remain
poorly elucidated [4]. While genome-wide association
studies (GWAS) in adults affected by hearing loss con-
tinue to discover new candidate genes for hearing loss, a
number of limitations to this approach have been iden-
tified. For example, while a genetic susceptibility may be
highly relevant in specific types of hearing loss, it may not
be the predominant factor for other types of hearing loss.
It is challenging to make conclusions regarding etiologi-
cal heterogeneities that encompass these large cohorts
of self-reported hearing loss patients. Secondly, elucidat-
ing genomic mechanisms from the association in GWAS
have proven difficult in past studies [4]. Developing a
strategy that allows for elucidation of molecular mecha-
nisms of hearing loss in its various etiologies is crucial to
the development of effective treatment strategies.

Emerging evidence is suggesting that DNA methylation
may also have an important regulatory role in hearing
loss and its associated conditions [5]. DNA methylation
is an epigenetic modification where a cytosine residue is
converted to 5-methylcytosine (5mC) by DNA methyl-
transferases (DNMTs). Although the majority of meth-
ylation in human somatic cells is observed within a CpG
dinucleotide context (within ~70% of gene promoters), it
has also been identified within CpA, CpC and CpT con-
texts collectively known as non-CpG methylation [6].
Both CpG and non-CpG methylation can silence gene
expression by preventing transcription factor binding
or through the recruitment of repressive complexes [6].
Hence DNA methylation can lead to phenotypic changes
without altering the underlying DNA sequence.

This systematic review aims to consolidate current lit-
erature linking DNA methylation and hearing loss in
order to highlight remaining gaps in knowledge which
may help elucidate a fuller comprehension of epigenetic
changes in common and rare disorders associated with
hearing loss. Understanding the precise mechanisms and
specific genes involved in hearing function, which may
be regulated through DNA methylation, could lead to the
development of more refined studies that can help pro-
duce new therapeutic strategies for preventing or treating
hearing loss and its associated conditions.

Materials and methods

Study design

This review followed the PRISMA guidelines (Preferred
Reported Items for Systematic Reviews and Meta-Anal-
yses) [7] and adhered to the MOOSE checklist (Meta-
analyses Of Observational Studies in Epidemiology) [8].
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The review protocol was also registered on PROSPERO
(CRD42023440491).

According to the methodology established for system-
atic reviews, the PICO question included the following
items:

+ Participants: Patients or animal models with hearing
loss

+ Intervention or variables of interest (Exposure): epi-
genetic or epigenomic studies profiling DNA meth-
ylation

+ Controls: controlled and uncontrolled studies

+ Main results: regions or genes with differentially
methylated cytosines (CpG)

+ Secondary outcomes: predicted pathways associated
with hearing loss.

+ Study design: Case—control studies, twin studies, ani-
mal models with hearing loss.

Search strategy

The search, conducted on November 15, 2023, used Pub-
Med, Scopus and Cochrane databases with the following
MesH terms: (hearing loss OR age-related hearing loss)
AND (Cytosine OR methylation OR Epigenetics OR Epig-
enomics), and it was limited to original articles, published
from the year 2000 onward. Replicates in references were
removed, and articles incongruent with the review’s
objectives were omitted through the screening of their
titles and abstracts. This process resulted in the retention
of solely those records that conformed to the predefined
inclusion criteria. In addition, the following exclusion
criteria were used:

+ Studies that did not include any audiological assess-
ments.

+ Studies published in other languages than English.

+ Single-case reports, except multicase family or twin
studies.

Data collection

Two different reviewers (V.P, PP-C) independently
extracted study characteristics and outcomes from all
the included studies, and data were compared. A third
reviewer (J.A.L.E) was consulted when a consensus could
not be reached. Data pertaining to the review’s objective
were extracted from each article. From each study, the
data collected included reference information (author
and year of publication), geographical location, study
design, research objectives, sample size, gender distribu-
tion, average age and the primary findings for each study
(differentially methylated regions, DMR or genes, DMQG).
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Data synthesis/summary

We compiled the DMR and DMG across different stud-
ies for each condition or disease associated with hearing
loss. We also summarized the studies involving muta-
tions in the DNMT1 gene.

Analysis of subsets/subgroup

Studies were further subgrouped into three categories, (i)
human studies of hearing loss and methylation, (ii) ani-
mal studies of hearing loss and methylation, (iii) hearing
loss and DNMT1 mutations. All studies encompassed
standardized audiometric testing for hearing loss in
humans; auditory brainstem response in animals OR had
a confirmed diagnosis of a disease where hearing loss is
essential to pathophysiology.

Quality and risk of bias assessment

Was also evaluated; the ROBINS-E tool was used in non-
randomized Studies of Exposures [9]. These tools consist
of seven domains, namely: (1) confounding-induced bias,
(2) bias in exposure measurement, (3) bias in participant
selection for the study, (4) bias resulting from post-expo-
sure interventions, (5) bias due to missing data, (6) bias
in outcome measurement and (7) bias in the selection of
reported results. Notably, domain 4 was deemed irrele-
vant for this review and was consequently excluded. The
assessed risk of bias varied from "Low" to "Moderate,"
"High" or "Very High." Overall bias risk was determined
by evaluating all domains collectively. A color-coded
scale (white for not applicable, green for Low risk, yellow
for Moderate risk, red for High risk and black for Very
High risk) was employed to present a concise summary;,
as detailed in Table S1.

The SYRCLE's risk of bias tool was used to assess ani-
mal studies [10] and included in Table S2. This tool
contains 10 entries, which are related to 6 types of bias
(selection bias, performance bias, detection bias, attrition
bias, reporting bias and other biases), and helps to define
the level of risk of bias based on several specific question
for each domain. According to this, the risk of bias has
been stablished as low/high/unclear.

Results
We selected a total of 25 articles which fit the inclusion
criteria, 12 human DNA methylation studies, 5 experi-
mental animal studies in mice [3] and rats [2] and 8 stud-
ies reporting mutations in the DNMTI gene. Figure 1
details the flowchart for selection of the included articles.
Of the 12 human hearing loss studies, one study was
conducted in relation to environmental exposure to Pb
and Cd in children, whereas 11/12 were conducted in
patients with concurrent presence of a relevant pathology
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namely, age-related hearing loss (ARHL, 6 studies), oto-
sclerosis (OTSC), ototoxicity, Meniere’s disease (MD)
and diabetic-related hearing loss (DRHL) in a case—con-
trol setting (Tables 1, 2). Only one out of all human hear-
ing loss studies (1/12) included a replication cohort in
their study design.

The methodological approach for these studies fit
into two main categories, site-specific methylation and
genome-wide methylation. Some studies (4/11) inves-
tigated methylation variation in pre-defined sites with
quantitative methylation-specific PCR. These studies
revealed TNFSF11, CDH23 and SLC26A4 genes specifi-
cally have significant variation in methylation within gene
encoding regions that is associated with audiologically
tested variation in hearing loss. Other studies (7/11) per-
formed whole-genome methylation array, reduced repre-
sentation bisulfite sequencing (RRBS) or whole-genome
bisulfite sequencing (WGBS). These studies identified
significant variation in DNA methylation within gene
promoter regions including DUSP4, C21orf58, ALGI0,
C3, LCK, GBX2. However, female-only studies high-
lighted a different subset of genes to be significantly dif-
ferentially methylated, namely, TCF25, FGFRI, POLE,
P2RX2, KCNQS5, ERBB3 and SOCS3. One study reported
the significant differential methylation was detected in
genes that were related to the concurrent disease, Type
2 Diabetes Mellitus, with no hearing loss genes being
affected [11].

All animal studies, summarized in Table 3, were con-
ducted in China on adult mice or rats except for one
study which focused on rat offspring. The methodo-
logical approach for these studies fit into two main cat-
egories, site-specific methylation studies and histology
paired with immunofluorescence. Site-specific DNA
methylation assays (2/4) identified promoter hypermeth-
ylation of gjb2 gene in rats with inner hair cell damage
induced by hypoxia. Immunofluorescence studies (2/4)
independently showed that, in mice, inhibiting the DNA
(cytosine-5)-methyltransferase 1 (dnmtl) enzyme can
improve noise-induced hearing loss and promote hair
cell regeneration.

The selection criteria additionally identified 8 human
studies, where mutations in the DNMTI gene were
investigated in relation to hearing loss (Table 4). Meth-
odological approaches for these studies were genotyp-
ing or exome sequencing. However, 2/8 of these studies
included an additional DNA methylation assay in con-
junction. In particular, 4/8 studies independently con-
firmed functional mutations in the DNMT1 gene to be
strongly associated with autosomal dominant cerebellar
ataxia, deafness and narcolepsy (ADCA-DN) with 3/8
of these studies consistently showing mutations within
exon 21 of DNMT1 to be found in ADCA-DN patients
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Identification of studies via databases and registers

Records identified from (n=833):
c
] PubMed database (n=471) ;
§ E;z!c;’q;ed rr:e_(:1o7rgs, removed before
= Scopus database (n=348) ing (n=172)
s
§ Cochrane Library (n=14)
Records excluded (n=625)
Unrelated to the topic (n=505)
Records screened
> Reviews (n=73)
(n=661)
No original article (n=35)
l Other languages (n=12)
=)
g Reports sought for retrieval
o
g (n=36) »| Reports not retrieved (n=1)
(7]
Reports assessed for eligibility Reports excluded (n=10):
(n=35) Studies without audiological
assessment (n=8)
Other languages (n = 2)
5 Studies included in review (n=25)
o
T:> Human studies (n= 12)
B Animal studies (n=5)

Fig. 1 Flow diagram for the DNA methylation study selection

or children of ADCA-DN patients. One study further
highlighted 82 significantly hypermethylated regions in
ADCA-DN patients with exon 21 DNMTI mutations;
however, it was concluded that further work with a more
robust dataset would be needed to evaluate the impor-
tance of these hypermethylated regions to hearing loss.
Patients with hereditary sensory and autonomic neu-
ropathy (HSAN1), noise-induced hearing loss (NIHL),
dementia and cognitive decline have all been identified to
carry DNMTI1 mutations within various locations. While

6/8 studies had a small sample size of =6 or less, only
two cohort studies have been identified in the search.
The largest cohort study (#=1053) conducted in Chi-
nese adults showed polymorphisms in both DNMT1 and
DNMT3A that were implicated in noise-induced hearing
loss (NTHL).

Risk of bias analysis
For human studies, the detailed analysis based on
the seven domains of ROBINS-E is summarized in
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Table 2 Descriptive features of human studies highlighting the gene symbols and gene regions where differential DNA methylation
was observed as well as definitions of hearing loss used for each study

Human studies

Author/year All genes Hearing loss genes DNA methylation regions Hearing loss phenotype
Bouzid, A, et al. 2022 TNFSF11 PromoterChr13:4257390442574865 Unspecified
Bouzid, A, et al. 2018 CDH23 CDH23 CpG island site of the junction exon Hearing loss thresholds > 20 dB
54intron 54 in CDH2
Bouzid, A, etal. 2018 227 GENES ASTN2 Exon1 Chr9:119449474-119449519 Hearing loss defined by pure tone audiometry
IN TOTAL at 0.250.5 1 2 4 and 8 kHz frequencies
REPORTED
ATP2B3 Promoter Chrx:152801006-152801151
BTBD2 Exon1 Chr19:2015326-2015433
C19orf55 Promoter Chr19:36247138-36247267
CCDC85C Exon1 Chr14:10006965-100070237
CEACAMI Promoter Chr19:43034432-43034565
ERBB3 Exon2 Chr19:677925-677973
FSTL3 Exon1 Chr5:75699163-75699285
IQGAP2 Exon1 Chr6:73332056-73332153
KCNQ5 Exon1 Chr17:4458422-4458556
MYBBP1A Exon1 Chr17:7311711-3711829
NLGN2 Promoter Chr12:133195302-13319539
P2RX2 Exon1 Chr12:133195405-133195423
PGP Exon2 Chr16:2261684-2262961
RAB2B Promoter Chr14:21945595-2196532
RUSCT Exon1 Chr1:155293868-155294305
SOCS3 Exon1_2Chr17:76355149-76355243
TMED7-TICAM?2 Exon1 Chr5:114961500-114961615
Brown, A. L, etal.2017  PAK4 Chr19: cg14010619 Hearing loss defined by pure tone audiometry
Grade 0= <20dB
Grade 1=>20dBat>6kHz
Grade2=>20dB at>4 kHz
Grade 3=>20dBat>2kHz
Grade 4= >40dBat=2kHz
Flook, M., et al. 2021 H3Y1 Meniere Disease
ACSBG1
IL32
Guo, L, et al. 2023 3 chr19:6710806-6711077 Speech-Pure Tone Audiometry of > 25 dB
in the better ear was used to define hearing
loss
TEX19 chr17:80303573-80303880
GBX2 chr2:237071725-237072438
CD247 chr1:167408553-167408867
SPATA1S8 chr4:52942852-52943232
ZCCHCS8 chr12:122983976-122984305
CD247 chr1:167408553-167408867
TEX19 chr17:80303573-80303880
3 chr19:6710806-6711077
MRGPRG-AST chr11:3243153-3243455
MKX chr10:28034352-28034507
TMEMT1 02 chr17:7339626-7340311
SPATAT8 chr4:52942852-52943232
GRIN3B chr19:1008897-1009874
LINC02249 chr15:30517467-30517618

PRDM16

chr1:2990062-2990407
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Table 2 (continued)
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Human studies

Author/year All genes Hearing loss genes DNA methylation regions Hearing loss phenotype
OSR2 chr8:99986099-99986645
S100A13 chr1:153606037-153606314
RBMS2 chr12:56882420-56882571
ALGT10 chr12:34499106-34501260
GPC5 chr13:92051618-92051955
NRNT chr6:6002421-6002736
Q21orf58 chr21:47737945-47738279
CD247
Hao, J, etal. 2018 KCNJT1 Not specified Frequency range of 0.7 k-6 kHz for DPOAE
Grade 0=DPOAE meets SNR criteria normal
range
Grade 1=DPOAE meets SNR criteria abnormal
range
Grade 2=DPOAE does not meet SNR criteria
Kuo, P.L, et al. 2021 N/A N/A N/A Pure tone audiometry 0.5- kHz
Higher Pure Tone Audiometry =worse hearing
Lassaletta, L, et al. 2006  RASSFIA Not specified Pure Tone Average threshold of 25db - 62 dB
RARB recorded in all patients who displayed hearing
VHL loss symptoms
PTEN
HMLH1
RB1
ER
TP16
CASP8
TIMP3
MGMT
DAPK
TP73
GSTP1
TP14
THBS
Wolber, L. E, etal. 2014  TCF25 Not specified Hearing loss defined by pure tone aver-
PGM3 age for frequencies 0.125-8 kHz according
CDO1 to the recommendations of the British Society
NOC2L of Audiology
MYBPC3
FGFR1
POLE
VPS2B
HNRNPA
APOCC4
Xu, J, etal. 2017 SLC26A4 SLC26A4 Chr7:107300940107301001 Pure Tone Average greater than 60 dB hearing
loss, control less than 26 dB
Xu, L, et al. 2020 Rb1 chr13:48877561- 48877684 Pure Tone Average threshold above 25 dB
CASP8 chr2:202097129- 202122658 considered as hearing loss
MeCP2 chrX:153363708- 154097766

Table S1. According to this, 11 studies had a low risk
of bias [11-14], 5 studies had a moderate risk of bias
within at least one domain [15-19], and 4 studies were
evaluated to have a high risk of bias within at least one
domain [20-23].

Animals studies risk of bias analysis is summarized
in Table S2.

Discussion

This review was aimed to summarize emerging evidence
which suggests DNA methylation may play an important
role in a variety of conditions that are associated with
hearing loss. We conducted a systematic review of all
available literature where DNA methylation was inves-
tigated in conjunction with audiological testing in the
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context of aging as well as pathologies where hearing loss
is a major aspect of the disease. We included a total of 25
studies, 12 performed in patients with concurrent pres-
ence of a relevant pathology (Tables 1, 2), 5 conducted
in induced hearing loss animal models (Table 2) and 8
which focused on genetic screening of DNMT1 specifi-
cally (Table 3). Overall these studies showcase an asso-
ciation between DNA methylation and hearing loss with
a strong need for larger, more robust datasets that may
aid in developing a fuller understanding of the molecu-
lar mechanisms and key gene pathways that encompass
hearing loss.

ARHL is a complex disorder resulting from the interac-
tion of common and rare genetic variation with environ-
mental exposure. Aging is associated with the additive
effect of lifestyle and environmental factors both of which
can be influenced by DNA methylation. In addition, there
is already a large body of evidence which showcases the
importance of DNA methylation in aging [24]. This may
explain why our search criteria found most methylation
studies in humans (6/12) have been performed in individ-
uals with ARHL (Table 1). Despite our selection criteria
including 50% of studies being ARHL focused, only one of
these studies had partially replicated their findings in an
independent cohort (n=203) [22]. The lack of replication
is an important consideration for future study designs
since the potential clinical relevance of site-specific or
global alterations in DNA methylation cannot be corre-
lated to relevant hearing loss contexts without the added
evidence of replication cohorts. Hence, at present there is
strong association between variation in promoter meth-
ylation of genes such as CDH23, SLC26A4, TCF25 and
POLE in women with ARHL; however, further investiga-
tions in larger cohorts and replication experiments are
needed to consolidate these findings. In addition, gender-
specific considerations are especially important in DNA
methylation studies. Different DNA methylation patterns
have been identified across several tissues in men com-
pared to women. These differences have been attributed
to mirror gender-specific transcriptomic and proteomic
profiles [25-27]. For example, comprehensive descrip-
tion of sex differences in DNA methylation changes with
respect to aging in a whole blood dataset consisting of
over 400 healthy subjects identified a number of regions
where age-related increase in methylation variability
was 15 times higher in males compared to females [28].
Hence future studies may benefit greatly by accounting
for gender-specific studies. Furthermore, although there
is substantial evidence linking aging and DNA meth-
ylation, whether there is a relationship between onset of
hearing loss and DNA methylation remains largely under
explored. In future investigation related to understand-
ing whether DNA methylation across hearing loss genes
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may contribute to loss of function or missense variation
would be beneficial (Table 2).

Secondly, a wide variety of genome-wide DNA methyl-
ation assays have been utilized in the studies which were
identified in our selection criteria. The main difference
in these techniques, namely, RRBS, 27 K, 450 K, 850 K
methylation arrays as well as WGBS, is the scope of genes
and relevant genomic regions that can be assayed for
differential methylation patterns simultaneously. While
450 K methylation array encompasses a wider range
of genes compared to 27 K methylation arrays, RRBS
includes all genes but only if they have CpG-rich regions
as opposed to WGBS which encompasses all cytosine res-
idues across the entire genome. This makes cross-com-
parisons between studies difficult since analysis strategies
vary greatly for data acquired from various upstream
assays. For example, P2RX2, KCNQ5, ERBB3 and SOCS3
genes were identified as having significant differential
methylation in an ARHL female cohort in Tunisia [20]
where RRBS was performed. However, significant dif-
ferential methylation was identified within a different set
of genes, TCF25, FGFRI, POLE, in a female only cohort
of ARHL in the UK where a 27 K methylation array was
used. This same study, from the TwinsUK registry, then
confirmed differential methylation profiles in promot-
ers of TCF25 and POLE in a second cohort using a 450 K
methylation array [22]. While both studies were focused
on ARHL, due to inconsistency in study design, it is dif-
ficult to formulate the impacts of DNA methylation on
ARHL in the context of ethnicity and environment. The
genes identified in this study, TNC25 and POLE, have
been implicated previously in hearing loss. However, a
follow-up study assessing abnormalities in mRNA/pro-
tein expression in relevant hearing loss cohorts using the
same sample material would have further consolidated
these findings. Hence more comprehensive studies are
necessary to develop our understanding of the impact of
DNA methylation in hearing loss.

Therefore, more cohort studies which encompass a
standardized study design will aid immensely in growing
our understanding of the potential role of DNA methyla-
tion in hearing loss as well as whether these changes are
gender specific.

Nevertheless, reports of significant differential meth-
ylation in TCF25 and POLE genes are interesting find-
ings due to the localization of the proteins they encode.
TCF25 is a transcription factor, member of the ribosome-
associated quality control complex, comprising TCF25,
LTNI and NEMEF genes; this complex is able to identify
protein products from unproductive translation events,
targeting them for degradation [29]. The gene is widely
expressed in the mouse cochlear epithelium in both
sensory and supporting cells [30]. POLE encodes a core
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catalytic subunit of DNA polymerase epsilon, involved
in DNA repair and chromosomal DNA replication. Con-
versely to TCF25, RNAseq data from mice indicate that
POLE is restricted to cochlear hair cells, particularly
during development [31] Since differential DNA meth-
ylation patterns are known to affect gene expression pat-
terns especially when present at gene promoter regions,
further investigation is warranted to see how molecular
mechanisms may be impacted in hearing loss through
differential methylation.

The role of DNA methylation on rare diseases such as
monogenic forms of sensorineural hearing loss (SNHL)
has been seldom studied, the only exception being muta-
tions in the DNMTI gene, that it is associated with
ADCA-DN syndrome. Since functional mutations in
DNMT1 have been identified in patients with ADCA-
DN, this provides a strong premise for further assessing
global DNA methylation patterns in these patients. Only
one of these studies further investigated global DNA
methylation patterns [23]. The study concluded further
work with a more robust dataset is needed to make con-
clusive remarks. In addition, 450 K is an older assay with
advancements such as 850 K methylation arrays as well as
WGBS now more readily available than before. Hence a
combination of replication cohorts, larger datasets with
more robust methodologies has the potential to greatly
improve our understanding of the possible role and
related molecular mechanisms of DNA methylation in
rare diseases such as monogenic forms of SNHL.

Several research areas remain unexplored in hear-
ing loss methylation studies, such as non-CpG meth-
ylation [6]. Non-CpG methylation has recently been
attributed to allowing evolution of higher complexity
in brain function for vertebrate species [32]. Further-
more, the largest cohort study (#=1053) included in our
review which investigated NIHL, found polymorphisms
in both DNMT1 and DNMTS3A to be significant in their
cohort [33]. DNMT3A has an emerging role for instigat-
ing non-CpG methylation on the genome during brain
development [34]. Since hearing loss conditions are often
associated with pathologies which can lead to cognitive
decline, it may be a useful strategy to consider whether
non-CpG methylation may be involved in certain hearing
loss conditions.

From the 12 human studies, although many did not
account for underlying genetic variation within their
respective cohorts, 2/12 studies investigated whether
specific genetic variants may be linked to an altered
DNA methylation status. Both studies highlighted an
association between the presence of specific polymor-
phisms with differential DNA methylation and subse-
quent differential gene expression. A recent study has
identified 11.2 million unique SNP-CpG associations in

Page 14 of 15

peripheral blood taken from 3799 Europeans and 3,195
South Asian samples. The study presented strong evi-
dence regarding the genetic regulation of DNA meth-
ylation [35]. Hence studies which account for genetic
variation in patients with confirmed hearing loss would
be beneficial in the future.

In future it will also be useful to stratify subjects into
high- or low-frequency hearing loss subsets. At pre-
sent, not all study designs address this as an additional
layer of complexity which may impact DNA methyla-
tion patterns detected.

This discussion is limited to studies which included
audiometric assessment in their study design. Although
this is an important criterion for assessing relationships
between DNA methylation and hearing loss, we can-
not ignore that studies which may have addressed this
question from a different perspective may also contrib-
ute insightful findings which were beyond the scope of
this review.

Conclusions
Overall, the literature collectively provides some evi-
dence, suggesting variation in DNA methylation may
play an important role in hearing loss, particularly in
ARHL. Hearing ability is associated with methylation
profile in the promoter of TCF25 and POLE genes in
ARHL

Epigenetic research should produce larger, more
robust datasets where global DNA methylation pat-
terns are investigated thoroughly within the context of
standardized study designs. Furthermore, gender-spe-
cific cross-study comparisons are needed for insightful
knowledge on the role of DNA methylation in hearing
loss processes.
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