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Abstract

Background: Late-onset Alzheimer’s disease (AD) is a complex multifactorial affliction, the pathogenesis of which is
thought to involve gene-environment interactions that might be captured in the epigenome. The present study
investigated epigenome-wide patterns of DNA methylation (5-methylcytosine, 5mC) and hydroxymethylation (5-
hydroxymethylcytosine, 5hmC), as well as the abundance of unmodified cytosine (UC), in relation to AD.

Results: We identified epigenetic differences in AD patients (n = 45) as compared to age-matched controls (n = 35)
in the middle temporal gyrus, pertaining to genomic regions close to or overlapping with genes such as OXT (−
3.76% 5mC, pŠidák = 1.07E−06), CHRNB1 (+ 1.46% 5hmC, pŠidák = 4.01E−04), RHBDF2 (− 3.45% UC, pŠidák = 4.85E−06),
and C3 (− 1.20% UC, pŠidák = 1.57E−03). In parallel, in an independent cohort, we compared the blood methylome
of converters to AD dementia (n = 54) and non-converters (n = 42), at a preclinical stage. DNA methylation in the
same region of the OXT promoter as found in the brain was found to be associated with subsequent conversion to
AD dementia in the blood of elderly, non-demented individuals (+ 3.43% 5mC, pŠidák = 7.14E−04).

Conclusions: The implication of genome-wide significant differential methylation of OXT, encoding oxytocin, in
two independent cohorts indicates it is a promising target for future studies on early biomarkers and novel
therapeutic strategies in AD.

Keywords: Alzheimer’s disease, Epigenetics, DNA methylation, DNA hydroxymethylation, Brain, Middle temporal
gyrus, Blood

Background
The neuropathological cascade of the world’s leading
cause of dementia, late-onset Alzheimer’s disease (AD),
is characterized by the progressive accumulation of

extracellular amyloid plaques and intracellular neurofib-
rillary tangles, followed by neuronal cell death. The sus-
ceptibility to AD is determined by the complex
interaction of genetic, environmental, and life-style fac-
tors, as well as epigenetic factors. Genetic research has
been successful in identifying genetic variants modulat-
ing susceptibility to AD, including the first and strongest
genetic risk factor for AD in the APOE gene. In addition
to APOE, large-scale genome-wide association studies
looking at AD have identified a number of independent
common variants with a small-to-modest effect size [1].
Besides genetics, recent studies have suggested an

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: d.vandenhove@maastrichtuniversity.nl
†Roy Lardenoije, Janou A. Y. Roubroeks, Ehsan Pishva, Alfredo Ramirez and
Daniël L. A. van den Hove contributed equally to this work.
1School for Mental Health and Neuroscience (MHeNS), Department of
Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200,
MD, Maastricht, the Netherlands
21Department of Psychiatry, Psychosomatics and Psychotherapy, University of
Würzburg, Würzburg, Germany
Full list of author information is available at the end of the article

Lardenoije et al. Clinical Epigenetics          (2019) 11:164 
https://doi.org/10.1186/s13148-019-0755-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s13148-019-0755-5&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:d.vandenhove@maastrichtuniversity.nl


important role for epigenetic mechanisms in the etiology
of AD [2], with reports of both global and gene-specific
alterations in epigenetic modifications [3–6].
Several types of epigenetic DNA modifications have been

described, including DNA methylation (5-methylcytosine,
5mC) and DNA hydroxymethylation (5-hydroxymethylcyto-
sine, 5hmC). While the best studied epigenetic DNA modifi-
cation, 5mC, plays an important gene regulatory role in most
tissues, 5hmC seems to have a different impact on gene ex-
pression and is particularly enriched in the brain [7, 8],
where it may play an important role in learning and memory
[9, 10]. Unfortunately, conventional bisulfite (BS) conversion,
a widely used procedure when quantifying DNA methyla-
tion, does not distinguish between 5mC and 5hmC. How-
ever, combining measurements from BS- and oxidative BS
(oxBS)-converted DNA now allows for the quantification of
both 5mC and 5hmC levels (Fig. 1).
Where genetic factors can identify persons at risk for

developing AD from birth, epigenetic markers may offer
more dynamic views on trajectories of biological change
and may therefore be able to offer an improved, chrono-
logical insight into the sequence of events at different
stages of AD. As brain tissue cannot be readily sampled
in living humans, blood may offer an alternative. Avail-
able research on the blood DNA methylome in relation
to AD is limited and mainly focuses on the direct com-
parison of AD cases and healthy controls [3, 11, 12].
Identifying disease-predicting biological profiles at pre-
dementia stages of AD may provide improved precision
in predicting onset of dementia and give potential treat-
ments a better timeframe to successfully impede, or even
halt disease progression [13, 14].
In the present study, we explored the association be-

tween AD and epigenetic dysregulation by quantifying
5mC and 5hmC, as well as unmodified cytosine (UC)
proportions [15], at a single-site resolution in middle
temporal gyrus (MTG) tissue obtained from AD patients
(n = 45) and elderly, non-demented controls (n = 35; see
Table 1 and the “Materials and methods” section for de-
tailed demographics) [16]. This brain region was selected
as the MTG is known as a site of early AD pathology
[17], and differences in global levels of DNA methylation
and hydroxymethylation have previously been reported
in this brain region in AD [18]. While informative on its
own, the inclusion of UC measurements also allows us
to better compare our findings with previous studies
using conventional BS conversion, since UC is deter-
mined by subtracting the BS signal (5mC + 5hmC) from
1 (Fig. 1). Even though the effects will be opposite from
directly using the BS signal, incorporating UC in our
study represents a crucial legacy analysis that enables
the comparison with previous studies solely relying on
the BS signal. Moreover, mechanistically, as an example,
the affinity of a transcription factor may be different in

the presence of UC, 5mC, or 5hmC, implicating that dif-
ferential levels of UC (in the absence of significantly dif-
ferent 5mC or 5hmC levels) may have direct functional
implications on gene expression. We followed up the
brain analysis exploring DNA methylation in whole
blood in an independent cohort, including samples from
AD-converters and non-converters at two time points,
before (54 converters, 42 controls) and after (41 con-
verters, 42 controls) conversion to clinical AD (see
Table 2 and the “Materials and methods” section for de-
tailed demographics). Blood DNA methylomic markers
were measured using only BS-converted DNA, as 5hmC
has a very low prevalence in blood [8].

Results
Middle temporal gyrus
Site-specific 5mC, 5hmC, and UC levels were deter-
mined for the MTG using Illumina’s Infinium Human-
Methylation450K microarray (HM 450K array) with BS
and oxBS-converted DNA (Fig. 1; see Tables 1 and 2 for
cohort demographics). An epigenome-wide association
study (EWAS) was performed for each DNA modifica-
tion to identify the association with AD. The adjusted
linear models showed no signs of inflation (all lambda
values were between 0.95 and 1.05; see Additional file 2:
Figure S1 for QQ plots). None of the AD-associated
CpG sites in the MTG passed false discovery rate (FDR)
correction (Additional file 1: Tables S1–S3).
A structural and functional genomic annotation enrich-

ment analysis on the 1000 highest ranked sites indicated a
significant enrichment of several CpG island features, gene
features, and alternative transcription events. This included
an enrichment of mainly gene body sites for the 5mC (fold
enrichment = 1.42, p= 1.17E−10) and 5hmC (fold enrich-
ment = 1.17, p= 3.64E−03) results and mainly intergenic sites
for the UC (fold enrichment = 1.59, p= 1.67E−09) results
(Additional file 2: Figure S8; Additional file 1: Table S7).
A regional analysis, looking at the spatial correlation of

adjacent modified positions, detected 1 differentially
methylated region (DMR), 1 differentially hydroxymethy-
lated region (DHR), and 11 differentially unmodified re-
gions (DURs) that were associated with AD in the MTG
(Table 3; Additional file 2: Figure S3). Analysis of MTG
expression data of genes annotated to DMRs, DHRs, and
DURs showed a significant negative correlation between a
DUR associated with RHBDF2 and RHBDF2 RNA expres-
sion (ρ = -0.39, pFDR = 4.37E−03) (Additional file 1: Table
S10). Of note, although the DHR residing in the transcrip-
tion start site (TSS) of CHRNB1, of which all probes show
hyperhydroxymethylation in the AD cases, did not correl-
ate with CHRNB1 mRNA expression (ρ = − 0.09, pFDR >
0.05), a linear regression analysis of regressed MTG
expression data of CHRNB1 showed a significant elevation
of CHRNB1 mRNA levels in AD cases (estimate = 0.13,
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p = 1.37E−04) (Additional file 2: Figure S4). For a full tran-
scriptomic investigation of the MTG cohort used in the
present study, see the recent publication of Piras et al. [19].
Next, a gene regulatory network (GRN) analysis was

performed with the unique genes annotated to the 1000
highest ranked probes. Because of different numbers of
associated genes from each dataset, we obtained contex-
tualized networks with varying number of interactions.
The number of interactions in the contextualized GRNs
representing the differential 5mC, 5hmC, and UC MTG

states were 325, 398 and 244, respectively. Differential
GRN analysis identified several candidate genes highly
influential in the simulated transition from a diseased to-
wards a healthy phenotype. Based on a score indicating
for each gene, when changed, the number of other genes
in the network that were predicted to show altered ex-
pression, IL6 (score = 55), SIAH1 (score = 78), and EGF
(score = 55) were found to be the most influential in the
5mC, 5hmC, and UC networks, respectively (Additional
file 1: Table S9).

Fig. 1 Overview of the procedure to detect unmodified cytosines (C), 5-methylcytosine (5mC), and 5-hydroxymethylcytosine (5hmC). Naturally, C can be
converted to 5mC by DNA methyltransferases (DNMTs) and 5mC can be oxidized by ten-eleven translocation (TET) enzymes, resulting in 5hmC. There are
several proposed demethylation pathways through which 5mC and 5hmC can be converted back to C. DNA samples were split in two, one half was only
treated with bisulfite (BS), which converts C into thymine (T). 5mC and 5hmC are protected against this conversion, and will be read as a C on the array.
The detected C signal after BS conversion is thus actually the combined 5mC and 5hmC signal. As the signals are converted to fractions, with C + 5mC+
5hmC= 1, the fraction of C in the input DNA can be determined by subtracting the C signal after BS conversion (representing the combined 5mC and
5hmC fraction in the input DNA) from 1. The other half of the DNA sample was first oxidized, which converts 5hmC into 5-formylcytosine (5fC), and then
treated with BS. 5fC is not protected against the BS conversion, so it also turns into T. C detected on the array after this oxidative BS (oxBS) conversion thus
represents the fraction of 5mC in the input DNA. The 5hmC fraction in the input DNA can be determined by subtracting the fraction of 5mC (detect C
after oxBS) from the combined 5mC and 5hmC fraction (detected C after BS). This procedure results in three readout signals: unmodified C, 5mC, and
5hmC. Note that 5fC, and probably also 5-carboxylcytosine, are included in the unmodified C fraction.
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Blood
Since 5hmC is not enriched in the blood, only BS conversion
was used to measure site-specific 5mC levels, also with the
HM 450K array. A blood EWAS investigating the association
between DNA methylation and conversion to AD was per-
formed at baseline and at follow-up, leading to the identifica-
tion of 3 differentially methylated positions at baseline and
266 at follow-up (Additional file 1: Tables S4–S6). No signifi-
cant inflation was detected (Additional file 2: Figure S2; see
the “Materials and methods” section for details).
Genomic annotation enrichment analysis of the top sites

in blood showed enrichment of mainly intergenic sites (fold
enrichment = 1.32, p= 5.80E−04) at baseline and proximal
promoters (fold enrichment = 0.79, p= 1.60E−04) at follow-
up (Additional file 2: Figure S9; Additional file 1: Table S8).

The regional analysis found 15 and 21 DMRs associ-
ated with conversion to AD at baseline and follow-up,
respectively (Table 4; Additional file 2: Figure S5).
GRNs representing the blood baseline and follow-up

states contained 475 and 277 interactions, respectively. Dif-
ferential GRN analysis identified WNT3A (score = 50) as
the most influential gene in the baseline network, and SHH
(score = 33) in the follow-up network (Additional file 1:
Table S9).

Overlap
Only 1 blood DMR, close to GLIPR1L2, showed hyperme-
thylation in relation to AD conversion at both the baseline
(+2.72%, pŠidák = 1.40E−04) and follow-up (+ 1.34%, pŠi-
dák = 6.94E−06) time points. Extracting the probes located
in this blood GLIPR1L2 DMR from the MTG EWAS for
comparison showed, in AD cases, lower UC levels (9/10
probes with negative log2 fold change [logFC]), mixed
changes for 5mC (6/10 probes with positive logFC), and
lower 5hmC levels for the probes that passed the detection
threshold (2/2 probes with negative logFC). Even though
the UC observations in the MTG are in line with the
blood findings, only for one UC probe (cg07311024) the
change was nominally significant (logFC = − 0.01, p =
3.88E−02). A targeted linear regression analysis of the
regressed MTG expression data of GLIPR1L2 showed a
significant decrease in AD cases (estimate = -0.10, p =
3.12E−04) (Additional file 2: Figure S6).
Interestingly, close to the TSS of OXT, we observed a

DMR which was detected both in the MTG (− 3.76%, pŠi-
dák = 1.07E−06), as well as in the blood dataset (at baseline,
+ 3.43%, pŠidák = 7.14E−04) (see Additional file 2: Figure
S7 for the probe positions of both OXT DMRs). MTG
OXT methylation across Braak stages, as a proxy indicator
of disease progression, is displayed in Fig. 2 and suggest
OXT hypermethylation towards Braak 3-4 stages and OXT
hypomethylation during later stages. Moreover, in the dif-
ferential GRN analysis, OXT came forward as an influen-
tial gene. In case of the 5mC and 5hmC MTG states, a
change in OXT was predicted to alter the expression of 39
and 54 other genes in the networks, respectively, and in
the blood baseline state, OXT was predicted to alter 41
genes in the network (Additional file 2: Figures S10–S12;
Additional file 1: Table S9).

Discussion
For the current study, we aimed to identify AD-related
changes in epigenetic DNA modifications, comparing brain
tissue from AD patients and age-matched controls. In
addition, we explored DNA methylation in blood samples
from AD-converters and non-converters, both at a preclin-
ical stage and after conversion, identifying an AD-associated
DMR in OXT in both the brain and blood datasets.

Table 1 Cohort demographics—brain tissue

AD patients Non-demented controls

N 45 35

Gender(m/f) 22/23 17/18

Age of death (mean ± SD) 85.09 (6.24) 84.46 (5.50)

PMI (Mean ± SD) 2.77 (0.69) 2.87 (1.03)

Plaque total (mean ± SD) 12.97 (2.25) 4.65 (4.30)

Tangle total (mean ± SD) 11.02 (4.16) 3.96 (2.10)

Braak stage (range (median)) II–VI (V) I–IV (III)

The brain tissue cohort consisted of 80 middle temporal gyrus (MTG) tissue
samples obtained from the Banner Sun Health Research Institute (Sun City, AZ,
USA), from which HM 450K array BS and oxBS data was generated. Displayed
is the number of samples in each group and the distributions of gender, age,
postmortem interval (hours), Braak stage, and plaque and tangle total (the
sum of average Aβ plaque densities and tangle densities (resp.) in the
entorhinal cortex, hippocampus, parietal lobe cortex, temporal lobe cortex and
frontal lobe cortex)

Table 2 Cohort demographics—blood samples

Controls Converters

Baseline (T1)

N 42 54

Gender (m/f) 10/32 17/34

Age at baseline (mean ± SD) 81.00 ± 3.11 82.31 ± 3.55

APOE4 carriers 43% 43%

Follow-up (T2)

N 42 41

Gender (m/f) 10/32 13/28

Age at baseline (mean ± SD) 81.00 ± 3.11 82.01 ± 3.51

APOE4 carriers 43% 41%

Blood samples were obtained from the German Study on Ageing, Cognition
and Dementia in Primary Care Patients (AgeCoDe) cohort, and HM 450K array
BS data was generated. The cohort includes controls, who showed no signs at
baseline or follow-up, and converters who showed no signs of dementia at
baseline, but were diagnosed with AD dementia at follow-up. DNA samples
were collected at baseline and follow-up for both groups. Displayed is the
number of samples in each group, the distributions of Gender and Age at
baseline, and the percentage of APOE ɛ4 allele carriers
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The DHR identified in the MTG resided in the promo-
tor of CHRNB1, which encodes acetylcholine receptor
subunit beta and is important for cholinergic neuro-
transmission. In combination with the observed in-
creased levels of CHRNB1 mRNA in the MTG, this
potentially reflects a compensatory mechanism to main-
tain acetylcholine signaling in AD. Indeed, the
acetylcholine-related pathway is known to be altered in
AD and, as such, remains an important target in the de-
velopment of novel treatment options [20]. Previous epi-
genomic studies of AD using standard BS-conversion
have found associations between AD and RHBDF2
methylation in multiple cortical regions [3, 4]. We repli-
cated these findings; observing an AD-associated DUR
in RHBDF2, which included the previously detected
CpG sites (cg13076843, cg05810363, and cg12163800)
and showed the same direction of effect as previously re-
ported. For instance, using conventional bisulfite (BS)
conversion, a 3.36% increase in DNA methylation level
of cg05810363 has been observed across cortical regions
in association with AD neuropathology [3]. Interestingly,
a negative correlation between UC levels within the
RHBDF2 DUR and RHBDF2 mRNA expression was ob-
served in the MTG. RHBDF2 is thought to be important
for the release of tumor necrosis factor, a major inflam-
matory cytokine associated with neuroinflammation ob-
served in AD [21, 22]. C3, another gene with an AD-
associated DUR, encodes a central component of the
complement system and mediates developmental

synapse elimination by phagocytic microglia. C3 has pre-
viously been implicated in mediating synaptic loss in the
early stages of AD [23].
The top DMR from the baseline blood analysis, showing

hypermethylation in AD, is close to the LDLRAD4 gene.
This gene has previously been associated with schizophre-
nia and blood pressure and is thought to suppress trans-
forming growth factor (TGF)-β signaling [24–27]. TGF-β
is an inflammatory cytokine playing a role in cell survival
and synaptic transmission, and various isoforms have been
associated with AD [28]. Additional baseline blood DMRs
were close to TENM3, involved in neurite growth [29],
SYMPK, involved in polyadenylation regulation of gene
expression and which showed increased expression in AD
[30], SLC44A4, associated with type 1 diabetes mellitus
and human aging [31], ZMAT2, which had decreased ex-
pression in AD [32], ULK1, which may play a role in the
autophagic degradation of amyloid beta (Aβ) [33], and
RUNX2, which links bone health and cognitive function
and anxiety-like behavior [34]. The DMR that was found
both at baseline and follow-up is associated with
GLIPR1L2. GLIPR1L2 also showed decreased expression
in the MTG. The function of this gene is not well known,
but it may play a role in tumor suppression and immune
function [35, 36]. The top AD-associated blood DMR at
follow-up, showing hypomethylation, is located in
GSDMD, which encodes a critical factor in pyroptosis; a
form a cell death that may be triggered by Aβ [37, 38].
Other genes with a nearby AD-associated blood DMR at

Table 3 Differentially methylated, hydroxymethylated, and unmodified regions in the middle temporal gyrus

Gene Position Gene feature n p value Šidák P Average Δ% (range Δ%)

5mC

OXT chr20:3051954-3052484 TSS; Intron; 5′UTR; CDS 10 (0 up; 10 down) 1.43E−09 1.07E−06 − 3.76 (− 6.94:− 0.43)

5hmC

CHRNB1 chr17:7348322-7348439 TSS; Exon; 5′UTR 5 (5 up; 0 down) 2.63E−07 4.01E−04 1.46 (0.70:1.96)

UC

ACTR3C; LRRC61 chr7:150019955-150020946 TSS; Intron; Exon; 5′UTR 17 (1 up; 16 down) 3.54E−12 1.42E−09 − 0.57 (− 1.34:0.02)

RHBDF2 chr17:74475240-74475403 Intron; CDS 5 (0 up; 5 down) 1.99E−09 4.85E−06 − 3.45 (− 4.71:− 1.42)

TMC8 chr17:76128522-76128907 Intron; CDS 8 (0 up; 8 down) 3.29E−09 3.39E−06 − 1.26 (− 2.84:− 0.26)

ASPG chr14:104551867-104552210 TSS; Intron; 5′UTR; CDS 5 (0 up; 5 down) 1.00E−08 1.16E−05 − 1.21 (− 2.49:− 0.28)

PIEZO1 chr16:88844969-88845205 Intron 3 (0 up; 3 down) 1.87E−07 3.14E−04 − 3.08 (− 3.76:− 2.32)

VWA7 chr6:31734106-31734472 Intron; CDS 10 (10 up; 0 down) 2.04E−07 2.21E−04 3.39 (2.24:4.23)

CLMAT3; SPARC chr5:151066460-151066731 Exon; TSS; 5′UTR 6 (0 up; 6 down) 5.21E−07 7.62E−04 − 0.29 (− 0.64:0.21)

KIAA1522 chr1:33231070-33231314 TSS; Exon; 5′UTR; Intron 6 (0 up; 6 down) 8.48E−07 1.38E−03 − 1.85 (− 2.43:− 1.3)

C3 chr19:6713227-6713460 Intron; CDS 3 (1 up; 2 down) 9.21E−07 1.57E−03 − 1.20 (− 2.1:0.46)

PRSS22 chr16:2908157-2908246 TSS; Exon; 5′UTR 4 (0 up; 4 down) 1.02E−06 4.52E−03 − 1.56 (− 1.91:− 1.39)

FRAT1 chr10:99080756-99081017 Exon 3 (3 up; 0 down) 1.50E−06 2.28E−03 2.34 (1.57:3.03)

Differentially methylated (5mC), hydroxymethylated (5hmC), and unmodified (UC) regions in a comparison of Alzheimer’s disease patients (n = 45) and controls
(n = 35). Displayed for each region is the UCSC gene name, chromosomal position (genome build 37), gene feature (TSS, transcription start site; 5′UTR, 5′
untranslated region; CDS, coding sequence), number of probes in region and number of upregulated and downregulated probes (n), p value and multiple testing-
corrected p (Šidák-P), and average change in beta value (Alzheimer’s disease - control), including the range of the probe differences
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follow-up include KHDRBS2, previously identified in a
genome-wide association interaction analysis in relation to
AD [39], RARRES2, encoding an adipokine that has been
linked to inflammation, obesity, diabetes, and cardiovascu-
lar diseases [40], and GNG7, for which Braak stage-
associated differential methylation has been reported in
cortical glial cells of AD patients [41].
Taken together, the observation of epigenetic modifi-

cations in several inflammation-associated genes in both
brain and blood aligns with the amyloid cascade-
inflammatory hypothesis of AD [42]. These findings could
reflect either downstream effects resulting from the in-
flammatory activation seen in AD, or, particularly in the
brain, reflect mediating effects of DNA modifications on
inflammation as a causative factor. Exploring the exact na-
ture of the AD-associated epigenetic modifications in
inflammation-associated genes and the potential for blood
biomarkers is thus a pivotal aim for future studies.
Strikingly, our methylomic profiling in MTG and whole

blood both led to the identification of a common DMR as-
sociated with AD, close to the transcription start site of
OXT. Our design allowed for the disentanglement of spe-
cific 5mC and 5hmC signals in the MTG, which, in the case
of OXT, suggests they change in opposite directions in rela-
tion to AD. The detection of a DMR near OXT is in line

with a recent report of a nearly identical AD-associated
OXT DMR (containing 1 additional probe) in the superior
temporal gyrus (STG) [43]. This area is located directly
above the MTG. Furthermore, using GRN analysis address-
ing the overlap between the top influential genes in the net-
works and genes with significant differentially modified
regions, we observed OXT to consistently appear as one of
the most influential genes in both brain and blood GRNs.
OXT encodes oxytocin, a neuropeptide involved in the neu-
romodulation of social behavior, stress regulation, and asso-
ciative learning [44]. Interestingly, the functional impact of
OXT promoter methylation at the same genomic locus has
been recently shown [45]. It was linked to several measures
of sociability, superior temporal sulcus activity during social
cognition tasks, as well as fusiform gyrus gray matter vol-
ume, a brain region closely related to the MTG.
The paraventricular nucleus and supraoptic nucleus

are thought to be the main sites of central oxytocin pro-
duction [46], areas which reportedly undergo cell loss
during AD [47]. The remaining neurons are thought to
undergo a, potentially compensatory, hypertrophy. One
might hypothesize that this activation could initially lead
to higher than normal oxytocin levels, before synthesis
collapses during the final stages of AD. Interestingly, en-
hanced levels of hippocampal oxytocin have been

Figure 2. Methylation, hydroxymethylation and expression of OXT across Braak staging. Regressed OXT expression values and average regressed
5mC and 5hmC values of 10 and 9 overlapping probes within the OXT DMR are shown. Regressed values were generated by taking the residuals
of a model fitted with the covariates age, gender, and 5 surrogate variables, but excluding the predictor of interest AD diagnosis. Error bars
represent mean ± SEM. N = 76 for each line.
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associated with memory impairment, and AD-associated
elevations of oxytocin have been reported in the hippo-
campus and temporal cortex [48]. There is also limited
evidence oxytocin is reduced in cerebrospinal fluid of
manifest AD [49]. Additionally, it has been suggested
that co-damage to the locus coeruleus and hypothalamic
nuclei could happen early during AD pathogenesis [50],
substantiating the hypothesis that oxytocin could serve
as an early diagnostic biomarker for AD.
In line with an AD-related increase in temporal cortex

oxytocin levels [48], all ten CpG sites within the MTG OXT
DMR showed decreased levels of methylation in AD cases.
Conversely, we observed OXT hypermethylation in the
DNA from peripheral blood of participants who progressed
to dementia. The OXT blood DMR was not observed after
conversion. Research has shown that independent mecha-
nisms may be involved in peripheral and central regulation
of OXT expression, supporting this apparent discrepancy
observed in blood and brain [51]. Alternatively, these obser-
vations suggest there may be a temporal change in OXT
methylation during AD progression. Looking at MTG OXT
methylation across Braak stages appears to support the ob-
servation of OXT hypermethylation at earlier stages, as also
seen in the blood, and OXT hypomethylation at more ad-
vanced stages. Notably, it has recently been reported that
oxytocin administration was able to improve social cogni-
tion and behavior in frontotemporal dementia patients [52],
illustrating the complex modulatory function of oxytocin in
different brain regions and its potential use in the treatment
of certain manifestations of dementia. Whether oxytocin
represents a suitable therapeutic agent for AD remains to
be elucidated.
Even though we detect several targets relevant in light

of AD, a general lack of overlap between the different
analyses presented here might be noted, an observation
which is true for EWAS and epigenetics studies in AD
in general. Others have discussed a myriad of possible
reasons for discrepancies between studies, such as meth-
odological differences, differences in tissue type and pro-
cessing, study designs, and samples sizes [53]. In view of
this, the detection of a common OXT DMR in two com-
pletely independent cohorts and two different types of
tissue, further supported by a recent similar EWAS on
the STG [43], makes it an even more promising target
for future studies. However, the differences in direction
of change and the OXT methylation pattern observed
over Braak stages indicates these epigenetic changes
should be further studied in a longitudinal fashion to es-
tablish a clear relationship with AD neuropathology, as
well as clinical manifestations of AD.
Given the detection of several regions of interest, it should

be noted that the lack of positions significantly associated
with AD in the MTG after FDR correction may be the result
of a limited sample size. Genome-wide site-specific AD-

related epigenetic changes should thus be further
investigated using studies with larger sample sizes or meta-
analyses. Alternatively, future studies may focus on candi-
date genes identified in the present work, such as OXT.

Conclusions
Our novel approach confirms some previous epigenetic
findings identified in the central nervous system, including
RHBDF2, as well as revealed novel targets, such as in
CHRNB1, involving dysregulated DNA hydroxymethyla-
tion. Furthermore, the nearly identical OXT DMRs found
in both the blood and brain suggest a systemic epigenetic
dysregulation in AD involving OXT. The detection of the
OXT DMR at pre-dementia stages suggests its potential
relevance as a novel biomarker and may offer new treat-
ment strategies to be explored in future studies.

Materials and methods
Patients
Informed consent was obtained from all human participants.
This includes donors of the Banner Sun Health Research In-
stitute (BSHRI) Brain and Body Donation Program (BBDP),
who signed an Institutional Review Board-approved in-
formed consent form, including specific consent to the use
of donated tissue for future research [16, 54]. The German
Study on Ageing, Cognition and Dementia in Primary Care
Patients (AgeCoDe) study protocol was approved by the
local ethics committees at the University of Bonn (Bonn,
Germany), the University of Hamburg (Hamburg, Germany),
the University of Duesseldorf (Duesseldorf, Germany), the
University of Heidelberg/Mannheim (Mannheim, Germany),
the University of Leipzig (Leipzig, Germany), and the Tech-
nical University of Munich (Munich, Germany).
DNA from the MTG was obtained from 82 AD pa-

tients and neurologically normal control BBDP donors
stored at the Brain and Tissue Bank of the BSHRI (Sun
City, AZ, USA) [16, 54] (Table 1). The organization of
the BBDP allows for fast tissue recovery after death,
resulting in an average post-mortem interval of only 2.8
h for the included samples. Braak staging was carried
out for AD neurofibrillary pathology. A consensus diag-
nosis of AD or non-demented control was reached by
following National Institutes of Health AD Center cri-
teria [54]. Comorbidity with any other type of dementia,
cerebrovascular disorders, mild cognitive impairment
(MCI), and presence of non-microscopic infarcts was ap-
plied as exclusion criteria. Although this may limit the
generalizability of the current study, these strict exclu-
sion criteria were applied to enhance the detection of
AD-specific dysregulation, not confounded by common
comorbidities. Detailed information about the BBDP has
been reported elsewhere [16, 54].
AgeCoDe is a prospective longitudinal study including

3327 non-demented individuals at baseline, initiated to
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investigate the early detection of MCI and dementia in
primary care [55]. Participants were randomly selected
from the general practice registry in six German cities
and cognition was assessed at approximately 18-month
intervals and 10-month intervals after visit 7, for up to
11 years after baseline. For this study, whole blood DNA
was obtained from a subsample of 99 individuals aged
above 75 years from this AgeCoDe cohort (Table 2). Of
these, 42 were converters: they had no dementia at base-
line, had DNA samples available at baseline and follow-
up (after ~ 4.5 years), and had sufficient information
available for a diagnosis of AD dementia to be made at
the 4.5-year follow-up. There were 44 control subjects,
who had to adhere to the same criteria, except that they
should have no signs of dementia at neither baseline,
nor the 4.5-year follow-up, and all subsequent cognitive
assessments up to 11 years after baseline. The remaining
13 participants had not yet converted at the 4.5-year
follow-up (when blood was drawn), but were diagnosed
during a later follow-up, up to a maximum of 11 years
after baseline [56]. These samples were grouped together
with the other converters.
The groups were matched for age, gender, and APOE

genotype. The presence of dementia was assessed in all
subjects with the Structured Interview for Diagnosis of
Dementia of Alzheimer Type, Multi-infarct Dementia,
and Dementia of Other Etiology [57] based on the DSM-
IV criteria. The dementia diagnosis in subjects who were
not personally interviewed was based on the Global De-
terioration Scale [58] (≥ 4) and the Blessed Dementia
Rating subscales. The etiological diagnosis of AD was
based on the criteria of the National Institute of Neuro-
logical and Communicative Disorders and Stroke and
the Alzheimer’s Disease and Related Disorders Associ-
ation [59] for probable AD and was only assigned in case
of sufficient information provided. All final diagnoses
were a consensus between the interviewer and an experi-
enced geriatrician or geriatric psychiatrist. More detailed
information about the AgeCoDe cohort has been pub-
lished previously [55, 56].

(Hydroxy)Methylomic profiling
For the BBDP samples, the TrueMethylTM 24 Kit version
2.0 by CEGXTM (Cambridge Epigenetix Limited, Cam-
bridge, UK) was used for BS and oxBS conversion of
genomic DNA (gDNA) extracted from frozen MTG tis-
sue. All laboratory procedures were performed at Geno-
meScan (GenomeScan B.V., Leiden, the Netherlands),
without knowledge of the phenotypic characteristics of
the samples and according to the manufacturer’s in-
structions. Prior to conversion, high molecular weight
(HMW) gDNA was quantified using a PicoGreen assay
(Invitrogen, Carlsbad, CA, USA), and gel-electrophoresis
was performed to assess gDNA quality. All samples were

of sufficient quantity and quality. A volume of 1 μg
HMW gDNA was used per sample, which, after purifica-
tion and denaturation, was split into two samples that
underwent either DNA oxidation (oxBS samples) or
mock DNA oxidation (BS samples). Subsequently, all
samples were BS-treated, and the yield of the samples
was assessed by a Qubit ssDNA assay (Invitrogen). An
additional quality control, using a restriction enzyme
only able to cut unconverted cytosines, was performed
for a qualitative assessment of 5hmC oxidation and BS
conversion. From each BS/oxBS-treated DNA sample,
8 μL was amplified and hybridized on HM 450K arrays
(Illumina, Inc., San Diego, CA, USA), and the Illumina
iScan was used for imaging of the array. Sample prepar-
ation, hybridization, and washing steps for the Illumina
Infinium Methylation Assay of the BeadChip arrays were
performed according to the manufacturer’s protocol.
For the AgeCoDe samples, gDNA was isolated from

whole blood and DNA concentration and purity was de-
termined using the NanoDrop ND1000 spectrophotom-
eter (Thermo Fisher Scientific). All samples were of
sufficient quantity and quality. Five hundred nanograms
of gDNA was used for BS conversion, using a Qiagen
EpiTect 96 Bisulfite Kit (Qiagen, Hilden, Germany) ac-
cording to the manufacturer’s protocol. A total of 200 ng
of BS converted DNA was analyzed using HM 450K ar-
rays according to the manufacturer’s instructions. The
Illumina iScan was used for imaging of the array.

Transcriptomic profiling
Total RNA extracted from frozen MTG, from matched sam-
ples as used for the epigenetic MTG analyses, was isolated
with the RNeasy Mini Kit (Qiagen) starting with at least 60
mg of tissue. Raw expression data was obtained at the
BSHRI, using the HumanHT-12 v4 BeadChip (Illumina).

Statistical analysis
All computational and statistical analyses were per-
formed using the statistical programming language R
(version 3.3.2) [60] and RStudio (version 1.0.136) [61],
unless otherwise specified. Raw IDAT files from the Illu-
mina iScan were loaded into R using the minfi package
(version 1.20.2) [62]. To confirm that the longitudinal
samples were from the same donor a genetic fingerprint-
ing test was performed based on the 65 SNP probes in-
cluded on the HM 450K chip, as implemented in the
ewastools package [63]. Based on this test, 2 donors with
mismatching samples were detected and excluded from
the blood data. Next, the gender of the samples was pre-
dicted based on X chromosome methylation using the
DNAmArray package (version 0.0.2) [64], compared with
the assumed gender, and mismatches were excluded (1
mismatched sample was excluded from the blood data).
Cross-hybridizing probes and probes containing a
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common SNP in the sequence or within 10 bp of the se-
quence were removed [65]. The “pfilter” function of the
wateRmelon package (version 1.18.0) [66] was used for
probe filtering (6 969 and 1 437 probes were removed
from the MTG and blood data, respectively). The
remaining probe data was normalized using the dasen
method, as implemented in the wateRmelon package
[66]. Probes on the X and Y chromosomes were ex-
cluded from further analyses.
Following normalization, two sets of beta values, from the

standard BS arrays (5mC+ 5hmC) and from the oxBS arrays
(5mC), were generated in case of the MTG. By subtracting
oxBS beta values from the BS beta values (ΔβBS-oxBS) for
each probe in each sample, 5hmC levels were calculated
(Fig. 1). UC values were determined as 1-BS (1-βBS). It
should be noted that other DNA demethylation intermedi-
ates, such as 5-formylcytosine (5fC) and 5-carboxylcytosine
may be represented in the BS or UC levels, as it is currently
unclear how these intermediates respond to oxBS conver-
sion [67]. However, these intermediates are present at very
low levels and are not enriched in brain tissue like 5hmC is
[68]. In order to reduce noise and filter out non-
hydroxymethylated sites, outliers deviating more than ± 2SD
from the probe mean in the 5hmC dataset were determined
and set to the mean ± 2SD first, and subsequently, a thresh-
old of zero was applied to the mean of individual probes
(218,009 5hmC values were excluded). Boxplots and density
plots of raw and normalized beta values per sample were
inspected for clear outliers (2 MTG samples were excluded
due to clear deviation from the other samples; data not
shown). After data processing, 80 MTG and 96 blood sam-
ples remained, with 396,600 remaining probes for MTG
5mC and UC, 178,591 5hmC MTG probes, and 402,480
remaining probes in the blood datasets. The case-control
analysis of the blood baseline data included all 96 samples
(54 converters, 42 controls), while follow-up data included
83 samples, including the 41 converters that had already
converted to AD at the 4.5-year follow-up and excluding
those that had converted later. All individuals in the follow-
up analysis were also included in the baseline analysis.
An initial model with beta values as outcome, AD

diagnosis/conversion as predictor, and age and gender as
covariates was used for a surrogate variable (SV) analysis
with the sva package (version 3.22.0) [69]. The first 5
SVs of this analysis were added to the model to adjust
for unobserved confounders, including potential batch
effects and differences in cell type composition. As the
addition of SVs still resulted in inflation of the regres-
sion statistics (lambda = 1.43) of the blood follow-up
analysis, and none of the SVs strongly correlated with
the HM 450K chip IDs (which was the case for the other
analyses), the chip IDs were also added to the model for
this analysis. This successfully eliminated the inflation
(lambda = 1.00).

Linear regression was performed using the limma
package (version 3.30.11) [70] to test the association
between the beta values and AD diagnosis/conversion.
Test statistics were adjusted for bias and inflation
with the bacon package (version 1.2.0) [71]. An FDR
correction for multiple testing was applied to the p
values to identify differentially (hydroxy)methylated
and unmodified positions (probes with pFDR < 0.05).
Individual probes were annotated using Illumina
UCSC annotation.
To examine the distribution of 5mC, 5hmC, and UC

levels across genomic regions, we annotated the 1000
highest ranking probes (Additional file 1: Tables S2–S7)
using ENCODE annotation data, as described by Slieker
et al. [72]. Fisher’s exact test was used to assess enrich-
ment in specific genomic regions.
To identify differentially (hydroxy)methylated and un-

modified regions (DHRs/DMRs/DURs), spatial correlations
between p values of the association analysis were deter-
mined using comb-p [73] with a seeding p value of 0.01 and
a window size of 1000 bp. Obtained p values were Stouffer-
Liptak-Kechris corrected for adjacent p values and were
subsequently corrected for multiple testing using the Šidák
correction. Of the regions detected by comb-p, only those
containing at least 3 CpGs and having a pŠidák < 0.05 were
accepted as differentially modified regions.
GRNs have been extensively used to achieve deeper

understanding of disease related mechanisms [74]. Dif-
ferent topological characteristics of these networks, such
as connectivity of nodes [75] or gene-gene interaction
tendency in cell/tissue specific contexts [76], have been
used to predict disease-related genes. Here, we have
employed an in-house developed differential GRNs in-
ference approach [77], which relies on gene expression
data to infer GRNs specific to a given gene expression
program. The initial set of interactions among the genes
of interest was compiled from literature-based database
ARIADNE [78] and consists of interactions belonging to
the categories of “Direct Regulation,” “Expression,” and
“Promoter Binding.” The obtained set of interactions is
not context-specific as they are reported to happen in
different cell/tissue types and organisms. To obtain
context-specific networks from the literature interaction
maps, the pruning of interactions incompatible with the
gene expression state was carried out, which resulted in
contextualized networks compatible with the given gene
expression state of the system. As a differential expres-
sion setting was used here, we obtained two contextual-
ized GRNs for each state, representing the different
network topology of diseased and healthy phenotype.
The differential network topology helps us in identifying
the set of genes that are regulated by different transcrip-
tion factors in both networks. These genes formulate an
ideal set of candidate perturbagens, as to change their
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expression state we have to perturb them individually.
The obtained contextualized networks were used to
identify genes in the common elementary circuits (posi-
tive and negative circuits) that can also serve as a set of
candidate genes for perturbation. Genes in elementary
circuits have been reported to play a crucial role in
maintaining network stability [79] and are considered as
a necessary condition for a network to have an attractive
cycle [80]. In this regard, genes present in the common
elementary circuits are considered to be the backbone of
the network and any perturbations in the expression
levels of these genes might lead the system to deviate
from the normal steady state of the system, which can
be described as a transition from healthy to a diseased
state. Once we obtained a set of optimal perturbation
candidates, we performed single-gene perturbation sim-
ulations to see the effect of change in expression of a
single gene on all the other genes in the GRN. This
measure tells us about the influential capability of the
selected gene in the network; the higher the number of
downstream genes being affected by perturbing a candi-
date gene, the more crucial is its role in the regulation
of other genes in the GRN.
Positions from the AD association analyses were

ranked based on a combined p value and log2 fold
change ranking score. The GRN analysis was then con-
ducted separately for the genes annotated to the 1000
highest ranked sites in the MTG (5mC, 5hmC, and UC
separately) and blood (baseline and follow-up separately)
(Additional file 1: Tables S2–S7). Closest UCSC TSS an-
notation was used to obtain unique genes. After applying
the differential GRN analysis on the contextualized net-
works, we ranked the key candidate genes based on their
scores. This score represents the number of genes whose
gene expression is changed (shifted from diseased to-
wards the healthy phenotype) upon perturbation of the
candidate gene.
Raw RNA expression data was exported from Illu-

mina’s GenomeStudio (version 2011.1) with the Ex-
pression Module (v1.9.0) for further analysis in R. Of
the 80 subjects used for the epigenetic analyses, 1
case was not included on the expression array, and 3
additional cases were excluded after quality control of
the data, due to extreme outlying values or failed
reads, leaving 76 subjects for further analyses. Data
was quantile-quantile normalized. Using the same
model as for the regression analysis, the sva package
was used to determine SVs for the epigenetic and ex-
pression datasets. The effects of age, gender, and 5
SVs were regressed out of the epigenetic and expres-
sion data using limma (i.e., “regressed data” refers to
the residuals of a model fitted with the covariates, ex-
cluding the predictor of interest, being AD diagnosis
or conversion in this case). Spearman correlations

were determined for the expression data and the
average of the regressed beta values of the probes in
the DMRs, DHRs, and DURs, as well as correlations
between the different epigenetic markers (5mC,
5hmC, and UC) for these probes, using the Hmisc
package (version 4.0-2) [81].
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