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Abstract 

Background:  Cri du chat (also called 5p deletion, or monosomy 5p) syndrome is a genetic disease caused by dele-
tions of various lengths in the short (p) arm of chromosome 5. Genetic analysis and phenotyping have been used to 
suggest dose-sensitive genes in this region that may cause symptoms when a gene copy is lost, but the heterogene-
ity of symptoms for patients with similar deletions complicates the picture. The epigenetics of the syndrome has only 
recently been looked at with DNA methylation measurements of blood from a single patient, suggesting epigenetic 
changes in these patients. Here, we conduct the deepest epigenetic analysis of the syndrome to date with DNA 
methylation analysis of eight Cri du chat patients with sibling- and age-matched controls.

Results:  The genome-wide patterns of DNA methylation in the blood of Cri du chat patients reveal distinct changes 
compared to controls. In the p-arm of chromosome 5 where patients are hemizygous, we find stronger changes 
in methylation of CpG sites than what is seen in the rest of the genome, but this effect is less pronounced in gene 
regulatory sequences. Gene set enrichment analysis using patient DNA methylation changes in gene promoters 
revealed enrichment of genes controlling embryonic development and genes linked to symptoms which are among 
the most common symptoms of Cri du chat syndrome: developmental delay and microcephaly. Importantly, this 
relative enrichment is not driven by changes in the methylation of genes on chromosome 5. CpG sites linked to these 
symptoms where Cri du chat patients have strong DNA methylation changes are enriched for binding of the poly-
comb EZH2 complex, H3K27me3, and H3K4me2, indicating changes to bivalent promoters, known to be central to 
embryonic developmental processes.

Conclusions:  Finding DNA methylation changes in the blood of Cri du chat patients linked to the most common 
symptoms of the syndrome is suggestive of epigenetic changes early in embryonic development that may be con-
tributing to the development of symptoms. However, with the present data we cannot conclude about the sequence 
of events between DNA methylation changes and other cellular functions—the observed differences could be 
directly driving epigenetic changes, a result of other epigenetic changes, or they could be a reflection of other gene 
regulatory changes such as changed gene expression levels. We do not know which gene(s) on the p-arm of chromo-
some 5 that causes epigenetic changes when hemizygous, but an important contribution from this work is making 
the pool of possible causative genes smaller.
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Background
Cri du chat syndrome was first recognized by the char-
acteristic high-pitched cry of afflicted babies during 
their first years of life. The genetic cause is a hemizygous 
deletion of variable length on the short (p) arm of chro-
mosome 5, first described in 1963 [1]. The incidence is 
between 1 in 15,000 and 50,000 live births, with a higher 
prevalence for females (66%) than males, but the rea-
son for this is unclear [2–4]. A recent deep phenotyp-
ing study by Nevado et al. [5] defined the most frequent 
features, symptoms, and comorbidities of the disease by 
creating a 0–100 score that integrates information about 
432 patients from multiple publications. They arrived 
at the developmental delay (scored 95) and hypotonia 
(scored 99) as being the two symptoms with the highest 
scores. Also notable is the typical cry/acute voice (scored 
88, 6th most frequent) and microcephaly (scored 65, 14th 
most frequent). The severity of symptoms appears corre-
lated to the length of the 5p deletion, but the variability 
between individuals with similar deletions is surprisingly 
large. A recent study found 39% of Cri du chat patients 
have additional genetic rearrangements, but they did not 
find a strong link between having additional genomic 
changes and distinct symptoms [5].

Large efforts have been put into the genetic mapping 
of Cri du chat patient’s deletion regions and correlating 
the deleted regions to symptoms, with the hope of find-
ing dose-sensitive gene(s) that may cause one or several 
symptoms. Several studies agree on a region relatively 
near the end of the 5p-arm (cyt.band 15.33) as being 
causative in the development of the characteristic cry. 
The telomerase gene (TERT) is found in this region 
and suggested to be dose-sensitive [6] but it remains 
unknown if and how it contributes to any of the symp-
toms. Microcephaly, behavioral, and learning difficul-
ties have been suggested to be caused by hemizygosity 
of regions further from the end of the 5p-arm (cyt.bands 
15.2 and 14.3). Again, the genetic causes have not been 
definitively determined, but a gene that is known to affect 
neuronal development, CTNND2, is often suggested to 
contribute [7].

The epigenetics of Cri du chat syndrome is unexplored, 
except for the DNA methylation mapping of one patient, 
where blood from a single toddler with the syndrome was 

assessed [8]. DNA methylation measurements of blood 
cells to characterize people by so-called episignatures is 
an approach with a rapidly growing number of applica-
tions. Most famous is the determination of biological age 
[9], demonstrated to be correlated with the risk of a range 
of diseases [10]. More recently, DNA methylation episig-
natures of the blood have also been used to classify and 
stratify patients with genetic syndromes [11, 12]. In this 
manuscript, we report a deep analysis of DNA methyla-
tion in a cohort of eight Norwegian Cri du chat patients. 
Because DNA methylation is well known to change with 
aging, we collected blood from closely aged siblings as 
controls wherever possible and age-matched non-related 
controls otherwise. We discover a distinct pattern of 
DNA methylation changes in gene regulatory sequences 
with enrichment for the disease categories of the most 
common Cri du chat symptoms. This suggests that Cri du 
chat symptoms may be driven by epigenetic mis-regula-
tion during development.

Results
DNA methylation was measured at 850,000 CpG sites 
from blood samples of eight Cri du chat patients and 
matched controls by microarray. After removing CpG 
probes with low detection p values, those on X and Y 
chromosomes, and those linked to single-nucleotide pol-
ymorphisms, 786,010 CpG sites remained. We applied a 
statistical test for each CpG site, comparing eight paired 
patients and controls. The paired T-statistic is shown for 
all CpGs mapped to their genome-wide location is shown 
in Additional file  1: Figure S1, with chromosome 5 and 
two representative comparison chromosomes shown in 
Fig.  1A. We performed an unbiased characterization of 
the samples using principal components analysis (PCA) 
to look for any systematic bias that may be affecting the 
samples (Additional file  1: Figure S2A). The principal 
component best separating the samples (PC1) separates 
samples according to age at sampling, with the older 
patients and controls to the left and youngest patients 
and controls to the right. To reduce the possibility of 
personal identification, we have excluded personal infor-
mation such as the age at sampling and gender in Addi-
tional file 1: Figure S2A, but we show the age difference 
between the samples at the time of sample measurement 

Fig. 1  DNA methylation changes and functional enrichment in Cri du chat patients. A Moderated T-statistic for each CpG site calculated from the 
paired patient/controls and mapped to genomic positions. Here shown for chromosomes 4–6. All chromosomes are shown in Additional file 1: 
Figure S1. B, C Integration of patient CpG changes on the p-arm of chromosome 5 relative to controls for gene bodies (B) or promoter sequences 
(C). The y-axis shows the −log10(p.adjusted) of the statistical test measuring the likelihood of patient DNA methylation of that given promoter (or 
gene body) is be differentially methylated. It is multiplied by the sign of the NES value, meaning strongly positive y-axis values would be significantly 
increased methylation. The dotted red lines are at y = −2 and 2, representing p.adj < 0.01. All gene bodies or promoters with p.adj < 0.01 are in red 
with increasing font size for lower p values. D Enrichment analysis with several different types of CpG categorization for the CpGs with p < 0.01 and 
separated CpGs with less or more methylation in patients

(See figure on next page.)



Page 3 of 12Holland et al. Clinical Epigenetics          (2022) 14:128 	

Fig. 1  (See legend on previous page.)
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and sibling relationships between paired samples in 
Table  1. The second-best principal component (PC2) 
does not appear to be integrating any of the other covari-
ates of the samples such as gender, sample type (dried 
blood spot or EDTA tubes), array position, or DNA con-
centration. We conclude that by comparing age-matched 
patients and controls, we can arrive at a comparison of 
Cri du chat DNA methylation without any apparent sys-
tematic bias.

Although Cri du chat patients generally don’t have 
immunodeficiencies, if there are slight differences in 
immune cell populations in the patients, this can bias 
DNA methylation comparisons between patients and 
controls. We applied a well-established algorithm [13] 
to estimate immune cell populations in the blood and 
found no differences between patient and control sam-
ples (Additional file 1: Figure S2B). The hemizygous dele-
tion of TERT also made us curious to measure the rate 
of biological aging through DNA methylation because 
single-nucleotide polymorphisms in TERT have recently 
been linked to changes in biological aging [14]. While 
Cri du chat patients are shown to have shorter telom-
eres, we did not detect any change in biological age by 
the Horvath multi-tissue 2013 clock [9], the more recent 
“skin-and-blood” clock [15], the GrimAge clock [10], or a 
“DNAmTL” clock trained on telomere lengths [16] in the 
patient samples compared to controls (Additional file 1: 
Figure S2C).

In Fig. 1A, there is an apparent increase in DNA meth-
ylation variability along the p-arm of chromosome 5 
(the region that is hemizygous in patients) compared 
to the rest of the genome. We next explored to what 
degree these changes in DNA methylation affects genes 
positioned on the p-arm of chromosome 5. By integrat-
ing all the CpG sites in a given gene and performing a 
ranked gene set enrichment analysis, we can obtain a p 
value that represents how likely it is that the contained 

CpG methylation changes for a given gene are ran-
dom. The algorithm also gives a Normalized Enrich-
ment Score (NES) which will be negative if there is less 
methylation and positive if there is more methylation in 
the patients. In Fig.  1B, we integrate CpG methylation 
changes in patients for gene bodies and show the p value 
of enrichment (adjusted for multiple testing) multiplied 
by the sign of the NES to show the strength of methyla-
tion changes as well as the direction of change along the 
chromosome 5p-arm. There is a tendency for increased 
DNA methylation in gene bodies on the hemizygous 
chromosome arm in the patient samples (Fig.  1B). This 
observed increase in gene body DNA methylation on the 
hemizygous 5p-arm may be a reflection of increased gene 
expression to compensate for the loss of a gene copy. 
Interestingly, when doing this analysis for CpG’s in gene 
regulatory promoter sequences (Fig.  1C), it is clear that 
this increased methylation is not indiscriminate along the 
chromosomal arm because promoter CpG’s appear less 
affected in the patients.

To look for common patterns among CpG sites that 
are more or less methylated in patients compared to con-
trols, we performed a relative enrichment analysis using 
several databases with different categorizations of CpG 
sites. CpG’s with decreased DNA methylation showed 
strong enrichment for promoter sequences, CpG islands, 
transcription factors EZH2 and SUZ12, as well as histone 
modifications H3K4me2, H3K4me3, H3K27me3, and 
H3K23me2 (Fig. 1D). Sites with increased DNA methyla-
tion were generally enriched for being in heterochroma-
tin and somewhat enriched for H3K4me1 binding sites 
and binding of the transcription factors CTCF and Rad21 
(Fig. 1D). Additional enrichment analysis using other cat-
egorization databases of CpG’s is included in Additional 
file 1: Figure S3A–B. We also performed an enrichment 
analysis excluding CpG sites on the p-arm of chromo-
some 5 to see to what degree the enrichment effects are 

Table 1  Details about the age difference at blood sampling and genetic relationship between patients and controls.

Blood samples were collected over a span of several years, meaning that the age difference at sampling is not representative of the actual age difference between 
individuals measured

Set Control Patient Age difference at 
sampling (years)

Siblings Notes

1 c1 p1 0.14 No

2 c2-1, c2-2 p2 0.2, 7.6 No, Yes Age-matched non-sibling and sibling. Results are mean (p2/c2-1, p2/c2-2)

3 c3 p3-1, p3-2 2 Yes, Yes Two p3 samples from the same individual, but collected by DBS or EDTA 
blood sampling. Results are mean (p3-1/c3, p3-2/c3)

4 c4 p4 0 No

5 c5 p5 0.5 Yes

6 c6 p6 0.002 No

7 c7 p7 1.4 No

8 c8 p8 3.7 No
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driven by changes to the hemizygous region itself. In 
general, there is stronger enrichment in categories when 
CpG sites on the p-arm of chromosome 5 are excluded 
from the enrichment analysis (Additional file  1: Figure 
S3C–D), indicating that the patient DNA methylation 
changes on the p-arm of chromosome 5 may be more 
indiscriminate and/or driven by different processes than 
the changes in the rest of the genome.

The integrated CpG promoter DNA methylation 
changes for each gene (−log10(p.adjusted) * sign(NES) 
values) can further be applied to another ranked gene 
set enrichment analysis of genes where functional cat-
egorizations of genes can be tested for enrichment of 
changes in patients versus controls. By this method, we 
can obtain an estimate of how likely it is that a category 
of cellular function is affected by the changes in DNA 
methylation. Gene Ontology (GO) categorization of 
genes revealed strong enrichment for a network of cellu-
lar processes related to nervous system development (p.
adj < 5e−25) (Fig.  2A−B) and other organ development 
and specification processes were also highly enriched 
(Fig.  2A). Another interesting type of gene categoriza-
tion is DiseaseGeNET (DGN), an extensive database con-
taining various types of evidence linking genes to human 
diseases, symptoms and comorbidities. In this database, 
the strongest enrichment of DNA methylation changes 
in patients was for Global developmental delay (p.
adj < 3e−10) and Microcephaly (p.adj < 5e−7) (Fig.  2D–
E). It was very striking to us that two of the most com-
mon symptoms of Cri du chat patients were of the most 
strongly enriched categories in this analysis.

To test if the relatively large changes we see in DNA 
methylation of the 5p-arm (Fig. 1A) was the driver of the 
observed enrichments in Fig. 2, we repeated the gene set 
enrichment analyses (CpG to gene promoter, then gene 
to functional category) while excluding different sets of 
CpG sites on chromosome 5. We find that the exclusion 
of CpGs in the minimal Cri du chat-deleted region, the 
whole 5p-arm, or all of chromosome 5 all show a minimal 
effect on the enrichment results of either Gene Ontol-
ogy (Fig.  2C) or DGN (Fig.  2F). This demonstrates that 
the enrichments seen in Fig.  2 are not directly caused 
by changes in DNA methylation only on chromosome 
5, but is caused by DNA methylation changes distrib-
uted across the genome. In Fig.  2C, F, the color repre-
sents the normalized enrichment score (and numbers 
FDR-adjusted p values), where red represents a nega-
tive enrichment score—indicating less methylation in 
the patients than in controls. The gene set enrichment 
analysis was also performed with statistical adjustment 
for the covariates of sex, age, and estimated immune 
cell populations (Additional file  1: Figure S4A–D). In 
general, the adjustment for covariates had only small 

effects on the enrichment results and the most relevant 
enrichment categories related to neurogenesis, micro-
cephaly, and developmental delay were strongly enriched 
also when adjusting for covariates. We explored in more 
detail how the DNA methylation was changing in the 
patients of some selected categories in Additional file 1: 
Figure S5A-C. In the categories enriched for having less 
DNA methylation in the patients, the baseline level of 
DNA methylation was low and further decreased in the 
patients (Additional file  1: Figure S5C). The majority of 
categories showed enrichment because of reduced meth-
ylation in patients, but we also demonstrate an example 
of a category with more methylation in patients in Addi-
tional file 1: Figure S5C, and in this case, CpGs have rela-
tively high levels of methylation that is further increased 
in patients.

Because the DNA microarray gives a measurement of 
the total methylated and unmethylated signal for CpG 
probes along the chromosomes, we were curious to see 
if we could detect where the Cri du chat patients had the 
hemizygous deletion by summing the methylated and 
unmethylated signal along the chromosome. We found an 
apparent decrease in the summed signal at a point along 
the 5p-arm for each patient when compared to controls 
(Fig.  3A, Patient 7 representative of short deletion and 
Patient 4 of long deletion), and by loess smoothing these 
signals, we could define an approximate deletion point 
for each patient (dotted vertical lines in Fig. 3B).

To further look for causes of the observed enrich-
ment we focused on three categories that we can link 
to comorbidities common for Cri du chat syndrome 
patients—neurogenesis, global developmental delay, 
and microcephaly. We took the genes in each category 
that have changes in promoter DNA methylation in 
the patients (leading edge genes) and created a subset 
of these genes which are included in minimum 2 of the 
3 categories, 373 genes in total. We further extracted 
the CpG’s that are driving the gene promoter enrich-
ment (leading edge CpGs) and selected the one with the 
strongest changes in patients (largest absolute t-statistic). 
In Fig.  4A we show the top CpGs of the top 100 most 
strongly changed genes from this set of 373 along with 
the size of the deletion for each patient (calculated from 
the dotted lines in Fig.  1B) and reported patient symp-
toms on the top of the heatmap.

In the analysis shown in Fig. 1D we found that CpG’s 
with decreased methylation in the patients were enriched 
for several marks of bivalent promoters; EZH2, SUZ12, 
H3K27me3, H3K4me2, and H3K4me3. Based on the 
observation that the selected gene categories were also 
generally less methylated (Additional file 1: Figure S5C), 
we were curious to see how many of the 100 highlighted 
CpG’s in Fig. 4A are bivalent promoters. We found that 
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24 of 100 CpG’s shown in Fig. 4A contained minimum 4 
out of 5 of the bivalent marks (EZH2, SUZ12, H3K27me3, 
H3K4me2, H3K4me3) while 11 out of 100 contained 5 
out of 5. In Fig. 4B we show the beta values of the indi-
vidual samples in our analysis for some selected CpG’s 
that are in bivalent promoter regions. EZH2 mutations 
are known to be able to cause a syndrome called Weaver’s 

syndrome. In a recent publication, DNA methylation was 
mapped for a set of Weaver’s syndrome patients [17] and 
a list of 229 CpG’s were defined as being highly significant 
between patients and controls, with a majority showing 
reduced methylation in the patients. When comparing 
the DNA methylation signal in our Cri du chat patients 
compared to controls to the Weaver’s syndrome patients 
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Fig. 2  Gene Ontology (GO) and DiseaseGeNET (DGN) enrichment from Cri du chat patient promoter CpG changes. Promoter enrichment -log10(p.
adjusted)*sign(NES) values that indicate how changed the CpG methylation is in patients compared to controls for a given gene promoter were 
used as input for gene set enrichment analysis in GO (A–C) and DGN (D–F) databases. In (A), semantically highly similar groups were combined 
through the clusterProfiler::simplify function. In (C) and (F) the promoter enrichment analysis and following GO or DGN enrichment was repeated 
with reduced set of CpGs, removing different segments of chromosome 5. The color indicates the NES values in (C) and (F), red indicating less CpG 
methylation in patients and blue indicating more, and the numbers show the p.adj of enrichment



Page 7 of 12Holland et al. Clinical Epigenetics          (2022) 14:128 	

signal relative to controls, we find a striking negative cor-
relation in the CpGs that are significantly different for 
Weaver’s syndrome patients (R = −0.54, Additional file 1: 

Figure S6), further suggestive of a functional link between 
Cri du chat syndrome and bivalent promoters.
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Discussion
The most striking finding from our analysis is the enrich-
ment of changes in DNA methylation in gene promoters 
that are linked to several of the best-known symptoms 
afflicting Cri du chat syndrome patients. While it is 
tempting to infer a causal link between observed DNA 
methylation changes and patient symptoms, this infer-
ence is premature with the current data and the pat-
terns of changed DNA methylation should presently 
be treated as a Cri du chat DNA methylation signature. 
After excluding that the symptom-category enrichment 
is driven directly by changes in methylation of genes 
on chromosome 5, we speculate that the loss of one or 
several dose-sensitive genes on chromosome 5 causes 
changes to developmental programs during embryo 
development, possibly contributing to the development 
of patient symptoms. The epigenetic signature that we 
see in the blood DNA methylation data could be driving 
these changes by affecting development, but the changes 
could also be secondary, resulting from other changes 
that affect development. In either case, the epigenetics of 
Cri du chat syndrome should be studied further to hope-
fully get closer to causative mechanisms.

The enrichment of components of the polycomb 
repressive complex, EZH2 and SUZ12, is interesting 
in this context. EZH2 is a histone methyltransferase 
that methylates H3K27me, contributing to gene repres-
sion [18]. EZH2 mutations in Weaver’s syndrome cause 
characteristic DNA methylation changes [17]. The fact 
that we see a negative correlation between Cri du chat 
patient’s methylation and Weaver’s syndrome meth-
ylation suggests that EZH2 activity may somehow be 
changed in the Cri du chat patients.

If we assume that the loss of one copy of the 5p-arm 
causes epigenetic changes early in embryo develop-
ment, a good place to start to find which genes are 
causative in driving the Cri du chat symptoms is to look 
for genes linked to epigenetic functions. It has been 
previously suggested that MTRR (in the 15.31 region 
of 5p), a gene linked to folate and methionine metabo-
lism that contributes to the supply of methyl groups for 
DNA methylation, may have a role in the pathogenesis 
of Cri du chat syndrome [8]. Loss of one copy of MTRR 
has in fact been shown to affect DNA methylation in 
mice, with transgenerational effects [19]. Another can-
didate epigenetic regulator that is mostly unexplored in 
the context of Cri du chat is BRD9 (in the 15.33 region 
of 5p). BRD9 acts partly together with CTCF, play-
ing a role in the regulation of the 3D organization of 
the genome. BRD9 has in fact been shown to regulate 
EZH2 expression by binding together with CTCF in an 
EZH2 enhancer [20, 21], but we do not know if EZH2 
expression changes contribute to Cri du chat syndrome 

pathogenesis. It is notable that we find enrichment of 
CTCF binding sites in the CpGs with increased meth-
ylation in patients (Fig.  1D), suggesting the possible 
functional sequence BRD9→CTCF→EZH2. BRD9 
also affects genome stability [22] and thus loss of BRD9 
could also contribute to the observed increased rate of 
genomic rearrangements in Cri du chat patients.

A limitation of our study is the fact that we are ana-
lyzing data from blood cells, which is not a tissue that 
is functionally changed in Cri du chat patients. When 
we find patterns of change in blood, we think it is likely 
that similar DNA methylation changes exist also in other 
functionally affected patient tissues, but this remains to 
be demonstrated. Our study design also does not allow us 
to conclude anything about the sequence of events lead-
ing to and resulting from the observed DNA methylation 
changes. We hope future studies of Cri du chat epigenet-
ics can look for similar effects in an independent patient 
population, with a different measurement technology 
like bisulfite sequencing, and explore other experimental 
strategies to shed light on mechanistic details.

Conclusions
By performing the deepest epigenetic study of Cri du 
chat to date, with age- and sibling-matched paired 
patient controls, we detect DNA methylation changes on 
gene promoters linked to symptoms affecting Cri du chat 
patients. However, we cannot conclude what is causing 
the observed epigenetic changes and whether they caus-
ally contribute to adult Cri du chat patient symptoms. 
The most important contribution of our study to the 
knowledge about Cri du chat syndrome is to suggest the 
involvement of epigenetics, giving direction for future 
mechanistic studies to understand this understudied 
syndrome.

Methods
Patient recruitment, blood sampling, and DNA methylation 
arrays
Patients with Cri du Chat and their siblings were 
recruited through a social media group for Cri du Chat 
relatives in Norway. Newborn non-sibling controls were 
recruited at the maternity ward at Oslo University Hospi-
tal, Rikshospitalet. Dried Blood Spot (DBS) samples were 
collected from participants using Whatman (LIPIDX) 
collection cards. In some cases, extracted DNA available 
in other biobanks at Oslo University Hospital enabled 
DNA collection without the need for participant sam-
pling. DNA methylation was measured on Illumina EPIC 
arrays by Life and Brain GmbH, Bonn, Germany.
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DNA methylation raw data processing
The array fluorescence measurements were imported 
into R with the minfi library [23]. Detection p values 
were calculated by minfi::detectionP and CpGs with 
p < 0.01 for all samples were included for further anal-
ysis. minfi::qcReport was inspected and showed no 
outlying samples (see also the PCA plot in Additional 
file  1: Figure S2A) or systematic differences between 
controls and patients. Arrays were then normalized by 
minfi::preprocessNoob. Probes found to be off-target 
or polymorphic by McCartney et al. [24] were excluded 
and then DMRcate::rmSNPandCH was used to remove 
further SNPs and sex chromosome probes. After these 
steps, 786,010 CpGs remained for further analysis. 
Tables of total signal sums were exported by sum(min
fi::getMeth,minfi::getUnmeth), tables of beta values by 
minfi::getBeta and tables of M values by minfi::getM.

Finding the patient chromosome deletion from the sum 
of array signals
For each patient sample, calculate log2 of the 
sum(methylated,unmethylated) signal divided by the 
mean of all controls sum(methylated,unmethylated) 
for each CpG. To define the point of deletion, smooth 
a loess line to this signal with span = 0.05. The deletion 
point was determined to be the position farthest out on 
the p-arm of chromosome 5 (lowest x-axis value) that is 
larger than 5e6 (due to noise near the end of the chro-
mosome) and has a higher smoothed signal than −0.25.

Estimating blood cell populations
Proportions of different blood cells were estimated 
through the FlowSorted.Blood.EPIC [13] R package 
using the estimateCellCounts2 function with default 
parameters.

DNAm biological age estimation
For the biological clocks, the following reference sets of 
CpGs were used to calculate the biological age of the 
samples: Horvath_2013 [9], Skinblood [15], DNAmTL 
[16], and GrimAge [10]. The GrimAge CpG sites are 
not publically known, but we obtained from the authors 
a stand-alone python implementation of the clock that 
we executed locally to be GDPR compliant.

CpG site T‑statistic calculation
Each CpG site was compared between patients and 
controls by using the mCSEA::rankProbes [25] func-
tion with a paired analysis. mCSEA uses the well-
established limma + eBayes pipeline to compute 
moderated t-statistics. Adjustment for confounders 

was performed by including them in the execution of 
mCSEA::rankProbes.

Promoter or gene body enrichment analysis
All CpGs were ranked by their T-statistic and applied 
to gene set enrichment analysis (GSEA) through the 
mCSEA R package [25]. Databases linking CpGs to gene 
bodies or gene promoters for EPIC arrays are contained 
in the mCSEA package.

Functional enrichment categories
Several databases were assembled to search for sig-
nificant enrichment of different types of functional 
categorizations of CpGs. chromHMM and transcrip-
tion factor enrichment databases for EPIC arrays were 
obtained from Ref. [26]. Transcription factor analysis was 
limited to data from H1 embryonic stem cells. Position 
of a CpG relative to island, shores, or position within a 
gene was contained in the Illumina array annotation file. 
Histone modification data for H1 embryonic stem cells 
was obtained from the ENCODE database. Additional 
gene-level databases are the C1, C2, and C3 human data-
bases contained in msigdbr [27]. Enrichment analysis 
was performed by the clusterProfiler::enricher [28] with 
parameters minGSSize = 4, maxGSSize = Inf, and the 
universe of CpGs that enrichment is performed relative 
set to the 786,010 CpGs included in the patient–control 
comparison.

Gene ontology and DiseaseGeNET analysis of promoter 
enrichment
From the enrichment scores of patient CpG changes in 
promoters, a Normalized Enrichment Score (NES) is 
given, ranking all promoters according to how large the 
changes are in each direction, either more methylation 
in the patients (positive NES) or less (negative NES). 
The sign of the ranked promoter NES scores is multi-
plied by the -log10(p.adjusted) of that given promoters 
enrichment to create a score that includes the direction 
of change as well as significance of enrichment per pro-
moter which is further applied to a gene-set enrichment 
analysis by the clusterProfiler R package [28] with the 
gseGO and gseDGN functions. In the control analysis 
when different parts of chromosome 5 were removed 
from this enrichment analysis, the rankProbes function 
was rerun with the reduced set of CpGs, and promoter 
sign(NES)*−log10(p.adj) was calculated from this set of 
probes and then this ranked set applied to gseGO and 
gseDGN.

Abbreviations
BP: Base pairs; P.adj: P Value adjusted for multiple testing; ES: Enrichment 
score; NES: Normalized enrichment score; TSS: Transcription start site; CpG: 
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CG-dinucleotide where the C is commonly methylated; EZH2: Enhancer of 
zeste homolog 2; CDC: Cri du chat; GDNF: Glial cell line-derived neurotrophic 
factor; BRD9: Bromodomain-containing protein 9; CTCF: CCCTC-binding factor.
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