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Abstract

Background: Oncogenic K-Ras signaling highly relies on the canonical Ras/MEK/ERK pathway to contribute to
pancreatic cancer progression. However, numerous efforts of MEK inhibitors have failed to provide an optimal
antitumor effect for pancreatic cancer in practice. The aim of the present work was to develop a more efficacious
therapeutic intervention for MEK inhibitors through combination with histone deacetylase (HDAC) inhibitor
MPTOEQ28.

Methods: The effects of combined therapy on cell viability, apoptosis, protein, and RNA expressions were
determined by MTT assay, flow cytometry, western blotting, and quantitative PCR analysis. The AsPC-1
xenograft was used to assess antitumor effects in vivo.

Results: The co-administration of MPTOE028 and MEK inhibitor yielded synergistic effects on cell viability
suppression both in K-Ras mutated and wild-type pancreatic cancer cells and also markedly triggered cell
apoptosis. Surprisingly, ERK and epidermal growth factor receptor (EGFR) were activated by the long-term and
low-concentration treatment of MPTOE028 or another HDAC inhibitor alone. Whereas, the pharmacological
attenuation of ERK signaling dramatically abolished the MPTE028-induced p-ERK and EGFR expression. Overexpression
of HDAC4, HDACS6, and MEK, respectively, reversed the cell death induced by the combined treatment. Finally, the
combined treatment decreased the tumor volume in an AsPC-1 xenograft model compared to each individual
treatment alone.

Conclusions: The synergistic anti-survival effect of the combination was suggested to occur via compensation
of the MEK inhibitor for activated ERK. Our results indicate that this combination strategy could benefit patients with
pancreatic cancer beyond K-Ras status.
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Background

Pancreatic cancer accounts for 3% of all cancers but re-
mains the fourth leading cause of cancer-related deaths.
The overall 5-year survival rate for patients with pancre-
atic cancer is less than 5% [1]. Compounding this poor
prognosis is the limited therapeutic options against pan-
creatic cancer. Gemcitabine is used as a standard
chemotherapy but only improves overall survival by 5.7
months, while the combination of gemcitabine with the
targeted therapy erlotinib only enhances overall survival
by 6.24months. Recently, the combination of
5-fluorouracil, irinotecan, and oxaliplatin was shown to
provide a significant increase of the overall survival rate
(11.1 months) for patients with pancreatic cancer but
was also associated with a high toxicity rate [2]. There-
fore, development of a new therapeutic strategy for pan-
creatic cancer is an urgent clinical challenge.

Mutations of oncogenic genes are largely associated
with triggering cancer cell proliferation, metastasis, and
angiogenesis. K-Ras mutations are present in approxi-
mately 95% of pancreatic cancers, leading to burst acti-
vation of the mitogen-activated protein kinase (MAPK)
pathway, also known as the Ras-Raf-MEK-ERK pathway
[3]. In transgenic mouse models, K-Ras mutation has
been shown to play an early oncogenic role in the devel-
opment and progression of pancreatic cancer. Further-
more, cooperation of the Ras-Raf-MEK-ERK pathway
with other genetic alterations, including p16™%*, ps3,
or TGEB/SMAD4, accelerates pancreatic cancer progres-
sion [4, 5]. Activation of the Ras-Raf-MEK-ERK pathway
promotes cell cycle progression through increasing cyc-
lin D expression and inhibits apoptosis by repressing the
pro-apoptotic Bcl-2 family of proteins [6, 7]. Thus, tar-
geting the MAPK pathway appears to be a valuable strat-
egy for the treatment of pancreatic cancer. However, few
MEK inhibitors have been developed and applied in clin-
ical trials for pancreatic cancer to date. CI-1040, devel-
oped by Pfizer/Warner-Lambert, was the first MEK
inhibitor that progressed to the clinical stage of evalu-
ation but failed in a phase II trial due to its poor expos-
ure (ClinicalTrials.gov number, NCT00033384) [8, 9].
Another MEK inhibitor, selumetinib (AZD6244, Astra-
Zeneca), showed no superior effect in pancreatic cancer
patients when compared with conventional cytotoxic
chemotherapy [10]. Thus, one potential strategy to over-
come these issues is to develop a combination treatment
of a MEK inhibitor with other anticancer agents, which
requires further investigation.

Recent research demonstrated that some tumor sup-
pression genes are epigenetically silenced in cancers.
Histone deacetylases (HDACs) and histone acetyltrans-
ferases are two important enzymes that regulate the
post-translational modification of histones and conse-
quent gene expression [11]. HDACs have long been

Page 2 of 14

recognized as transcriptional repressors and are found
to be overexpressed in several types of cancer, including
pancreatic cancer [12]. Blocking HDAC activities with
HDAC inhibitors such as vorinostat (SAHA) or trichos-
tatin A results in a potent antitumor effect, especially in
hematologic malignancies. Treatment of HDAC inhibi-
tors was shown to directly promote the apoptosis path-
way through induction of proapoptotic genes (BMF,
BIM), generation of reactive oxygen species, and upregu-
lation of TRAIL expression [13]. In addition, the com-
bination of HDAC inhibitors and chemotherapies has a
synergistic effect on antitumor activity. For instance,
co-treatment of an HDAC inhibitor plus gemcitabine
synergistically enhanced apoptosis and the cytotoxic ef-
fect of each agent in pancreatic cancer cells [14].

MPTOEO028 is a novel pan-HDAC inhibitor, which tar-
gets both classes I and II HDAC, with potent antitumor
activity demonstrated not only in hematologic cancers but
also in solid tumors [15, 16]. A previous study indicated
that MPTOE028 showed more potent effects for inhibiting
HDAC activity and inducing cell apoptosis compared to
SAHA both in vitro and in vivo [15]. A phase I trial of
MPTOE028 is currently completed in March of 2019
(ClinicalTrials.gov number, NCT02350868). Given that a
K-Ras mutation is a key mechanism of pancreatic carcino-
genesis, we hypothesized that treatment of MEK inhibitors
could interrupt the K-Ras downstream signaling pathway
to reduce the survival of pancreatic cancer cells. Although
several studies have demonstrated that combination of an
HDAC inhibitor with a MEK inhibitor had synergistic an-
titumor activity [17-19], the effect and underlying mech-
anism of this combinational strategy for pancreatic cancer
have yet to be explored in detail. Accordingly, the object-
ive of the present study was to exploit the antitumor activ-
ity of the combination of the novel HDAC inhibitor
MPTOE028 with a MEK inhibitor, and determine the
feasibility of this strategy for improving the therapeutic
outcome in the treatment of pancreatic cancer.

Methods

Reagents

RPMI-1640 medium, DMEM medium, fetal bovine serum
(EBS), penicillin, streptomycin, and all other tissue culture
reagents were obtained from GIBCO/BRL Life Technolo-
gies (Grand Island, NY, USA). MPTOE028 was synthesized
by our chemical team. Briefly, the commercially available
1H-indole-5-carbaldehyde with benzenesulfonyl chloride
yielded the related 1-benzenesulfonylindole. This com-
pound was subject to the Wittig reaction with methyl (tri-
phenylphosphorylidene) acetate followed by LiOH
hydrolysis and PYBOP-mediated amide formation, and
the reaction sequence was completed by TFA-mediated
deprotection to afford the desired 1-benzenesulfonyl-5-
(N-hydroxyacrylamide)-indole, MPTOE028 [20]. PD98059,
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propidium iodide (PI), and 3-(4,5-dimethylthiazo-
1-2-y1)-2,5-diphenyltetrazolium bromide (MTT) were or-
dered from Sigma Chemical (St. Louis, MO, USA).
Vorinostat (SAHA) and trametinib were purchased from
Selleckchem (Houston, TX, USA). Trizol reagent and Li-
pofectamine 2000 were from Invitrogen (Carlsbad, Cali-
fornia, USA); random primer and M-MLV RT were
purchased from Promega (Madison, WI, USA). SYBR™
Green PCR Master Mix was from Applied Biosystems/
Thermo Fisher Scientific (Waltham, Massachusetts, USA).

Actin antibody was purchased from Millipore (Bur-
lington, MA, USA). Antibody against caspase-3 was pur-
chased from Imgenex (San Diego, CA, USA).
HRP-conjugated anti-mouse and anti-rabbit IgGs were
ordered from Jackson ImmunoResearch (PA, USA).
Antibodies specific to PARP, EGFR, phosphorylated
(Thr-202/Tyr-204) or total p44/p42 MAP kinase, MEK,
H3K9ac, GFP, HDAC1, HDAC4, and HDAC6 were ob-
tained from Cell Signaling Technology (Beverly, MA,
USA).

Cell culture

Human pancreatic cancer cell lines AsPC-1, PANC-1,
and BxPC-3 were all purchased from Bioresource Col-
lection and Research Center (BCRC; Hsinchu, Taiwan).
AsPC-1 and BxPC-3 cells were cultured in RPMI-1640,
and PANC-1 cells were maintained in DMEM. Both me-
diums are with 10% FBS (v/v). Mediums were supple-
mented with 100U mL™" penicillin, 100pug mL™"
streptomycin, and 2.5 pg/mL amphotericin B. Cells were
maintained in a humidified incubator at 37°C in 5%
C0O,/95% air.

Cell viability assay

Cell viability was determined by MTT assay. Cells were
seeded into 96-wells for overnight and then treated with
indicated concentrations of drugs for 72 h, washed out
once and incubated with medium contained 0.5 mg/mL
MTT for 1h. Cells were lysed by DMSO and then the
absorbance was detected by an ELISA reader at 550 nm
wavelength. Cell viability was calculated by the ratio
(percentage) of absorbance between control and treat-
ment groups. Combination index (CI) and fractional ef-
fect (Fa) were measured by CompuSyn software
(ComboSyn, Inc., Paramus, NJ, USA).

Flow cytometry analysis

Cells were seeded into 6-wells for overnight. After adher-
ence, cells were treated with indicated concentrations of
drugs for 72h and then collected by trypsinization, fixed
with 75% (v/v) ethanol at - 20 °C overnight. After centrifu-
gation, cells were incubated in phosphate-citric acid buffer
(NaHPO, 0.2 M, citric acid 0.1 M (pH 7.8)) for 20 min at
room temperature. Then, cells were centrifuged and
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resuspended with 0.5 mL PI solution (Triton X-100 0.1%,
RNase 100 pg/mL, and propidium iodide 80 pg/mL). DNA
content was analyzed with the FACScan and CellQuest
software (Becton Dickinson).

Western blot analysis

Cell lysates were extracted by a lysis buffer containing
Tris 50 mM, sodium chloride 150 mM, SDS 0.1%, so-
dium deoxycholate 0.5%, and NP-40 1% for 30 min at 4°
C and then centrifuged at 13,000 rpm at 4 °C for 30 min.
Protein was quantified by BCA Protein Assay Kit (Ther-
moFisher Scientific, Waltham, Massachusetts, USA).
Equal protein amounts of protein were resolved by 10%
SDS-polyacrylamide gel and then transferred onto a
nitrocellulose membrane after electrophoresis. The
membranes were incubated with specific primary anti-
bodies overnight at 4 °C and then applied to appropriate
secondary antibodies for 1h. The stock concentrations
of the indicated primary antibodies were as following:
PARP 433.0 ug/mL, caspase-3 1 mg/mL, H3K9ac 41.0 pg/
mL, p-ERK 19.0pug/ml, t-ERK 177.0ug/mL, EFGR
29.0 pug/mL, HDAC1 241.0 pg/mL, HDAC4 320.0 pg/mL,
HDAC6 46.0 pg/mL, GEP 7.0 pg/mL, and MEK 64.0 pg/
mL. All the primary antibodies were used in 1:1000 dilu-
tion in TBST. After washing out the unbound primary
antibodies, the membranes were applied to appropriate
horseradish peroxidase-conjugated anti-mouse (for Cas-
pase3, EGFR, HDAC1 and HDAC4, and MEK) or anti-
rabbit immunoglobulin G secondary antibodies (for PARP,
H3K9ac, p-ERK, t-ERK, HDAC6, and GFP) with 1:5000
dilution in TBST for 1h at room temperature. Secondary
bound antibodies were detected using enhanced chemilu-
minescence (ECL) detection reagents (Amersham, Eng-
land). Briefly, working HRP substrate is prepared, and the
membranes were incubated in equal volume of solution A
and B for 1 min. Then removing HRP substrate, the mem-
branes were exposed to X-ray film. An X-ray film was
immersed in the developer and then in the fixer (Kodak,
Sigma-Aldrich), and the signals were detected.

Apoptotic cell death

Apoptotic cell death was assessed by human active
caspase-3 ser29 ELISA kit (Abcam, Cambridge, MA,
USA). The steps were followed by the provided protocol
booklet. Briefly, cells were treated with indicated con-
centrations of drugs for 24, 48, and 72 h. The cell lysates
were collected, extracted with the lysis buffer, and then
added to appropriate well. Primary antibody cocktail was
added to each well for 1h at room temperature with
shaking. The wells were washed three times, added with
TMB substrate, and incubated for 1h at room
temperature with shaking. Finally, stop solution was
added for the detection signal at a defined endpoint. The
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absorbance was detected by an ELISA reader at 450 nm
wavelength.

Transient transfection

Cells were seeded into 6-wells for overnight and then
transfected with HDAC1, HDAC4, HDAC6, or MEK
plasmids and ERK siRNA by using Lipofectamine 2000
for 8h. PcDNA-FLAG-HDAC1 (plasmid 13820),
pcDNA-FLAG-HDAC4 (plasmid 13821),
pcDNA-FLAG-HDACS6 (plasmid 13823), and GFP-MEK
(plasmid 14746) were purchased from Addgene (Cam-
bridge, MA, USA), and ERK siRNA (s11137) was pur-
chased from Thermo Fisher Scientific (Waltham,
Massachusetts, USA). Refreshed culture medium for
overnight and then treated with MPTOE(028, PD98059,
or both drugs for 48 h. Cell lysates were collected for
western blot analysis.

Real-time polymerase chain reaction (qPCR)

Total RNA was isolated with TRIzol reagent by a pro-
cedure protocol. According to the manufacturer’s proto-
col, 5 pg messenger RNA (mRNA) was incubated with
random primer at 65 °C for 5 min and then reacted with
M-MLV RT (Reverse Transcriptase) at 37°C for 1h to
obtain ¢cDNA. The SYBR™ Green PCR Master Mix (Ap-
plied Biosystems) was used to evaluate the amplification
of EGFR and 18S housekeeper gene. EGFR and 18S pri-
mer sequences are 5'-GCGTCTCTTGCCGGAATG-3'/
5'-CTTGGCTCACCCTCCAGAAG-3" and 5'-AACC
CGTTGAACCCCATT-3'/5"-CCATCCAATCGGTAG-
TAGC-3’, respectively. StepOne Real-Time PCR System
(Applied Biosystems) was used for the detection of fluor-
escent signal. Relative fold gene changes were normal-
ized to 18S and calculated by using the 272" method
[21].

In vivo xenograft animal model

Animal studies were reported in compliance with the
ARRIVE guidelines [22, 23]. AsPC-1 xenograft animal
model was referred and followed by the previous study
[24, 25]. Four-week-old male Balb/c-nude mice were
purchased from the National Laboratory Animal Cen-
ter (Taipei, Taiwan). All mice were housed (five mice
per cage) in specific pathogen-free (SPF) animal rooms
with controlled temperature (20-22°C) and humidity
(60%) under a 12-h light/dark cycle. Before the start of
experimentation, mice were offered ad libitum food
and water for 7 days. AsPC-1 cells (1 x 10”/mice) were
subcutaneously injected into Balb/c-nude mice to es-
tablish AsPC-1 xenograft model. Once tumor volume
reached to 100 mm®, mice were divided in to four
groups (n =5) and dosed with vehicle (1% carboxy-
methyl cellulose + 0.5% Tween 80), PD98059 (20 mg/
kg, ip (intraperitoneal), qd (once per day)), MPTOE028
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(25 mg/kg, oral, qd), and PD98059 combined with
MPTOEO028 to the end of the experiment. Tumor vol-
umes and body weight were measured twice per week.
Tumor volumes were determined by the formula vol-
ume (mm?>) = (length x width?)/2. The mice were scari-
fied once tumor volume is above 1200mm? All
protocols were followed and approved by the Animal
Care and User Committee at the Taipei Medical
University.

Statistical analysis

The data and statistical analysis comply with the recom-
mendations on experimental design and analysis [26]. In
vitro experiments were obtained at least three independ-
ent times, and data are presented as means + SD. Data
statistical analysis was conducted by using Sigma Plot
10.0 and Prism 7.0 and evaluating with Student’s ¢ tests
for comparison of two groups. Prism 7.0 with Student’s ¢
test was used for the analysis of animal study. Differ-
ences were considered significant at P < 0.05. One aster-
isk indicates P <0.05, two asterisks indicate P <0.01,
and three asterisks indicate P < 0.001.

Randomization and blinding

The animal study in this research was conducted in a
randomized manner. The mice were randomly separated
to cages by vivarium staff and randomized to vehicle or
indicated treatment groups. During treatment, the inves-
tigator was blinded to each group. The operator and
analyst were different people for blinding.

Results

MEK inhibitor potentiates the cytotoxic effect of
MPTOE028 or SAHA in pancreatic cancer independently
from K-Ras status

First, we determined the cytotoxic effect of the HDAC
inhibitor MPTOE028 or SAHA plus the selective MEK/
ERK kinase inhibitor PD98059 or trametinib in three dif-
ferent pancreatic cancer cell lines. As shown in Add-
itional file 5: Table S1, treatment with MPTOE028 or
SAHA alone had a differentiated cytotoxic effect in all
pancreatic cancer cells. The dosages of MPTOE028 and
SAHA chosen for combination treatment were above or
close to ICs, in each cell lines (Additional file 5: Table
S1). The combination of MPTOE028 or SAHA with
PD98059 displayed a synergistic cytotoxic effect in the
K-Ras mutation-positive AsPC-1 and PANC-1 cell lines
(Figs. 1a, b and 2a, b), and these phenomena also con-
firmed with trametinib, the only MEK inhibitor currently
approved for the treatment of melanoma harboring a
B-Raf mutation (Figs. 1c and 2c¢ and Additional file 1:
Figure S1C and D) [27]. Furthermore, the combined
treatment also potentiated the effect of the HDAC in-
hibitor alone in BxPC-3 cells with wild type K-Ras
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Fig. 1 Cytotoxic effect of combination MPTOE028 with MEK inhibitors in pancreatic cancer cells. AsPC-1 (a) and PANC-1 (b) cells were treated
with DMSO, MPTOE028 (E028), PD98059 (PD), or MPTOE028 plus PD98059 with indicated concentration for 72 h. AsPC-1 (c) and BxPC-3 (d) cells
were treated with DMSO, MPTOE028, trametinib (T), or MPTOE028 plus trametinib with indicated concentration for 72 h. Left panels: Cell viability
was determined by MTT assay. Right panels: Combination index (Cl) and fraction affected (Fa) are calculated by CompuSyn software. e AsPC-1
cells were transfected with scramble or ERK siRNA and then combined with indicated concentrations of MPTOE028 for 48 h. PD 5, PD 10, PD 20,
and PD 40 were represented here as PD98059 5 uM, 10 uM, 20 uM and 40 pM. T 0.3, T 1, and T 3 were represented here as trametinib 0.3 nM, 1

(Figs. 1d, 2d and Additional file 1: Figure S1A and B). A
combination index (CI) value of 1 indicates an additive
drug interaction, whereas a CI value of less than 1 de-
notes synergism. To mimic the function of MEK inhibi-
tor, we silenced MEK, showing a similar effect when the

AsPC-1 cells were co-treated with MPTOE028 and
PD98059 (Fig. 1le). Overall, these results showed that in-
hibition of MEK magnified the cytotoxic impact of

pan-HDAC

inhibitors both
wild-type pancreatic cancer cells.

in K-Ras-mutated and
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Fig. 2 Cytotoxic effect of combination SAHA with MEK inhibitors in pancreatic cancer cells. AsPC-1 (a) and PANC-1 (b) cells were treated with
DMSO, SAHA, PD98059 (PD), or SAHA plus PD98059 with indicated concentration for 72 h. AsPC-1 (c) and BxPC-3 (d) cells were treated with
DMSO, SAHA, trametinib (T), or SAHA plus trametinib with indicated concentration for 72 h. Left panels: Cell viability was determined by MTT
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MPTOE028-mediated cell apoptosis is enhanced by MEK
inhibitor

To clarify the cytotoxic mechanism of the combined
therapy, we firstly evaluated the percentage of cells in
the sub-G1 phase of the cell cycle with a DNA content
less than 2N after treatment. As demonstrated in
Fig. 3a, PD98059 dose-dependently increased the pro-
portion of AsPC-1 cells in the sub-G1 phase at 72h
after MPTOE028 or SAHA treatment. Since the cells
with sub-G1 DNA content were counted as apoptotic

and necrotic cells [28], further to focus on apoptosis,
the cleaved caspase-3 induction was assessed. Treat-
ment of AsPC-1 and PANC-1 cells with a high dose of
MPTOE028 or SAHA alone resulted in caspase-3
cleavage and PARP activation, markers of induction of
the apoptotic pathway. These effects were enhanced
by adding PD98059 (Fig. 3b and c¢) or trametinib
(Fig. 3d). The expression level of acetylated H3, an
HDAC inhibitor biomarker, in PD98059 combined
treatment was increased more significantly than
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observed with MPTOE028 or SAHA treatment alone
(Fig. 3b and c), but not shown in the combination of
trametinib (Fig. 3d). The differences between these re-
sults should be further investigated. Moreover, the

combined treatment caused an apoptotic effect at 72 h
was more significant than 48 h (Fig. 3e). To sum up,
HDAC inhibitors caused greater apoptosis under MEK
inhibition.
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MEK inhibitor compensated for MPTOE028-induced p-ERK
and EGFR upregulation

To further elucidate the mechanisms underlying the syn-
ergistic action of this combined strategy, we treated the
cells with MPTOE028 or SAHA over the long term and
evaluated the effects on ERK activation. The levels of
p-ERK and EGFR were reduced at 24 and 48h with
MPTOEO028 and 24h with SAHA treatment. However,
each HDAC inhibitor alone triggered ERK phosphoryl-
ation and EGFR expression upregulation in a
concentration-dependent manner in AsPC-1 cells at 72
h (Fig. 4a). And this MPTOE028 or SAHA-triggered
p-ERK and EGFR upregulation could be eliminated by
co-treatment with PD98059 or trametinib at 72h in
three pancreatic cells (Fig. 4b, ¢ and Additional file 2:
Figure S2A). Moreover, MPTOE028 or SAHA-regulated
EGER expression was found to occur through transcrip-
tional activation at 48 h, and the effect was suppressed
with PD98059 or trametinib treatment (Fig. 4d, Add-
itional file 2: Figure S2B and C), which reflected to pro-
tein expression at 72 h (Fig. 4b, ¢ and Additional file 2:
Figure S2A ) in three pancreatic cells. Based on previous
studies, K-Ras signaling activation occurs through the
canonical MAPK pathway, which will be enhanced by
positive feedback activation of EGFR [29]. Thus, we
sought to clarify whether the expression of EGFR can be
regulated by ERK activity. The results showed that
PD98059 inhibited the EGFR protein level in a dose-
and time-dependent manner (Additional file 3: Figure
S3A), and the effect was confirmed with the treatment
of ERK siRNA (Additional file 3: Figure S3B). These
findings suggested that the MEK inhibitor compensated
for the induced p-ERK and EGFR expression triggered
by the HDAC inhibitor.

HDAC and MEK are involved in the HDACi-MEKi-
combined apoptotic effect

Our previous study showed that MPTOE028 enzymatically
inhibited Class I and II HDACs [15]. In addition,
MPTOEO028 inhibited the growth of human B cell lymph-
oma cells through HDAC suppression. Therefore, to fur-
ther determine whether HDACs and MEK play synergistic
roles in apoptosis, HDACs and MEK were transiently
overexpressed in pancreatic cancer cells followed by
co-treatment with MPTOE028 and PD98059. As shown,
HDAC], 4, and 6 were all transfected successfully (Fig. 5a
and Additional file 4: Figure S4A), and the MPTOE028
and PD98059-induced cleavage of caspase-3 and PARP ac-
tivation were abolished by HDAC4 or HDAC6 overex-
pression but were not affected by HDAC1 (Fig. 5b and
Additional file 4: Figure S4B). Furthermore, diminished
PARP activity was detected in response to MEK overex-
pression (Fig. 5¢c and Additional file 4: Figure S4B). These
results suggest that HDAC and MEK proteins are involved
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in the MPTOE028 and PD98059-mediated apoptosis path-
way activation.

MPTOE028 and PD98059 combination shows antitumor
activity in a human pancreatic AsPC-1 xenograft model
Finally, to investigate the in vivo antitumor activity of
the proposed combinational strategy, we used AsPC-1
xenografts in a nude mouse model. Once the tumor vol-
ume reached 100 mm?, the mice were randomly divided
into four groups: vehicle control group, PD98059 (20
mg/kg daily) alone group, MPTOE028 (25 mg/kg daily)
alone group, or combinational therapy group. Compared
to the control group, MPTOE(028 treatment alone and
the combinational therapy resulted in the reduction of
the tumor volume. Further, there was a trend displayed
that the combination group had an additional antitumor
effect (Fig. 6a). There was no loss of body weight or ad-
verse effects noted in any group (Fig. 6b). Immunoblot
analysis of AsPC-1 xenograft tissues showed an increase
in the cleaved caspase-3 level in the combination ther-
apy group, which was confirmed with immunohisto-
chemical staining (Fig. 6¢). Moreover, EGFR expression
was downregulated following co-treatment of the two
drugs (Fig. 6d). These results indicated that the combin-
ation of MPTOE028 and PD98059 would have potential
antitumor activity in vivo.

Discussion

Pancreatic cancer is a lethal disease with a poor and dis-
mal prognosis. Since curable drug treatment is currently
unavailable, a novel efficacious therapeutic strategy is ur-
gently needed. HDAC inhibitors have been demon-
strated to have anticancer potential for pancreatic cancer
[12]. In addition, mutated K-Ras and overexpressed
EGER is present in > 90% and 30—-50% of pancreatic can-
cers, respectively, resulting in downstream MEK/ERK
pathway overactivation [30]. Hence, we evaluated the an-
ticancer potential and mechanism of a MEK inhibitor
combined with our novel HDAC inhibitor MPTOEOQ28,
which currently completes phase I clinical trial for pa-
tients with solid tumors, against pancreatic cancer to
provide a guide for a future developmental strategy.

The observation of aberrant HDAC expression in pan-
creatic cancer led to discovery of the therapeutic potential
of HDAC inhibitors in the treatment of pancreatic ductal
adenocarcinoma [31]. In preclinical studies, the mecha-
nisms of HDAC inhibitors against pancreatic cancer cells
were demonstrated to involve apoptosis activation, along
with the induction of anti-angiogenesis and anti-metasta-
sis factors [12]. MPTOE028, an orally administered
N-hydroxyacrylamide-derived ~ pan-HDAC  inhibitor,
showed a growth suppression effect in cultured NCI-60
human cancer cell lines, including leukemia, melanoma,
lung, colon, breast, prostate, renal, and central nervous
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concentrations of MPTOE028 or SAHA for 24, 48, and 72 h. The protein expression of p-ERK and EGFR was determined by western blotting. Actin
was used as an internal control. b AsPC-1 cells were treated with indicated concentrations of MPTOE028 or SAHA combined with or without 10
and 20 uM PD98059 (PD) for 72 h. ¢ AsPC-1 and BxPC-3 cells were treated with indicated concentrations of MPTOE028 or combined with or
without trametinib (Tra) for 72 h. p-ERK and EGFR protein expressions were analyzed. t-ERK was used as an internal control. d AsPC-1 cells were
treated with indicated conditions for 48 h to determine EGFR mRNA expression. *P < 0.05 and ***P < 0.001 compared with the indicated group

system cancers, in our previous study [15]. Here, we found
that treatment with MPTOE028 or the commercially avail-
able pan-HDAC inhibitor SAHA alone could evoke the
apoptosis of pancreatic cancer cells and accumulation of
cells in the sub-G1 phase at 72 h (Fig. 3). But, compared
to K-Ras codon 12 mutant (K12D) AsPC-1 and PANC-1
cells [32], K-Ras wild-type BxPC-3 was more sensitive to
the HDAC inhibitors (Figs. 1, 2 and Additional file 5:
Table S1). Further research is required to determine the

specific causes of these differences in the sensitivity of
pancreatic cells to HDAC inhibitors.

Based on completed clinical trials, the use of an
HDAC inhibitor as monotherapy in hematological ma-
lignancies showed more effective therapeutic outcomes
than for solid tumors; therefore, the combination of
HDAC inhibitors with various anticancer agents has
been evaluated for the treatment of advanced pancreatic
cancer [12]. In addition, Ras has been recognized as an
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undruggable target in pancreatic cancers characterized
by overactivation of the Ras-Raf-MEK-ERK pathway.
Administration of a MEK inhibitor alone failed to pro-
vide promising antitumor effects in pancreatic cancer
patients [10]. Therefore, we combined an HDAC inhibi-
tor with a MEK inhibitor, which had a synergistic effect
on decreasing cell viability, although this effect was ex-
clusively observed in pancreatic cancer cells independent
on K-Ras status (Figs. 1, 2 and Additional file 1: Figure
S1). Moreover, the MEK inhibitor PD98059 potentiated
the HDAC inhibitor-caused sub-G1 accumulation and
the cleavage of caspase-3 and PARP in both AsPC-1 and
PANC-1 cells (Fig. 3). These effects were stronger in
AsPC-1 cells, consistent with the lower CI values of

AsPC-1 compared to PANC-1 and BxPC-3 cells (Figs. 1
and 2). These observations are in line with previous
studies demonstrating MEK inhibition sensitization of
HDAC inhibitor-caused cell death in leukemia, breast,
colon, and lung cancer cells through blockade of ERK
signaling [17-19, 33, 34].

The improved anticancer effect of HDAC inhibitors
enhanced by MEK inhibition can be achieved through
diverse mechanisms such as NOXA-mediated Mcl-1
degradation in triple-negative breast cancer [33],
c-FLIPL downregulation in B-Raf mutation-positive
colon cancer [35], or activation of FOXOs with a subse-
quent increase in BIM and cell cycle inhibitors in lung
cancers harboring a Ras mutation [34]. Hence, to further
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assess the underlying mechanism of pancreatic cancer
A 15007 o co cells that are synergistically susceptible to the combined
T s 3 therapy, we evaluated the effects on ERK activation. In
£ oo T o :I*i|§ AsPC-1 K-Ras mutation cells, low concentrations (below
£ the half-maximal inhibitory value) of MPTOE028 or
S a0 SAHA effectively decreased the p-ERK expression level
g 250 in a dose-dependent manner at 24 h. However, to our
2, surprise, long-term (72 h) treatment with low HDAC in-
Days hibitor concentrations dramatically activated ERK
(Fig. 4a), which can be diminished by adding MEK in-
B s0- hibitors (Fig. 4b, c). Consistently, this phenomenon was
254 also found in K-Ras wild-type cell line BxPC-1 (Fig. 4c).
EZO.W The finding suggested that the synergistic combination
g 15 phenomenon might be due to the MEK inhibitor cover-
2 104 -0 contr ing for HDAC inhibitor-induced p-ERK upregulation,
8 ) % '&E}}}:{szmz,?ﬁ?;;}“"’aw accompanied by cell survival and drug resistance [36].
0 —————— Liao and colleagues [37] reported that ERK phosphor-
P oy % ylated CFL-1 conferred liver cancer cells with resistance
to HDAC inhibitors. In addition, we previously found
C S thgt MPTOE028 anfl SAHA .triggered p—ERI(. expression
cf*\'q&k«:?@ with a subsequent increase in the transcription level of
<pro-Caspase-3 fibroblast growth factor receptor 3 in liver cancer cells
- resistant to sorafenib, an oral multiple kinase inhibitor
W «§leaved . [38]. In the present study, sole administration of HDAC
[=====] «Actin inhibitors upregulated EGFR expression, which would be
followed by ERK phosphorylation, and these effects were
D abrogated by MEK inhibitor at the transcription level
(Fig. 4d, Additional file 2: Figure S2B and C). Our as-
u sumption about the sequence of p-ERK and EGFR acti-
H&E vation was further validated given that EGFR expression
was observed after ERK suppression. Therefore, pharma-
cological inhibition or genetic ablation of ERK effectively
e attenuated EGFR expression (Additional file 3: Figure
S3). Indeed, oncogenic K-Ras has been shown to upregu-
late endogenous EGFR expression, which is required for
EGFR K-Ras-induced pancreatic tumorigenesis [39]. Moreover,
EGER signaling directly mediates the phosphorylation of
d0um ERK bypassing Ras. Hence, MEK inhibition rather than
Fig. 6 The antitumor activity of combination MPTOE028 with PD98059 inhibition of Raf or PI3BK/AKT can result in complete
in human pancreatic cancer xenograft model. AsPC-1 cells were elimination of EGFR-regulated ERK phosphorylation
transplamed .subcutaneously in .Balb/c_—mude mice. Mice_ were in pancreatic cancer cells [40]. MEK overexpression
randomized into four groups with daily treatment: vehicle .
control, MPTOE028 (oral, 25 mg/kg), PD98059 (intraperitoneal (ip), also reversed the apoptotic effect (PARP cleavage) of
20 mg/kg), or combinational therapy. Tumor volume of AsPC-1 MPTOE028 and PD98059 co-administration (Fig. 5c¢
xenograft was shown in a and the body weights were revealed and Additional file 4: Figure S4B). Given that MEK
in'b. *P <005 and **P < 0.01 compared with the respective control inhibition efficaciously diminished the activation of
group. ¢ Tumor protein lysates were subjected to immunoblot with ERK and EGFR due to HDAC inhibitors, we consider
caspase-3 antibody. Actin was served as a loading control. d L .
Hematoxylin and eosin staining was performed to examine cell there to be a synergistic interaction between MEK
morphology, and the immunohistochemical staining determines the and HDAC inhibitors (Fig. 4).
expressions of cleavage caspase-3 and EGFR before or after indicated Diverse HDACs govern cancer development and pro-
drug treatment. PD PD98059, E MPTOE028 gression via histone or non-histone modulation [13]. A

study of 29 patients with pancreatic adenocarcinoma
and nine patients with chronic pancreatitis showed that
the expression levels of HDACI, 2, 4, and 7 were signifi-
cantly increased in the former group [41]. HDAC6 has
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also been reported to be highly expressed in human pan-
creatic cancer tissues and was associated with increased
cell migration [42]. Moreover, a recent study showed
that the expression levels of HDACI, 2, 4, and 6 were
associated with clinicopathological parameters of pan-
creatic adenocarcinoma patients, including the tumor
proliferative capacity and patient survival [43]. We found
that HDAC4 and HDACS, but not HDAC]I, play critical
roles in the anticancer effect of the MPTOE028/PD98059
combination in K-Ras mutant cells through triggering
apoptosis (Fig. 5b and Additional file 4: Figure S4B).

Although targeting K-Ras signaling alone fails to evoke
massive tumor cell death, which has limited its clinical
use in the treatment of pancreatic cancer, the addition of
HDAC inhibitors can greatly improve outcomes [44].
The present study provides the first demonstration of
the synergistic mechanism of the HDAC/MEK inhibitor
combination in pancreatic cancer cells. HDAC inhibitors
induce cellular differentiation through histone and
non-histone protein acetylation. These agents require
further investigation as, although they have shown thera-
peutic benefit in combination for treating solid tumors,
they may also have unexpected, resistance-inducing ef-
fects (such as upregulation of pERK and EGFR after a
long-term treatment, which could be eliminated by
co-treatment with a MEK inhibitor). Specifically, the
MEK inhibitor compensated for the constitutive ERK
phosphorylation and activated EGFR induced by
MPTOEO028, while MPTOE028 contributed to cell death.

Beyond cell death, the HDAC inhibitors contribute to
cellular differentiation and inhibition of proliferation—
both biological processes are tightly coordinated and
regulated. Therefore, treatment with HDAC inhibitors
renders cancer cells more sensitive to associated chemo-
therapeutic agents resulting in an additive/synergistic
antitumor effect. This may be accompanied by positive
changes in cellular metabolism and angiogenesis-related
gene expression (decrease in VEGF expression). This
class of drugs also has immunomodulatory properties. In
this regard, tumor immune infiltration could be interest-
ing to determine in response to this treatment strategy.

Finally, the results from the in vivo study show the
higher (and significant) effect of MPTOE028 compared
to MEK inhibitor when applied alone in reducing the
tumor volume. The drugs seem to be well tolerated as
there was no loss of body weight or adverse effects
noted. The combination therapy showed a potential anti-
tumor effect as demonstrated by tissue analysis and im-
munohistochemistry. (Fig. 6).

Conclusions

To date, very few clinical trials have been conducted for
assessing the effect of HDAC inhibitors in pancreatic
cancer, which remains a challenging disease to treat.
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Treatment strategies of combining HDAC inhibitors
with gemcitabine, radiation therapy, 5-FU, or bortezomib
have thus far failed to improve the outcome [45]. Our
newly developed pan-HDAC inhibitor MPTOE028,
which completed phase I clinical trial, in combination
with a MEK inhibitor showed a promising antitumor ef-
fect for pancreatic cancers especially with a K-Ras muta-
tion. These preclinical results provide rational evidence
for progressing to phase II trials of MPTOE028.

Additional files

Additional file 1: Figure S1. Cytotoxic effect of combination HDACi
with MEK inhibitors in BxPC-3 and PANC-1 cells. (A, B) BxPC-3 cells were
treated with DMSO, MPTOE028 (E028)/SAHA, PD98059 (PD), or MPTOE028/
SAHA plus PD98059 with indicated concentration for 72 h. (C, D) PANC-1
cells were treated with DMSO, MPTOE028/SAHA, trametinib (T), or
MPTOE028/SAHA plus trametinib with indicated concentration for 72 h.
Left panels: Cell viability was determined by MTT assay. Right panels:
Combination index (Cl) and fraction affected (Fa) are calculated by
CompuSyn software. T0.1 and T1 were represented here as trametinib
0.1 uM and 1 pM. (TIF 440 kb)

Additional file 2: Figure S2. MEK inhibitors downregulate HDAC
inhibitor-induced p-ERK and EGFR expression. (A) PANC-1 cells were
treated with 5 uM MPTOE028 or SAHA combined with or without 20 uM
PD98059 (PD) for 72 h. The protein expression of p-ERK and EGFR was
determined by western blotting. t-ERK was used as an internal control.
PANC-1 (B) and BxPC-3 (C) cells were treated with indicated conditions
for 48 h to determine EGFR mRNA expression. *P < 0.05, **P < 0.005, and
**¥¥P < 0.0001 compared with the indicated group. (TIF 680 kb)

Additional file 3: Figure S3. ERK inhibition can downregulate EGFR
expression. (A) AsPC-1 cells were treated with indicated concentrations of
PD98059 for 24, 48, and 72 h. p-ERK and EGFR protein levels were
determined. (B) AsPC-1 cells were transfected with scramble or ERK siRNA
for 48 h to evaluate the protein expression of ERK and EGFR. Actin was
loaded as an internal control. (TIF 440 kb)

Additional file 4: Figure S4. Overexpressed HDAC4, HDAC6, or MEK
can reverse the apoptotic effect of combination in PANC-1 cells. PANC-1
cells were transfected with empty vector, HDAC1, HDAC4, HDAC6, or
GFP-MEK plasmid overnight and then co-treated with 2 uM MPTOE028
and 20 uM PD98059 for 48 h. (A) The protein expression of HDACT,
HDAC4, HDAC6, GFP, and (B) PARP. Actin was used as an internal control.
E, MPTOE028; PD, PD98059. (TIF 1669 kb)

Additional file 5: Table S1. ICsy of MPTOE028 and SAHA in pancreatic
cell lines. AsPC-1, PANC-1, and BxPC-3 cells were treated with different
concentrations of MPTOE028 or SAHA for 72 h. ICs (the half maximal
inhibitory concentration) was determined by MTT assay. (DOCX 12 kb)
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