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Abstract
Objective  Mutational analysis of BCR::ABL1 kinase domain (KD) is a crucial component of clinical decision algorithms 
for chronic myeloid leukemia (CML) patients with failure or warning responses to tyrosine kinase inhibitor (TKI) 
therapy. This study aimed to detect BCR::ABL1 KD mutations in CML patients with treatment resistance and assess the 
concordance between NGS (next generation sequencing) and Sanger sequencing (SS) in detecting these mutations.

Results  In total, 12 different BCR::ABL1 KD mutations were identified by SS in 22.6% (19/84) of patients who were 
resistant to TKI treatment. Interestingly, NGS analysis of the same patient group revealed an additional four different 
BCR::ABL1 KD mutations in 27.4% (23/84) of patients. These mutations are M244V, A344V, E355A, and E459K with 
variant read frequency below 15%. No mutation was detected in 18 patients with optimal response to TKI therapy. 
Resistance to TKIs is associated with the acquisition of additional mutations in BCR::ABL1 KD after treatment with TKIs. 
Additionally, the use of NGS is advised for accurately determining the mutation status of BCR::ABL1 KD, particularly in 
cases where the allele frequency is low, and for identifying mutations across multiple exons simultaneously. Therefore, 
the utilization of NGS as a diagnostic platform for this test is very promising to guide therapeutic decision-making.

Keywords  Chronic myeloid leukemia, BCR:ABL1 KD mutation, TKI resistance, Next generation sequencing, Sanger 
sequencing
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Introduction
Chronic myeloid leukemia (CML) is a clonal myelopro-
liferative neoplasm characterized by the presence of the 
Philadelphia (Ph) chromosome derived from a recipro-
cal translocation between chromosome 9 and 22 (t(9;22)
(q34;q11) to produce BCR::ABL1 oncogene [1, 2]. Ima-
tinib mesylate (IM) was the first BCR::ABL1 tyrosine 
kinase inhibitor (TKI) approved as first-line therapy for 
CML due to its superior result in terms of response rates, 
progression-free and overall survival compared with the 
previous treatment options [3]. Despite the remarkable 
achievement of TKI therapy, 20–30% of patients devel-
oped a primary or secondary resistance to treatment dur-
ing the disease course [4]. The most frequently described 
mechanism associated with resistance is the occurrence 
of point mutations in the BCR::ABL1 gene [5–9]. There-
fore, after the emergence of resistance and factors such 
as low compliance and inadequate dosing are excluded, 
BCR::ABL1 KD mutation testing is indicated as per the 
recommendations of both ELN (European LeukemiaNet) 
and NCCN (National Comprehensive Cancer Network) 
[10–13].

Sanger sequencing (SS) is the recommended method 
for detecting BCR::ABL1 KD mutation because of its high 
efficiency and accuracy [14]. However, the analytic sen-
sitivity of this method is limited, with the detection of 
15–20% mutations in the wild-type background [13, 15]. 
Hence, there is a need to explore other methods such as 
NGS (next generation sequencing), which offer advan-
tages in sensitivity, throughput and accuracy to deter-
mine BCR::ABL1 KD mutations. This study aimed to 
detect BCR::ABL1 KD mutations in CML patients with 
treatment resistance and assess the concordance between 
NGS and SS in detecting these mutations.

Methods
Participants and setting
This cross-sectional study was conducted on samples 
from CML patients with TKI resistance and those exhib-
iting optimal responses to TKI treatment. This study 
included samples from CML patients who received treat-
ment with either imatinib or a second-generation TKI 
such as nilotinib or dasatinib. Samples from patients with 
Ph-positive (Ph+) acute lymphoblastic leukemia (ALL), 
patients with atypical CML and those on non-TKI ther-
apy were excluded from this study.

The response to TKI therapy is defined according to 
European LeukemiaNet guidelines [11]. Patients with 
TKI resistance or treatment failure were those who failed 
to achieve a complete hematological response (CHR), 
complete cytogenetic response (CCR) and major molecu-
lar response (MMR) during treatment. Optimal respond-
ers were those who attained MMR BCR::ABL1 ≤ 1% and 
≤ 0.1% at 6 and 12 months of TKI therapy, respectively. 

CHR was characterized by the normalization of periph-
eral blood counts, and the disappearance of palpable 
splenomegaly. CCR indicated the absence of Ph + cells in 
the karyotype. MMR or MR3 was defined as a BCR::ABL1 
IS (International Scale) transcript level ≤ 0.1%. MR4 
and MR4.5 were defined as BCR::ABL1 IS ≤ 0.01% and 
≤ 0.0032% respectively.

Samples from the TKI-resistant group were identi-
fied from those received by the Diagnostic Laboratory 
Haematology at Institute for Medical Research (IMR), 
National Institute of Health (NIH) from January 2017 to 
December 2020. All samples in this group had previously 
undergone Sanger sequencing at the Diagnostic Labo-
ratory Haematology, which was the referral laboratory 
in the country for routine SS to detect BCR::ABL1 KD 
mutations. TKI responders patients were selected from 
the Pathology Laboratory at Hospital Tunku Azizah from 
January 2019 to December 2020. The Pathology Labo-
ratory commonly received samples and conducted the 
detection and quantification of BCR::ABL1 transcripts 
at the time of diagnosis or during follow-up for CML 
patients.

Sample size estimation
The sample size for the study was determined using 
the OpenEpi software [16]. Based on the prevalence of 
BCR::ABL1 mutations in previous studies (22.7% [17], 
22.4% [18] and 32.5% [19] in CML patients with imatinib 
resistance in Malaysia, a prevalence of 22.4% was consid-
ered. Accordingly, considering confidence interval at 95% 
and marginal error of 5%, a minimum number of 80 sam-
ples was required for this study.

cDNA synthesis
The archived RNA was quantified and checked for qual-
ity using NanoDrop 2000 spectrophotometer (Thermo 
Fisher Scientific). RNA was previously extracted using 
the QIAamp RNA Blood Mini kit (Qiagen). Then, total 
cellular RNA (1 µg/µl) was reverse transcribed to cDNA 
using SuperScript IV First Strand Synthesis System 
(Thermo Fisher Scientific).

Mutational analysis of BCR::ABL1 KD by Sanger sequencing
Sanger sequencing was performed upon double-step 
PCR amplification of the BCR::ABL1 KD. The first-round 
amplification was performed using a forward primer on 
exon 12/13 of the BCR gene and a reverse primer on exon 
10 of the ABL1-R gene. A 0.5 µl of the first PCR product 
was used as a template in second amplification of PCR. 
The ABL1 KD was amplified using three partially over-
lapping fragments, using set of primer that covers exon 4 
until exon 10 ABL1 gene [20].

Sanger sequencing was performed on ABI3730XL 96 
capillary Genetic Analyzer using BigDye® Terminator 
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v3.1 Cycle Sequencing kit. The obtained sequences were 
visualized and aligned with Genbank reference sequence 
NM_005157.5 using CLC Main Workbench, version 7.0.2 
(Qiagen).

Mutational analysis of BCR::ABL1 KD by next-generation 
sequencing
Semi-nested PCR was performed to amplify the 
BCR::ABL1 allele and followed by another PCR for ABL1 
KD amplification using appropriate primers [20]. A total 
of 400ng of each purified PCR product was used as input 
for tagmentation and library preparation using the Illu-
mina DNA Prep kit as per manufacturer instructions. The 
library was normalized to 2 nM and pooled for sequenc-
ing on an Illumina MiSeq.  The FASTQ files generated 
were then uploaded to Illumina BaseSpace Sequence Hub 
(BSSH). These files were analyzed using DRAGEN RNA 
(Illumina Inc.) and produced an output VCard File (VCF) 
file for downstream analysis. The details of methodology 
for NGS are provided in the supplemental Methods.

Results
This study includes 84 CML patients who either do not 
respond or have lost their response to TKI therapy, as 
well as 18 CML patients who have achieved stable opti-
mal responses to TKI therapy. The characteristics of 
patients are listed in Table 1.

Detection of BCR::ABL1 KD mutation
In total, 12 different BCR::ABL1 KD mutations were 
identified in 22.6% (19/84) of patients who were resis-
tant to TKI treatment by SS (Fig. 1). NGS resulted in the 
detection of 16 different missense mutations in 27.4% 
(23/84) of TKI resistant patients (Fig.  2). Among the 
TKI-resistant patients, 14 carried one mutation, while 9 
carried more than one mutation. NGS identified all true 

high-frequency mutations (> 15% frequency) found by SS 
and additional four low-frequency mutations (3 to 15% 
frequency). The additional mutations identified by NGS 
are M244V, A344V, E355A, and E459K (Table S1). No 
mutation was detected in patients with optimal response 
to TKI therapy by SS and NGS method.

Variant classification
Variants p.M244V, p.G250E, p.Y253H, p.E255K, p.T315I, 
p.F317L, p.E355G, p.F359C, and p.F359V have been clas-
sified as pathogenic/likely pathogenic by ClinVar. These 
mutations have a phenotypic association with CML and 
lymphoblastic leukemia. Notably, variant p.F317L iden-
tified in this study has two different nucleotide changes, 
c.949T > C and c.951  C > A. The variant p.F317L with 
nucleotide change c.951  C > A was classified as likely 
pathogenic while variant c.949T > C p.F317L was classi-
fied as VUS by ClinVar. Notably, six mutations (p.L387M, 
p.E453K, p.E459K, p.A344V, p.E355A, and p.K357T) 
identified in this study were not documented in ClinVar.

In addition, Table  2 presents a list of mutations iden-
tified in current research and their corresponding sensi-
tivity levels to the approved TKIs based on the previous 
study [12, 21–33]. The degree of sensitivity of mutations 
p.A344V, p.E355A, p.K357T, and p.E453K to TKI treat-
ment has not been well established in clinical studies. 
Therefore, resistance profiles of these mutations were 
predicted using the web-based tool, SUSPECT-ABL 
(https://biosig.lab.uq.edu.au/suspect_abl/) [34]. Upon 
testing, all mutations were determined to be suscep-
tible to imatinib, exhibiting change in protein stability, 
ddG (Delta Delta G) values of 0.19 for p.A344V, 0.28 for 
p.E355A, 0.19 for p.K357T and 0.37 for p.E453K. Figure 3 
shows the locations of mutations and imatinib in ABL 
kinase domain.

Discussion
In this study, we described the development of labora-
tory assays using PCR and NGS-based approaches for 
BCR::ABL1 KD mutation detection. The NGS amplicon 
sequencing involves generating libraries from PCR prod-
ucts, pooled and subsequently sequenced on the Illumina 
MiSeq platform.

NGS assay identified 16 different BCR::ABL1 KD muta-
tions in 27.4% (23/84) TKI-resistant patients. The vari-
ants detected at a frequency of 20% and above within 
BCR::ABL1 transcripts were categorized as ‘high-level’. In 
contrast, variants detected at a frequency less than 20% 
but greater than or equal to 3% of BCR::ABL1 transcripts 
were classified as ‘low-level’ [35]. In this study, Sanger 
sequencing was able to detect mutations with variant 
read frequency of more than 15%, therefore, identified 
12 different mutations in 22.6% (19/84) TKI-resistant 
patients.

Table 1  Characteristics of patients
Characteristics TKI resistant patients

(n = 84)
Patients 
with optimal 
response 
(n = 18)

Median age, years 46 (15–72) 55 (19–65)
Gender, n (%)
  Male 46 (54.8) 11 (61.1)
  Female 38 (45.2) 7 (38.9)
Race, n (%)
  Malay 49 (58.3) 13 (72.2)
  Chinese 17 (20.2) 4 (22.2)
  Indian 14 (16.7) 0 (0)
  Others 4 (4.8) 1 (5.6)
CML phase, n (%)
  Chronic phase 56 (66.7) 18 (100)
  Accelerated phase 18 (21.4) 0 (0)
  Blast phase 10 (11.9) 0 (0)

https://biosig.lab.uq.edu.au/suspect_abl/
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The current investigation shows the frequency of muta-
tions by NGS detection in TKI-resistant patients is lower 
than in other studies, as reported 80% by Soverini et al. 
in 2016 [35], 33% by Duong et al. in 2017 [36], 59% by 

Erbilgin et al. in 2019 [37] and 30.9% by Liu et al. in 2020 
[38]. According to a previous study by Kim et al. (2009), 
the proportion of patients in each phase of CML disease 
could affect the rate of mutations. The study found that a 

Fig. 1  Sequencing chromatogram of variants detected in TKI resistant patients by Sanger sequencing. The ID number each of patient is provided at the 
beginning of each panel
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significant number of patients (63%) had BCR::ABL1 KD 
mutations, which could be attributed to the high number 
of patients in the advanced phase (35% in the accelerated 
phase and 40% in the blast phase) [39]. Therefore, the 
large portion of patients in the chronic phase included in 
this study (66.7%) could explain the lower mutation rate 
compared with other studies. The research conducted 
on identifying BCR::ABL1 KD mutation in Malaysian 
patients who are resistant to IM treatment was recorded 
at 22.4% [18], 22.7% [17], and 32.5% [19], which were 
consistent with our study. These previous studies have 
employed dHPLC followed by direct DNA sequencing as 
a mutation detection method.

The most common mutations type found in TKI-resis-
tant patients by NGS detection were p.Y253H, p.T315I, 
p.E255K, and p.F359V. The occurrence of the mutations 
in the present study was reported as follows: p.Y253H 
in 8.3%, p.T315I in 7.1%, p.E255K in 4.8%, and p.F359V 
in 4.8%. The previous study conducted on the detec-
tion of BCR::ABL1 KD mutations by NGS reported 
that p.Y253H mutation occurs in 8.2–14.4%, p.T315I in 
4.1–23%, p.E255K in 4.1–10% and p.F359V in 5.6–6.6% 
which was comparable to the results obtained in the cur-
rent study [35, 36, 38]. Among TKI-resistant patients in 
the present study, 9 individuals were found to have mul-
tiple mutations. Multiple mutations may reflect either 
polyclonal or compound mutations [40]. Previous studies 

Table 2  List of BCR::ABL1 KD mutations identified in the present 
study that associated with TKIs resistance
TKI Sensitive mutants Resistant mutants
Imatinib M244V

G250E
Y253H
E255K
T315I
F317L
E355G
F359V/C
E459K

Nilotinib M244V
F317L
L387M

Y253H
E255K
T315I
F359V/C

Dasatinib M244V
Y253H
F359V/C
L387M
E459K

E255K
T315I
F317L

Bosutinib M244V
E255K
Y253H
F317L
E355G

G250E
T315I

Ponatinib M244V
T315I
F317L

E255K

Fig. 2  Distribution of variants detected by NGS and SS in TKI-resistant patients
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have reported that multiple mutations were associated 
with worse outcomes and poor molecular response [29, 
40, 41].

The majority of mutations identified in this study are 
situated distally from the imatinib-binding site (Fig.  3), 
making it challenging to explain their resistance mecha-
nism. A new machine learning-based tool called SUS-
PECT-ABL is utilized to assess mutations with unknown 
effects on TKIs. These mutations were predicted to be 
susceptible to imatinib, which aligns with their location 
further away from the drug-binding site (Fig. 3). In con-
trast, clinically resistant mutations tend to cluster around 
imatinib (Fig. 3). Despite showing superior performance 
compared to other machine learning and molecular 
dynamics-based prediction [34], accuracy of SUSPECT-
ABL is primarily high for residues in close proximity to 
imatinib. This highlights the limitations of current in 
silico tools and underscores the need to employ a better 
predictor for drug efficacy beyond measuring drug affin-
ity alone.

In summary, the result of this study demonstrates that 
NGS is more sensitive than Sanger sequencing method 
for detecting BCR::ABL1 KD mutations in CML patients, 
thus emphasizing the crucial role of NGS assays in 
advancing the understanding of mutation-associated 
TKI resistance in CML. The flexibility and capacity to 
assess multiple targets in a single run render NGS a valu-
able tool, considering its potential to revolutionize the 

detection and characterization of mutations in CML. 
Moreover, these findings indicate that integrating NGS 
into clinical practice has the potential to significantly 
impact therapeutic decision-making, ultimately lead-
ing to improved patient outcomes in the management of 
CML.

Limitation
The current study could not prove that NGS able to 
detect emerging BCR::ABL1 KD mutations earlier than 
Sanger sequencing. The present study also was not able 
to distinguish between polyclonal and compound muta-
tions in BCR::ABL1 KD since the long-range (LR)-NGS 
and fragment subcloning was not performed due to 
limited budget. The samples included in this study were 
selected from only a single center and thus the findings 
may not be representative of the general population of 
TKI resistant CML patients in Malaysia. Due to financial 
and time constraint, only 84 samples were able to recruit 
in the current study.
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bp	� base pairs
cDNA	� complementary DNA
CML	� Chronic myeloid leukemia
ddG	� Delta Delta G
DNA	� Deoxyribonucleic acid
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Fig. 3  Location of missense mutations mapped onto the protein structure of ABL kinase domain. Blue indicates location of mutations A344V, E355A, 
K357T, and E453K; red indicates location of clinically resistant mutations; yellow indicates location of imatinib
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