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Abstract

Background: Despite the long-held assumption that transposons are normally only expressed in the germ-line, recent
evidence shows that transcripts of transposable element (TE) sequences are frequently found in the somatic cells.
However, the extent of variation in TE transcript levels across different tissues and different individuals are unknown,
and the co-expression between TEs and host gene mRNAs have not been examined.

Results: Here we report the variation in TE derived transcript levels across tissues and between individuals observed in
the non-tumorous tissues collected for The Cancer Genome Atlas. We found core TE co-expression modules consisting
mainly of transposons, showing correlated expression across broad classes of TEs. Despite this co-expression within
tissues, there are individual TE loci that exhibit tissue-specific expression patterns, when compared across tissues. The core
TE modules were negatively correlated with other gene modules that consisted of immune response genes in interferon
signaling. KRAB Zinc Finger Proteins (KZFPs) were over-represented gene members of the TE modules, showing positive
correlation across multiple tissues. But we did not find overlap between TE-KZFP pairs that are co-expressed and TE-KZFP
pairs that are bound in published ChIP-seq studies.

Conclusions: We find unexpected variation in TE derived transcripts, within and across non-tumorous tissues. We
describe a broad view of the RNA state for non-tumorous tissues exhibiting higher level of TE transcripts. Tissues with
higher level of TE transcripts have a broad range of TEs co-expressed, with high expression of a large number of KZFPs,
and lower RNA levels of immune genes.
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Background
Although transposable elements (TEs) have been studied
for a long time, their ubiquitous and highly tissue-specific
expression patterns are starting to be appreciated only re-
cently. The fact that TEs compose close to 40% of the hu-
man genome is frequently emphasized, but the fact that
there is observable amount of TE derived transcripts in
human RNA-seq data has mostly been ignored or
regarded as a nuisance without any functional relevance
[1]. Transposable elements have long been thought to be

restricted in healthy somatic tissue and expressed only in
the germline cells or placental or embryonic development
[2–8]. But, both full-length and partial transcripts of trans-
posons are frequently found in the somatic cells [4, 9–11]
with large variation in expression levels across tissue types,
and among different individuals [11, 12]. The level of TE
expression is especially pronounced in cancer cells [13–
16], and cell lines [17], but are also observed in neurogen-
esis [18] and normal somatic tissue. Faulkner et al. in
2009, was the first study to provide a global picture of the
significant contribution of retrotransposons to human
transcriptome in multiple tissue types [19]. This report
showed that 6–30% of transcripts had transcription start
sites located within transposons, and these transposons
were expressed in a tissue-specific manner and influenced
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the transcription of nearby genes. The results were ex-
tended by Djebali et al. in 2012 showing again the tissue-
specificity of transposon expression, and that most of
these transcripts are found in the nuclear part of the cell
[20]. Given that the majority of the transposons tran-
scribed and measured by Cap Analysis Gene Expression
(CAGE) were not initiated at the canonical promoter in
the 5′ of the transposon, and that they were enriched in
the nuclear compartments, they likely do not reflect the
autonomous transcription of active transposable elements
that transport to the cytosol for retrotransposition.
Whether these TE derived transcripts have functional
relevance need further studies. But, in addition to the tis-
sue-specific expression of TEs, important regulatory roles
for TEs are emerging (reviewed in [21]). Observations in-
clude contribution to transcription start sites [19], source
of transcription factor binding sites [22], source of long
non-coding RNAs [23], active transcription during early
development [24], and even critical function similar to
long non-coding RNAs that guide chromatin-remodeling
complexes to specific loci in the genome [25].
Although there are many reports of TE expression in the

somatic cells, there is still a large gap in our understanding
of how TE expression is repressed and de-repressed in hu-
man somatic cells. Based on what we have learned so far,
TE expression is regulated through multiple layers, consist-
ing of transcription factors, epigenetic modification, PIWI-
interacting RNAs (piRNAs), RNA interference (RNAi), and
posttranscriptional host factors. Recently, two different ap-
proaches of genome-wide screening have identified proteins
that regulate different aspects of the activities of LINE ele-
ments, although not necessarily regulation of transcription.
CRISPR–Cas9 screen was used to identify proteins that re-
strict LINE activity [26]. The protein MORC2 and the hu-
man silencing hub (HUSH) complex was shown to
selectively bind evolutionarily young, full-length LINEs lo-
cated within euchromatic environments, and promote de-
position of histone H3 Lys9 trimethylation (H3K9me3) for
transcriptional silencing [26]. And through proteomics ap-
proaches, two studies have recently identified the
localization of ORF1 and ORF2 proteins and its interacting
partners [27], and the timing of the entrance of the ORF2
protein complex into the nucleus [28]. But, these studies
addressed the downstream mechanism of retrotransposi-
tion, and no study has yet examined the correlation in tran-
script levels of transposon RNA and host mRNA.
Recently, high-throughput RNA-seq data of various

types of cancer samples and their normal counterparts
have become available in The Cancer Genome Atlas
(TCGA) [29–31]. By focusing on the non-tumorous tis-
sue samples from TCGA, we can access thousands of
natural experiments across various types of tissues that
show variation in TE transcript levels, and obtain a glo-
bal picture of TE expression and regulation in humans.

An important strength of the TCGA dataset is the large
number of samples collected for each tissue type and the
high depth of the RNA-seq experiment, with a median
of about 150M reads per sample, which is several times
larger than a usual RNA-seq library. The variation in TE
transcript levels observed in multiple samples within
each tissue, allowed us to analyze the co-expression pat-
terns between host genes and TEs for the first time. We
hypothesized that genes that regulate the transcription
level of TEs would show correlation in expression levels
with the TE transcripts. Since the samples are collected
from fresh-frozen tissues, TE transcript levels are ob-
served in vivo, complementing the studies that focus on
retrotransposition assays or transposon expression in
human cell lines.
We first summarize the survey of TE expression vari-

ation found in the RNA-seq data from 697 samples of
cancer-adjacent non-tumorous tissue. We confirm the
earlier findings that TE expression varies across tissue
types. Transcript levels of individual TE loci are highly
tissue specific and within each family only a few individ-
ual loci are highly expressed, contributing to the bulk of
the transposon transcripts at the family level. We also
find large variation in total TE transcript level across in-
dividual samples within each tissue type.
Although, transposons have strong tissue-specific pat-

terns at the locus level, we also found that the majority
of TEs show global co-expression at the family level
across samples. By analyzing the co-expression between
these TEs and individual genes, we found co-expression
modules of TEs and genes replicated across tissues.

Results
TE derived transcripts are quantified across 16 tissues
and 697 samples of tumor adjacent controls
We re-aligned and quantified TE derived transcripts
from the RNA sequencing data of 697 samples across 16
tissues collected as non-tumorous controls for the
TCGA project (Additional file 1: Table S1). The results
reported here are based on the STAR alignment allowing
up to 200 multi-mapping of reads, with correction for
potential read-thru transcripts based on the read-depths
of the containing introns, as described in the following
section, unless specified otherwise. The library sizes for
these samples range from 50M reads at the minimum,
to up to 390M reads, with a median at about 149M
reads (75M pairs). Although all tissues included in this
study were sequenced using the HiSeq 2000 platform,
esophagus and stomach samples were sequenced separ-
ately at British Columbia Genome Sciences Centre
(BCGSC), with higher sequencing depth on average (me-
dian 227M reads). The proportion of reads that do not
map to annotated genes were different between the later
samples sequenced at University of North Carolina at
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Chapel Hill (UNC), and the earlier BCGSC sequenced
samples, with BCGSC samples having more reads (me-
dian 177M) not mapping to annotated genes and dis-
carded, while UNC samples had less reads discarded
(median 97M), possibly due to the difference in poly-A
enrichment protocol (MultiMACS mRNA isolation kit
vs. TruSeq RNA Library Prep Kit [32]) among many
other differences, including read length. Because of these
differences, when comparing across tissue samples, we
had to consider esophagus and stomach tissues separ-
ately, and they could not be compared against the rest of
the tissues.
Despite the differences in the overall sequencing depth

and overall proportion of reads mapping to genes, we
found that the DESeq2 normalization method normal-
izes the reads effectively and the correlation due to li-
brary size disappears after normalization within tissues
(Additional file 1: Figure S1). Our co-expression analysis
is done within each tissue separately. We also replicate
our results found in esophagus and stomach with similar
results found in at least one other tissue.
Although we find reads mapping to TEs in all the sam-

ples that we have examined, the overall transcripts coming
from TEs are still a relatively tiny proportion of the total
library. Before excluding the reads from potential read-
thru transcripts of introns containing TEs, the total num-
ber of reads mapping to TEs ranged from 448 K to 6.5M
with a median of 1.6M (1.1% of total library size, 3.3% of
total reads mapping to known genes) for UNC samples,
and ranged from 571 K to 7.5M with a median of 1.9M
(0.9% of total library size, 4.0% of the total reads mapping
to known genes) for BCGSC samples. After excluding the
reads from potential read-thru transcripts of introns con-
taining TEs, as described in the next section, the total
number of reads mapping to TEs ranged from 137 K to
2.1M with a median of 615 K (0.4% of total library size,
1.3% of the total reads mapping to known genes) for UNC
samples, and ranged from 282 K to 3.3M with a median
of 835 K (0.4% of total library size, 1.9% of total reads
mapping to known genes) for BCGSC samples.

TE reads originating from pre-mRNAs or retained introns
are corrected by comparing the read depths of the
flanking introns
There have been previous reports of transposon reads
coming from pre-mRNA or retained introns in the mature
RNA of genes that contain TE sequences in their introns
[33]. The extent of this problem can be partially estimated
by comparing the read depths of the transposon to the
read depths of the flanking introns. If the reads mapping
to TEs are part of the pre-mRNA or retained introns, we
should see continuous mapping of reads that span the in-
trons flanking the TE of interest, and observe reads that
map across the intron-TE boundaries. We can also

partially correct for this problem by utilizing the read
depths in the flanking introns to proportionally reduce the
number of total reads mapped to TEs. The approach is de-
scribed below.

RIL ¼ countIL
lenIL−read len

count
0
TE ¼ countTE−countTE � RIL þ RIR

2RTE
; if

RIL þ RIR

2RTE
< 1

0 ; otherwise

(

TE: focal TE
IL: intron left to TE. IR: intron right to TE.
RIL: read depth of the intron left to the TE
countIL: read counts mapped to the intron left to the

TE (includes multi-mapped reads)
lenIL: length of the left intron
read _ len: length of the sequencing read
countTE′: count of reads mapped to TE after the

correction.
We modified the software TEtranscripts [34], fol-

lowing this approach, to discount the TE read counts
based on the read depths of the surrounding introns.
By looking for large differences after correcting by
flanking read depth, we identified TEs that are most
frequently transcribed as part of the introns (Table 1).
We also found cases where the method corrected for
erroneous TE quantifications due to TEs embedded
within long non-coding RNAs (lncRNAs). For ex-
ample, an AluSx1 element on chromosome Y at pos-
ition 21,153,222 (AluSx1_dup59209) had very high
transcript levels with an average read count of 18,863
in thyroid and head and neck tissue, but the Alu
element is embedded in a lncRNA gene called
TTTY14. The reads mapping here are counted as
AluSx1 transcripts based on the UCSC TE annotation,
but in the alignment, we see that there are reads
spanning the boundaries of AluSx1_dup59209, and al-
most all the reads mapped in the region are uniquely
mapped reads. It looks to be a case of an Alu domes-
tication, where an Alu insertion or a secondary dupli-
cation of an original Alu insertion became part of a
testis specific RNA gene [35]. Three examples of
AluSx1, L2a, and L1MA7, where the read counts for
the transposons are reduced to zero are visualized in
Additional file 1: Figure S2. AluSx1_dup59209(chrY:
21153222–21153521) is embedded within an exon of
gene TTY14. L2a_dup21781(chr2:113980079–113981
081) is embedded in an intron of PAX8. L1MA7_
dup4297 (chr8:134015602–134,015,763) is embedded
in an intron of gene TG. In all three cases, read
counts for the focal TEs were reduced to zero after
the correction described above, and the reads map-
ping to these TEs did not contribute to the overall
TE family count. If one is interested in transposable
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element transcript level that is not part of a longer
RNA molecule, it is important to take into account
the read depths of the flanking introns or exons, es-
pecially the latest non-coding RNA gene annotations,
when quantifying repeat element transcripts in the
genome. As described above, this correction based on
flanking intron read depths had an effect of reducing
the total reads mapping to TEs to about one third of
its original count.

Relying on uniquely mapped reads for repeat
quantification results in quantification biased for
mappable elements
Due to the difficulty of mapping reads to repeat ele-
ments, one of the approaches taken is to count only the
reads that map to a unique position in the genome. But
this approach has repeatedly been shown to produce re-
sults that are worse than expectation-maximization [36,
37], and can lead to serious biases. If we only count
uniquely mapped reads in our analysis, not only did we
throw away from 10.7% to up to 45% (median 14.2%) of
the total TE transcripts, we threw away data in a biased
manner, such that we ended up “quantifying mappabil-
ity” instead of “quantifying transcripts”. This problem is
especially pronounced when quantifying the young and
active L1HS element. To assess the effect of alignment
on quantification, we tried two different alignments, one
based on the STAR aligner with up to 200 multi-mapped
positions, and the other based on Bowtie1 with only a
single best alignment position, discarding all reads that
do not have a unique best mapping. Figure 1 shows two
cases that illustrate the limitations of either of the ap-
proaches. Figure 1a shows an example of a full length
L1HS locus on chromosome X: 75453754–75,459,553
with high mappability (48base mappability shown at the
top of the panel) due to many accumulated mutations in

its sequence. The top panel shows the bowtie1 alignment,
allowing only uniquely mapping reads with a single best
hit, and the bottom panel shows the STAR alignment with
multi-mapping up to 200 mappings per read. In the STAR
alignment, we can see erroneously split read alignments at
the 3′ end that result in reads mapping across greater than
10 K distances, that shows a limitation of a splicing ori-
ented alignment software. The transcription for this elem-
ent does not start at the 5′ end of the full length, but
there is clear and unambiguous transcription starting from
about 1500 bases in, that are congruent between both
alignments. In Fig. 1b it shows another full length L1HS
locus on chromosome X: 11953208–11,959,433, this time
a young element with very low mappability. Comparing
the top and bottom panels, we can see that with the
unique mapping we are ignoring all the reads that are per-
fectly mapping to this locus, but also map to multiple
other locations. There is a huge pile-up at the 5′ end of
the full length. If we look at the reads mapping to the 5′
end of this locus, their NH tags show numbers ranging
from 2 to 4, meaning that they are mapping to two to four
alternative locations in the genome. Considering that
L1HS loci containing the 5′ ends are more likely to be full
length elements, these reads are more likely to be coming
from one of the few full length L1HS loci in the genome,
but, we end up ignoring these reads if we are only count-
ing uniquely mapping reads. On the other hand, with
multi-mapping, we end up quantifying with large uncer-
tainty on whether the reads piled up in this region are
really transcribed from this particular locus. This is evi-
dent by the small regions of extremely high pile-ups that
reflect fragments that are found in the genome with high
frequency. Although, we should point out that we don’t
count all the reads aligning here at face value, since the
expectation maximization algorithm will down weigh the
counts of reads by the number of places it maps to.

Table 1 Transposon loci that show large difference after correcting for pre-mRNA/retained introns. a. Transposon loci embedded
within introns or exons of genes that frequently result in the largest correction in each sample. Locus id, genomic location,
surrounding gene and structure the TE is embedded in, and the maximum number of reads removed in a sample

locus chr start end surrounding gene TE embedded in # of samples Max correction

MIRc_dup47590 8 22021288 22021431 SFTPC Intron 4, Exon 5 105 428021

AluY_dup80589 12 69747275 69747567 LYZ Exon 4 62 313317

MIRb_dup137684 10 81315669 81315913 SFTPA2 Exon 5 106 266566

MIRb_dup137689 10 81374907 81375150 SFTPA1 Exon 5 106 230394

MIR3_dup57107 10 81316603 81316678 SFTPA2 Exon 5 103 90241

AluSz6_dup3320 1 207102295 207102608 PIGR Exon 11 124 59130

MIRc_dup74805 12 50351953 50352157 AQP2 Exon 4 109 57581

LTR39_dup404 6 160102172 160102969 SOD2 Exon 4, Intron 7 119 34545

AluSx1_dup59209 Y 21153222 21153521 TTTY14 Exon 1 305 25867

AluJb_dup119100 17 16344881 16345132 C17orf76-AS1 Intron 4, Exon 5 253 21915
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Comparing the mappability of the two examples, we
can see that the uniquely mapping approach preferen-
tially counts reads coming from older TE loci with
higher mappability. This can also be shown by correlat-
ing the locus level read counts for each L1HS element
against the length of uniquely mappable positions in
each TE locus (Fig. 2a). For the unique mapping ap-
proach, we see there is significant correlation between
the locus level quantification and the total length of
uniquely mappable positions within that locus (p-value =
5.523e-07 for sum of read counts across all samples, and
p-value = 1.072e-13 for maximum read count among all
samples). The multi mapping approach with Expectation
Maximization does not show that bias for uniquely map-
pable regions (p-value = 0.60 for sum and p-value = 0.08
for max) (Fig. 2b).
Consequently, there is limited correlation in the

locus level quantification of L1HS between the
uniquely mapped reads and the multi-mapped reads
(Fig. 2c). This shows the difficulty of quantifying
young active elements, such as L1HS using genome-
wide RNA-seq data. Due to these limitations, analysis
on L1HS in this study has been done at the family
level. The family level quantification of L1HS still
shows variability based on the read mapping approach
(Additional file 1: Figure S3 e.), but it shows stronger

correlation than the locus level quantification. We
still wanted to utilize the abundance of RNA-seq data
available for studying L1HS transcription, and glean
information on L1HS from these data. Based on the
observation that 3′ ends of L1HS are frequently rep-
resented in fragmented L1HS loci, while the 5′ ends
are more frequent in full length L1HS loci, we de-
cided to use the read counts of the 5′ end of the
element as a measure that better represents the tran-
script level of full-length L1HS transcripts in the sam-
ple. All the following analysis on L1HS expression are
based on the reads mapped to L1HS sequences in the
genome that align with the first 300 bases of the 5′
end of the L1HS consensus sequence and allowing for
multi-mapping.
On the other hand, we found that quantification of

older elements showed very strong correlation be-
tween the two approaches, unique mapping and
multi-mapping, reflecting the higher mappability of
older elements in the genome [38] (Additional file 1:
Figure S3). For the locus level co-expression analysis
with the Zinc Finger Proteins, we limited our analysis
to older elements that are 100% uniquely mappable
across its sequences with a 48-base read length. All
of our main results are qualitatively replicated in the
data with uniquely mapped reads aligned with bowtie,

Fig. 1 Comparison of read alignment on full length L1HS with multi-mapping and unique mapping. Reads mapped to two different full length
L1HS elements from a stomach tissue sample (A4GY) visualized through IGV. a L1HS_dup967, a 5799 nt length element on chromosome X:
75453754–75459553. b a 6225 nt length element L1HS_dup924 on chromosome X: 11953208–11959433. Chromosomal locations, 48 base
mappability calculated with GEM, Bowtie1 alignment allowing only uniquely mapped reads with single best hit, STAR alignment allowing multi-
mapped reads up to 200 mapping for each read, gene annotation and Repeatmasker TE annotation are shown from top to bottom. Red lines
mark the boundary of the L1HS elements with 5′ and 3′ noted
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except for the results regarding the 5′ end of L1HS
expression.

TE expression shows tissue-specific expression patterns at
the locus level among somatic tissues
There have been multiple reports of tissue specific ex-
pression of TEs in the human genome, starting from
Faulkner et al. in 2009 [19] to Philippe et al. 2017 [17]
more recently. We also found highly distinct tissue spe-
cificity in TE transcripts in the TCGA data, such that we
could cluster each sample into their broader tissue
groupings, based on locus level TE expression patterns
alone without relying on any genes at all. Figure 3 shows
the clustering of tissues for family level and locus level
quantification of LTRs, DNA transposons, SINEs and
LINEs. We used normalized mutual information be-
tween the different clustering results and the ground
truth (the true tissue group) to evaluate the quality of
clustering. Normalized mutual information was com-
pared for clustering results based on gene expression,
family level TE expression, locus level TE expression
and random assignments. We found that the locus-level
TE expression was as predictive of tissue groupings as
the genes (Fig. 3i, Additional file 1: Table S2). LTRs,
DNA transposons, LINEs and SINEs gave similar clus-
tering accuracy as the genes. The TE family expression
levels did not have enough information to cluster the tis-
sues correctly. We note here, that these are loci selected
by the rank of variance in log2 normalized read count
across all samples regardless of tissue type, and we
haven’t done any differential expression analysis to

identify the markers that are the most informative for
accurate tissue classification. Thus, the classification per-
formance we observe here is not the optimal perform-
ance that we could get if we were to decide on the
markers based on a trained classifier. When we excluded
TEs that are within 1 K, 10 K, and 100 K of the start and
ends of the genes, the accuracy declined, so part of the
tissue specificity is due to co-location with tissue specific
genes. But, even when relying on TEs 100 K away from
any known genes, we saw that tissue specific information
was largely retained. On the other hand, when we fo-
cused on younger elements, HERVs within LTRs and
young L1 s within LINEs, there was a large reduction in
information content, especially for young L1 s. Cluster-
ing based on locus level expression for L1HS, L1PA2
and L1PA3 was not any better than clustering based on
family level expression of all LINEs. We suspect this is
due to the lower locus level mappability and large uncer-
tainty in locus level expression quantification for young
L1 elements. Figure 4 shows sixteen representative TE
loci that show tissue specific expression. These loci are
chosen from TEs that are 100 K away from the start or
end of any annotated gene. In most of these cases, the
TEs were older elements that are fragments of the full-
length sequence, and the expression did not begin and
end at the boundaries of the TE locus. Frequently, the
expression spanned multiple transposons that are adja-
cent to each other. Read alignments for a few example
loci are visualized in Additional file 1: Figure S4.
The granular levels of locus specific TE expression

contained tissue-specific information, but, the overall

Fig. 2 Relationship between read counts for each L1HS locus, and the mappability of the locus. Log2 transformed total read counts mapped to
each L1HS locus in the hg19 genome, summed across all samples in our dataset are plotted against the total uniquely mappable positions
(number of positions with mappability score = 1 based on 48 bp mappability calculated with GEM) for each locus. L1HS loci with zero read
counts are marked at − 1 instead of –infinity. a read counts from Bowtie1 alignment with uniquely mapped reads only (b) read counts from STAR
alignment allowing multi-mapped reads up to 200. c comparison of read counts for each L1HS locus between the uniquely mapped reads and
multi-mapped reads
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transcript level of TE classes did not show significant
variation across tissues (Fig. 5a). The higher expression
levels for TEs seen for esophagus and stomach is con-
founded with the differences in sequencing protocol de-
scribed above, so they are not directly comparable to the
rest of the tissues. When focusing on 300 bases in the 5′
end of L1HS, it showed some variation across tissues
with higher levels in the head and neck tissues and lower
levels in the liver, consistent with the previous observa-
tion in adult human tissues [10] and in human cell lines
[17], albeit with large within tissue variance (Fig. 5b). Al-
though, we cannot directly compare L1HS expression in

esophagus and stomach to the rest of the other tissues,
we can tell that there is clear transcription of the 5′ end
of L1HS in esophagus and stomach. Figure 5b shows the
normalized read counts in log2 scale, with a median of
more than 500 reads mapping to 300 bases at the 5′ end
of L1HS for esophagus and stomach (median library size
227M reads). There have been observations of full
length L1HS expressed in the adult esophagus and stom-
ach tissue, at about 80 and 150% relative to the levels in
HeLa cells [10], and active L1 retrotransposition in pre-
malignant precursor legions of esophageal adenocarcin-
oma [39].

Fig. 3 Tissue clustering based on transposable elements. Heatmap showing the tissue clustering results based on the top 150 TEs with the
largest variance of each class. With the color bars at the top of the heatmap, the upper color labels show tissue types and the lower color labels
show broader tissue groupings. a–d clustering based on family level quantification. e–h clustering based on locus level quantification. i Clustering
quality measured by Mutual Information for clustering results based on family level TE quantification, locus level quantification for TEs 100Kb
away from genes, locus level quantification for TEs 1Kb away from genes, and locus level TE quantification without filtering for gene proximity
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Co-expression analysis of intergenic TEs identifies core TE
modules and correlated zinc finger proteins
Co-expression network analysis is an appropriate ap-
proach to examine the co-expression across different TE
families and host genes together. In order to identify the
common gene/TE modules that are correlated across

different tissues, we did a consensus network analysis
across tissues using the weighted gene co-expression
network analysis in the WGCNA package [40]. For the
TE family transcripts in this analysis, we only included
intergenic TEs, i.e. we only counted reads mapping to
TEs that are 1Kb away from any start and end of known

Fig. 4 representative transposable element loci that show tissue-specific expression. Sixteen TE loci with tissue-specific expression was identified
as representative examples among intergenic TEs that are 100Kb away from start and end of genes. Heatmap color reflects the z-score of
normalized log2 read counts across samples

Fig. 5 Variation in TE expression across tissues and individuals. a Normalized and log-transformed sum of all read counts mapping to the TEs of
each class, LINE, DNA, SINE and LTR are shown as violin plots. Mean read count of a set of housekeeping genes (Additional file 1: Table S6) are
plotted as a reference. Horizontal line across the violin plot represents the median value across all samples of that tissue type. b Normalized and
log-transformed sum of all read counts mapping to 300 bp at the 5′ end of L1HS are plotted as a violin plot. Same set of housekeeping genes
used in a. are plotted as a reference
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genes. We identified 61 modules across 11 group of tis-
sues, combining certain tissue types together as a
broader group (colon and rectum, esophagus and stom-
ach, kidneys, lungs). Among the 20,531 genes and 992
TE families that were quantified in the 697 samples, 18,
670 genes and 923 TE families had enough expression
level and variation to be included in the network analysis.
Among those 19,593 genes and TEs, 9599 genes and 658
TEs were clustered into a module of co-expression, while
9336 did not belong to any defined module. The list of
modules, correlations between the modules, and topo-
logical adjacency matrix that defines the modules are visu-
alized for the breast tissue in Additional file 1: Figure S5.
Visualization for other tissues were similar, as we looked
for consensus modules across all tissues. There were only
a few modules that contained TE transcripts: only seven
modules contained more than ten TE families within the
module. Additional file 1: Table S3 shows the distribution
of TE families in these seven modules. We considered
modules M8, M21, M38 and M45 as core TE modules, as
their membership mainly consisted of TE families as the
majority (marked by * in Additional file 1: Figure S5).
The correlation between closely related TE subfamilies is

expected because reads from transposons that map to se-
quences that are indistinguishable between subfamilies are
assigned to multiple subfamilies with proportional weight
by TEtranscripts using an Expectation-Maximization algo-
rithm. Closely related families such as L1HS and L1PAs
also share common regulatory elements at the 5′ end. But,
we find that the correlated TE families in a TE module span
different classes of TEs, and are replicated even when
counting uniquely mapped reads only. Considering there is
no sequence similarity between the SINEs, DNA transpo-
sons, LTRs and the LINEs, the correlation among these di-
verse class of transposons is probably due to a common
regulation, or dys-regulation, that is de-repressing these
transposons at the same time. There have been reports of
such co-expression of ERVs and LINEs in cancerous tis-
sues [41, 42], possibly through concordant hypomethyla-
tion [43].
There was one class of host genes that were frequently

found as members of the TE co-expression modules,
and they were the KRAB Zinc Finger Proteins (KZFPs).
Table 2 shows the list of KZFPs that were identified as
TE module members.

Expression of immune genes are negatively correlated
with intergenic TE expression
Once we identified modules consisting mostly of trans-
poson families, we also examined whether any co-expres-
sion modules were negatively correlated with TE modules.
We found two modules, M33 and M35, that showed con-
sistent negative correlation across tissues. The genes in-
cluded in these modules were genes involved in innate

immune system, interferon signaling, immunoproteasome,
etc. (Fig. 6). Figure 6 shows the enriched annotation terms
detected for both modules through the Reactome database,
the top 30 genes with highest module membership for the
two modules, and the correlation plot between TEs in the
TE modules M8, M21, M38 and M45, and genes in module
M33 and M35 in the tissues breast (Fig. 6d) and

Table 2 KZFP gene members in core TE modules. a. KZFP
genes that are members of the core TE modules. b. KZFP genes
in module M3. M3 is in high correlation with the core TE
modules (Supplementary Figure 5 a. and b.)

a.

core TE modules KZFP chromosome

M8 HKR1 19

KZFP226 19

KZFP682 19

KZFP789 7

KZFP814 19

M21 KZFP404 19

KZFP418 19

KZFP589 3

KZFP75A 19

M38 KZFP117 7

M45 KZFP334 20

KZFP493 19

KZFP506 19

KZFP721 4

KZFP737 19

b.

KZFPs in module M3 chromosome

KZFP169 9

KZFP202 11

KZFP266 19

KZFP300 5

KZFP320 19

KZFP431 19

KZFP439 19

KZFP44 19

KZFP587 19

KZFP662 3

KZFP7 8

KZFP700 19

KZFP708 19

KZFP714 19

KZFP732 4

KZFP83 19

KZFP841 19
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esophagus/stomach (Fig. 6e). Only genes and TEs that
show greater than 0.6 Pearson correlation with the repre-
sentative profile of the module in all tissues have been in-
cluded in the correlation plot. We observe high correlation
within groups and contrasting negative correlation between
groups.

Co-expression analysis including intronic TEs reveals
negative correlation between intronic TE expression and
mitochondrial gene expression
When we include intronic TE transcripts in the overall
TE expression levels, the co-expression analysis led to a
different picture from the analysis of intergenic TEs.
When intronic TEs are included, a single module, N1,
emerges as the dominant TE module, containing 612
out of 848 TE families (72%) that was assigned a module
membership. In fact, N1 consists of 72% of all TE fam-
ilies but only 2% of all genes.
Table 3 shows genes that are significantly correlated

with module N1 in multiple tissues. A pattern immedi-
ately noticeable is that there are many pseudogenes, in-
tronic transcripts, antisense RNAs, and long non-coding
RNAs on the list. It looks like with intronic TEs, we are
detecting a cell state that is dysregulated in splicing or
mRNA quality control, and as a result, we are seeing a
global elevation of pervasive transcription that is

generally non-functional. Multiple protein coding genes
on the list are involved in mRNA splicing regulation,
such as NCRNA00201, an isoform of HNRNPU which
showed strong correlation with the intronic TE module
in seven different tissues, as well as CCNL2, LUC7 and
LUC7L3, perhaps as a response to the dysregulated spli-
cing. Another interesting gene in the list is NKTR, hint-
ing at the presence of immune cells in the tissue
samples with high intronic TE expression. This is in
contrast with the negative correlation we observe with
immune genes and intergenic TE expression.
The module that was negatively correlated with the

intronic TE module (N1) included co-expression
clusters consisting of mitochondrial proteins and ribo-
somal proteins (N4). N4 was the only module that
was consistently negatively correlated with N1 with
less than − 0.7 correlation coefficient across all tis-
sues. Figure 7 shows the correlation plots between
TEs in N1, and genes in the mitochondrial gene mod-
ule N4, for breast and esophagus. Enriched annotation
terms for the genes found in the Reactome database
are centered around translation and mitochondria.
One intriguing possibility may be that the failed spli-
cing and mRNA surveillance is leading to a suppres-
sion of translation that in turn leads to reduced RNA
levels of mitochondrial genes and ribosome.

Fig. 6 co-expression modules with immune genes are negatively correlated with TE modules. a enriched annotations for genes belonging to
module M33 identified in the Reactome database. b enriched annotations for genes belonging to module M35 identified in the Reactome
database. c top 30 genes with highest module membership (high correlation with representative profile of the module) for each module. d–e
correlation plot showing high within group correlation and negative between group correlation between the TEs in the TE modules and the
immune genes in modules M33 and M35. d data from breast, and e data from esophagus. Color label on top of the correlation plot show
different classes of TEs, and genes that are annotated with the GO term “immune system process”
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We again saw an enrichment of KZFPs as members of
the intronic TE module N1, and another module N10,
that was positively correlated with N1 (Additional file 1:
Table S4). The list of KZFPs had some overlap with the
KZFPs co-expressed with intergenic TE modules, but
there were some differences as well. We combined the
22 KZFPs in module N1 and N10 and examined whether
there were any common transcription factor binding for
these genes found in the ENCODE ChIP-seq data with
the EnrichR database [44]. The region near these KZFPs
were enriched with binding of GABPA, a regulator of
nuclear encoded mitochondrial genes, in multiple cell
lines (Additional file 1: Figure S6). This was interesting,
given the negative correlation observed with intronic
transposons and nuclear encoded mitochondrial gene
expression described above.

Genes co-expressed with L1HS include genes regulating
major signaling pathways, chromatin, and stress response
Given the interest in the active element L1HS, and the
uncertainty in L1HS quantification, we decided to limit
the quantification to the 5′ region of L1HS, and examine
the host genes that are specifically correlated to the ex-
pression of 5′ region of L1HS without regard to the co-
expression modules. In order to control for the correl-
ation with other TEs, especially intronic TEs, we in-
cluded the representative profile of N1 as a covariate

into our linear model. One concern with co-expression
analysis is positional overlap. There were 14 genes that
overlapped with the L1HS loci we were counting the
reads from. Only 1 of the 14 genes, RAB3GAP2, showed
significant correlation with L1HS 5′, and was removed
from the final list. 56 genes were identified as negatively
correlated, and 77 genes were identified as positively
correlated with L1HS 5′ in at least two tissues (Fig. 8,
Additional file 2: Table S5). Notable genes include
RASA1, RASA2, RRAS, EGFR and MAPK1, in the Ras-
MAPK pathway, ECSIT, TAB3 and TRAF6, regulators of
the NF-κB pathway, RNASEH2C, a known L1HS repres-
sor [45], TET2, known to bind to and demethylate young
L1 s [46], THAP7, a histone tail binding transcription re-
pressor [47], and DDI2, a protease that cleaves and acti-
vates NFE2L1/NRF1 [48]. Multiple genes in the
respiratory electron transport pathway, ECSIT, NDUFA1,
NDUFA8, NDUFB10, NDUFB8, SURF1, UQCR11, UQC
RB, were negatively correlated with L1HS 5′, even after
controlling for the covariation with intronic TEs, N1.
Whole list of genes are reported in Additional file 1:
Table S5.
We checked whether the list of our negatively corre-

lated genes were overlapping with the genes identified
through CRISPR–Cas9 screen [26]. Of the 56 negatively
correlated genes, three genes, RNASEH2C, HAUS7,
RNF166 were also on the list of 253 secondary screen

Table 3 Gene members in the intronic TE module N1

Gene Symbol tissues Synonyms Full gene name

NCRNA00201 7 HNRNPU heterogeneous nuclear ribonucleoprotein U

AHSA2 6 AHSA2P activator of HSP90 ATPase homolog 2, pseudogene

CCNL2 6 CCNL2 cyclin L2

CG030 5 N4BP2L2-IT2 N4BPL2 intronic transcript 2

FAM13AOS 5 FAM13A-AS1 FAM13A antisense RNA 1

MDM4 5 MDM4 MDM4 regulator of p53

NKTR 5 NKTR natural killer cell triggering receptor

SLC25A27 5 UCP4 solute carrier family 25 member 27

ANKRD36 4 ANKRD36 ankyrin repeat domain 36

LOC100190986 4 LOC100190986 uncharacterized LOC100190986

LOC440944 4 THUMPD3-AS1, SETD5-AS1 THUMPD3 antisense RNA 1

LOC91316 4 GUSBP11 GUSB pseudogene 11

LUC7L 4 LUC7L LUC7 like

LUC7L3 4 LUC7L3 LUC7 like 3 pre-mRNA splicing factor

NCRNA00105 4 ASMTL-AS1 ASMTL antisense RNA 1

OGT 4 OGT O-linked N-acetylglucosamine (GlcNAc) transferase

SEC31B 4 SEC31B SEC31 homolog B, COPII coat complex component

KZFP789 4 KZFP789 zinc finger protein 789

Genes that are members of the intronic TE module N1. Gene symbols, synonyms and full names are listed with the number of tissues in which the gene was
observed to cluster with module N1
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hits. There was no overlap among the 77 positively cor-
related genes.
We also checked whether there were transcription

factors known to bind to L1HS sequence [49] in our
list. Of the 77 positively correlated genes, four genes,
YY1, REST, ELF1, ZBTB33 were identified to bind to
L1HS [49]. There was no overlap among the 56 nega-
tively correlated genes. To check if the same transcrip-
tion factors are regulating the correlated genes and
L1HS, we also checked what kind of TF binding is
observed in the upstream of our correlated genes.
There were a few enrichment of ENCODE transcription
factor binding upstream of our list of correlated genes
(Additional file 1: Figure S7), but except for YY1, the

enriched TFs did not overlap with the list of Sun et al.
[49].

TE module expression is correlated with radiation
exposure in thyroid tissue
We examined whether any of the clinical variables were
associated with the TE module expression or the L1HS
expression levels. We tested the variables age, days to
death, pathological stage, T staging, N staging, M staging,
gender, radiation and race for each tissue type. No variable
was found to be associated with L1HS 5′ expression. Radi-
ation therapy was the only clinical variable associated with
module N1 (intronic TE module) expression in the non-

Fig. 7 co-expression modules with mitochondrial genes and ribosome genes are negatively correlated with intronic TEs. a enriched annotations
for genes belonging to module N4 identified in the Reactome database. b-c correlation plot showing high within group correlation and negative
between group correlation between the TEs in the intronic TE module N1, and the mitochondrial and ribosomal genes in modules N4. b shows
data from breast, and c shows data from esophagus. Color label on top of the correlation plot show different classes of TEs, and genes that are
annotated with the GO term “mitochondrion” and “ribosome”

Chung et al. Mobile DNA           (2019) 10:39 Page 12 of 22



tumorous tissue of thyroid (p-val = 0.00894, Additional file
1: Figure S8).

Co-expressed TEs and KRAB-ZFPs show limited overlap
with ChIP-seq binding
Based on the positive correlation observed among KZFPs
and TE modules, and existing literature on the role of
KZFPs for TE repression, we decided to examine the cor-
related expression of all pairs of 979 TE families and 366
KZFPs. The most striking pattern observed was that
KZFPs and TEs show overwhelmingly positive correlation
and little negative correlation. Chromosome 19, where the
majority of the KZFPs are clustered, is also the chromo-
some with the highest density of transposable elements.
This unique structure of chromosome 19 may lead to TEs
embedded in KZFP genes erroneously identified as co-
expressed. We avoid the confounding effect of positional
overlap between TEs and KZFPs by only counting reads
mapping to TEs that are in the intergenic region 1Kb away
from any genes. There may be residual correlation due to
shared genomic environment of a larger scale, such as the
chromatin state. But, that doesn’t explain all the positive
correlation, because, when we look at the locus level

correlation, we find that the individual TE loci correlated
with the ZNFs are scattered across all chromosomes, and
not necessarily enriched on chromosome 19.
The co-expression between KZFPs and TEs were ob-

served across almost all TE families, as 794 TE families had
at least one co-expressed ZFP in at least one tissue. Certain
ZFPs, such as ZNF621, ZNF780B, ZNF84, ZNF33A, and
ZNF662, showed correlation with a wide range of TE fam-
ilies in multiple tissues. TE-KZFP pairs, HERVK14-int:
ZNF814, MER57A-int:ZNF621, and MSTB-int:ZNF41 were
the most frequent pair-wise co-expression observed be-
tween TE families and KZFPs, found positively correlated
in six different tissues. The ZFPs that were negatively corre-
lated with TEs were ZNF511 and ZNF32, but, they are not
classified as KZFPs as they do not have a KRAB domain.
We looked at the family level co-expression between

TE families and KZFPs and tested the overlap against
the KZFP bound TE family enrichment reported in the
ChIP-exo study (GSE78099 [50]). We found that there is
a statistically significant association between co-expres-
sion and binding (p-value < 2.2e-16). But, the number of
overlapping pairs were very small. Figure 9 shows the
overlap between co-expression and binding enrichment.

Fig. 8 Genes that show positive and negative correlation with the transcript level of L1HS 5′ end. Gene that show significant positive and
negative correlation with L1HS 5′ in multiple tissues. Esophagus and stomach are combined as one
tissue group. Full list of correlated genes are found in Additional file 2: Table S5
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We only mark the co-expression found in at least two
tissues, and we have omitted the TE-KZFP combinations
that have neither co-expression nor binding enrichment
from the figure. The total combinations tested that over-
lap between the two datasets is 200,889 (221 KZFP × 909
TE families). Four thousand one hundred thirty-eight
pairwise co-expression was observed in at least two tis-
sues. Of those, only 119 was enriched for binding in the
ChIP-exo study [50].

To check how the co-expression is observed at individ-
ual TE loci, we took the TE family-KZFP pairs that show
correlated expression, and further tested co-expression be-
tween individual TE loci of the correlated TE family
against the KZFP of interest. With correlations at the
locus level, we were able to examine the locus level co-ex-
pression and compare it directly to the binding peaks re-
ported in Imbeault et al. [50]. Of the 6258 co-expressed
TE loci where the KZFP had been assayed with ChIP-exo,

Fig. 9 Overlap between co-expressed KZFP-TE family pairs and TE families enriched for KZFP binding. a KZFP-TE families co-expressed in at least
two tissues are marked with pink, TE families enriched for KZFP binding are marked with yellow, and TE families that are both bound by KZFP
and co-expressed with same KZFP are marked with green. KZFPs that show overlap of binding and co-expression for multiple TE families are
labeled along the vertical axis. b-c categorization of co-expression and KZFP binding for all 200,889 KZFP-TE family pair-wise combinations (221
KZFP × 909 TE families), that have both expression and ChIP-exo data. b counts co-expression significant in at least one tissue. c counts co-
expression significant in at least two tissues
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there were only 4 that were bound by the same KZFP. We
do not have a good explanation for why there is a lack of
overlap between co-expression and binding at the locus
level, when there was at least some amount of overlap at
the family level. It looks like the co-expression we observe
is a result of indirect interactions, and not necessarily dir-
ect binding.
We also observed that at the locus level, there was not

a lot of overlap between the TEs that are bound by

KZFPs in [50], and the TEs that are expressed in the
TCGA non-tumourous tissues, regardless of the co-ex-
pression relationship with KZFPs. Here “expressed”
means there is at least one sample in our data with more
than five reads mapped to the TE locus, and “binding”
means that there is a peak detected in the GSE78099
ChIP-seq data overlapping with the TE locus with a + −
250 bp buffer. Figure 10 shows the overall breakdown of
the 4.5 million transposons annotated in hg19 UCSC

Fig. 10 Overlap between expression and KZFP binding for TE loci. a categorization of all 4,496,028 TE loci annotated in hg19 RepeatMasker by
expression and KZFP binding. b Overlap of expression and KZFP binding with ENCODE Candidate Regulatory Element marks. c Proportion of
each category of TEs that are marked with ENCODE Candidate Regulatory Element marks
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Repeatmasker track. Statistically, there is more overlap
than expected (p-value < 2.2e-16) between binding and
expression, but, the overall proportion of TEs that are
both expressed in at least one sample and bound by at
least one ZFP are a tiny proportion (2.6%) of all TEs in
the genome.
One interesting pattern did emerge when we examined

the overlap with epigenetic marks of candidate cis-Regu-
latory Elements defined in the ENCODE data [51]. We
were more likely to see an enhancer-like mark (DNase +
H3K27ac) for TE loci that are expressed compared to
non-expressed TEs, and we were more likely to see a
promoter-like mark (DNase + H3K4me3) for ZFP bound
TE loci compared to TEs with no binding (Fig. 10). The
2.6% of TE loci that are expressed in at least one sample
and bound by at least one ZFP showed the highest pro-
portion of both promoter-like marks and enhancer-like
marks. When we divide the TE loci into gene regions
(genes including introns and + − 1 K flanking region) and
intergenic regions (1 K away from start and end of
genes), the overall pattern remained the same, except
that TE loci were twice as likely to be expressed if they
are close to genes compared to intergenic regions, and
the TE loci were twice as likely to be overlapping with
the promoter-like marks (Additional file 1: Figure S9).
The enhancer-like marks showed no difference between
gene regions and intergenic regions, and the CTCF
marks increased in the intergenic regions.

Discussion
Limitations to the quantification and correction
Quantifying transposon transcripts is a difficult problem,
due to their ambiguity in short read mapping because of
repeated content in the reference genome. Current state
of the art methods rely on Expectation-Maximization to
account for the uncertainty in multi-mapped reads [34].
Focusing only on uniquely mapped reads doesn’t really
solve this problem, and will lead to biased quantification,
favoring older elements with higher mappability. Scott et
al. have demonstrated that by relying on unique muta-
tions found within individual L1HS loci, and by includ-
ing sequences of non-reference polymorphic L1HS loci,
it is possible to identify the source of the L1HS activity
with substantial success [52]. But, in our study we did
not attempt to identify the individual loci of L1HS tran-
scription, and instead focused on the totality of reads
mapping to regions of annotated L1HS that align to the
5′ end of L1HS consensus sequence.
Another complication in TE transcript quantification

is that TEs are frequently embedded within introns that
are transcribed before they are processed, or sometimes
fail to be spliced out, or embedded within exons or non-
coding RNAs that are expressed in different conditions
[33]. To account for this source of error, we introduced

a method to correct for TE reads coming from retained
introns or pre-mRNA. We found that this correction re-
moved about two thirds of the total read counts map-
ping to TEs. Although we observed large corrections for
specific transposable elements embedded within introns,
the correction is not complete. We can tell this from the
observation that the co-expression profiles of intronic
TEs are different from the co-expression profiles of
intergenic TEs away from the genes. The genes co-
expressed with intronic TEs include pseudogenes, in-
tronic transcripts, anti-sense transcripts and genes with
functions in splicing. A more accurate approach would
be to correct for the read counts from retained introns
before the EM algorithm based on the read depth of
uniquely mapped reads, and then run EM based on the
corrected counts. But, estimating the read depth of the
repeat region using uniquely mapped reads is a difficult
problem. The effective length of the uniquely mapped
region is difficult to estimate, because again mappability
varies from locus to locus for any TE, depending on the
unique mutations it has accumulated. So, for this study,
we decided to use the easier approach to run EM first,
and probabilistically assign the TE reads, and then cor-
rect based on the expected read depth across the length
of the TE locus. An important future study would be to
study the mappability of individual TE loci carefully, in-
cluding the known polymorphic sites, and to design a
software for TE quantification that can take into account
the mappability of each locus in its EM algorithm, as
well as correct for the retained introns while considering
the effective length of the uniquely mappable region
within the TE.
Despite these limits, the main results of co-expression

analysis were not affected by the quantification. Most of
the results in the paper were replicated when quantifica-
tion was done on uniquely mapped reads only. The only
results that changed between the multi-mapped ap-
proach vs. the unique mapping approach were the genes
correlated with the L1HS 5′ expression level. For those,
we decided to report on results from the multi-mapped
reads rather than the unique reads, because of the bias
of the uniquely mapped reads we described above.

Stress, immune response and TE expression
Initially, when we started the project, our goal was to
identify candidate genes involved in transposon control,
based on the co-expression analysis. But, once the ana-
lysis was done, the results were pointing to what induces
TE expression, rather than what suppresses TE expres-
sion. The fact that broad classes of transposons with
minimal sequence similarity, that have different pro-
moters and life cycles, showed global correlations at the
family level, shows that the level of transposon derived
transcripts in these samples are largely influenced by the
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host cell state, more than the autonomous transcription
of the individual transposons. Among the genes known
to function in transposon control, RNaseH2C (Fig. 8),
HAUS7, and RNF166 [26] showed negative correlation
with L1HS. But several well-known genes with functions
in transposon control, e.g. MORC2, SIRT6, KAP1,
SAMHD1, MOV10, ZAP, C12orf35 (human ortholog of
RESF1), etc. are missing in our list of significantly corre-
lated transcripts. Instead, the major theme that emerged
from our results is signal transduction, immune re-
sponse, and stress response as seen in the correlation be-
tween L1HS and DDI2, Ras-MAPK and NF-κB pathway.
In humans, various stresses have been shown to induce
LINE1 transcription or activation including chemical
compounds [53–55], radiation [56, 57], oxidative stress
[58] and aging [59]. Most of these studies have observed
L1 activity in vitro, by exposing cultured cells to stress fac-
tors and assaying the retrotransposition activity.
The negative correlation we find between TE expres-

sion and immune gene activity has been reported before
in gastrointestinal cancer samples. Jung et al. have
shown that the L1 retrotransposition rate is inversely
correlated with expression of immunologic response
genes [60]. Here, we extend those results and show that
the negative correlation between TE expression and im-
mune response is a pattern found in non-tumorous sam-
ples as well, across different tissues and different classes
of TEs. This relationship is confusing, since it is opposite
of the positive correlation we find between L1HS and
NF-κB pathway genes (Fig. 8), and opposite of the pat-
tern observed in several cancer studies, where DNA hy-
pomethylation and expression of endogeneous retrovirus
activates interferon signaling [61–63]. Immune active
environment surrounding these tumor adjacent cells
plus nucleic acids in the extra-cellular environment
coming from cancer nearby may be putting the tumor
adjacent cells in an antiviral state. It is known that inter-
feron signaling induces proteins that act against viruses.
ZAP is one example that degrades viral RNA as well as
RNA of LINEs and Alus [64], although ZAP does not
show correlated expression with the TE modules in our
data. We hypothesize that such cell states may reduce
transposon transcripts with higher sensitivity through
RNA degradation and chromatin remodeling.
The tissue samples in this study are not representative

of “normal” cells, as they are collected as controls from
tissue adjacent to cancer cells. Although they are not
undergoing the molecular changes associated with ma-
lignant transformation, they could be under the influ-
ence of nearby environment, with changes in pH levels,
inflammation, and infiltration of immune cells. The in-
clusion criteria for TCGA does not allow patients with
any prior systemic chemotherapy or any other neoadju-
vant therapy, but it does allow local radiation, and we

observe that past local radiation is associated with higher
TE expression levels in adjacent cells in thyroid tissues.
Given the characteristics of the samples, the variation in
TE expression levels or the co-expression pattern we ob-
serve in this study may be due to cancer-associated
stress. Future studies will be needed to confirm whether
the results are replicated in true normal tissue.

TEs and KRAB-ZFPs
ChIP-Seq studies on KRAB-ZFPs have identified extensive
binding between this family of proteins and transposable
elements [50, 65], implying a role for suppressing TE ex-
pression. KRAB domain is a well-known repressor domain
and together with the co-factor KAP1 (TRIM28), the
KZFP-KAP1 complex has been shown to silence both ex-
ogenous retroviruses and endogenous retroelements dur-
ing embryonic development [66, 67]. Based on this
observation, and the pattern of co-evolution of retroviral
LTRs and the C2H2-Zinc Finger gene family, it has been
hypothesized that the KRAB-ZFPs function in transpos-
able element suppression [68]. But except for a few
KRAB-ZFPs, most members do not have a characterized
function. In an alternative hypothesis, instead of its ori-
ginal role in silencing, it was proposed that KRAB-ZFPs
may also have a role in controlling domesticated transpos-
able elements that contribute to the host transcription
regulation network [50, 69] . In our co-expression analysis,
we found overwhelming positive correlation between
KZFPs and TEs across all classes of TEs. This positive cor-
relation was observed whether we are counting multi-
mapped reads or uniquely mapped reads, and whether we
are counting TEs close to genes, or TEs in the intergenic
regions. Despite this robust positive correlation, we found
that the co-expressed relationship showed limited corres-
pondence with published ChIP-seq binding results. There
was statistically meaningful but very small number of
overlap at the family level, and almost no overlap at the
locus level. The co-expression we observe seems to be
largely an indirect relationship, and not a result of direct
binding. It is possible that local chromatin environment
that is co-regulated at a larger scale is responsible for the
correlation at the RNA level.

Conclusions
TE derived transcripts in the non-tumourous tissues show
large variation across tissues, and across individuals. Co-
expression network analysis within tissues revealed gen-
eral co-expression of TEs across all classes. It also found
strong co-expression between TEs and KRAB-Zinc Finger
Proteins that are replicated in multiple tissues, but not
congruent with direct binding of TE-ZFP relationships
assayed through ChIP-seq. We also found negative correl-
ation between intronic TEs and mitochondrial genes, and
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between intergenic TEs and immune response genes, rep-
licated in multiple tissues.

Methods
RNA-Seq and gene expression quantification in the non-
tumorous tissues
We used the gene level quantification provided by The
Cancer Genome Atlas (TCGA) for the gene expressions
[29–31]. We collected gene level quantifications for 697
samples from TCGA. We focused on cancer types that
had at least 10 control samples of RNA-seq data, col-
lected from non-tumorous tissue adjacent to the cancer
tissue. As a result, 16 different tissue types were included
in our analysis: BLCA (Bladder urothelial carcinoma),
BRCA (Breast carcinoma), COAD (Colon adenocarcin-
oma), ESCA (Esophageal adenocarcinoma), HNSC (Head
and neck squamous cell carcinoma), KICH (kidney chro-
mophobe), KIRC (kidney renal clear cell carcinoma),
KIRP (Kidney renal papillary cell carcinoma), LIHC
(Liver hepatocellular carcinoma), LUAD (Lung adeno-
carcinoma), LUSC (Lung squamous cell carcinoma),
PRAD (Prostate adenocarcinoma), READ (Rectum
adenocarcinoma), STAD (Stomach adenocarcinoma),
THCA (Thyroid carcinoma) and UCEC (Uterine Corpus
Endometrial Carcinoma). Number of samples for each
tissue is described in Additional file 1: Table S1. Al-
though we will use the acronym for the cancer type to
describe these tissues, we emphasize again that all our
samples come from the non-tumorous tissues collected
from the same organ of the same patient with the can-
cer. The cancer tissue samples were not included in our
analysis.
Methods for sequencing and data processing of RNA

using the RNA-seq protocol for all tissues except esopha-
gus and stomach have been previously described for
TCGA in [29–31]. Briefly, RNA was extracted, prepared
into poly(A) enriched Illumina TruSeq mRNA libraries,
sequenced by Illumina HiSeq2000 (resulting in paired 48-
nt reads), and subjected to quality control. Sequencing for
esophagus and stomach was done differently from other
tissues and have been described in [32]. Briefly, poly A+
mRNA was purified using MultiMACS mRNA isolation
kit on MultiMACS 96 separator, and double stranded
cDNA was synthesized using the Superscript Double-
Stranded cDNA synthesis kit. Following the library prep-
aration protocol described in [32], the final DNA was se-
quenced on Illumina HiSeq2000 with paired end 75-nt
reads. RNA reads were aligned to the hg19 genome as-
sembly using Mapsplice [70]. Gene expression was quanti-
fied for the transcript models corresponding to the TCGA
GAF2.1 using RSEM [36]. We used the raw_count values
in the .rsem.genes.results files, rounded to an integer, as
the gene level quantification.

Quantifying TE derived transcripts at the locus and family
level
We collected RNA-seq level 1 binary alignment files (.bam
files) for 697 samples (Additional file 1: Table S1) from
TCGA. The bam files were then converted to fastq and
realigned to the hg19 reference genome using STAR and
Bowtie1. With the STAR alignment, we allowed up to 200
mappings for every read (−-outFilterMultimapNmax 200
--winAnchorMultimapNmax 200). With the Bowtie1
alignment, we only allowed the single best alignment for
each read, and if there were multiple best alignments, the
read was discarded from the final alignment (−m 1 -S -y
-v 3 -X 1000 --max). We used a modified version of the
software TEtranscripts [34] for quantifying the reads map-
ping to annotated transposons. TEtranscripts is a software
that can quantify both gene and TE transcript levels from
RNAseq experiments. It takes into account the ambigu-
ously mapped TE-associated reads by proportionally
assigning read counts to the corresponding TE families
using an Expectation-Maximization algorithm. We imple-
mented two modification to the original TEtranscripts
software. 1) We modified it to report read counts for each
individual TE locus in the reference genome in addition to
the family level counts. 2) We developed a function to dis-
count the read counts by removing read counts that cor-
respond to transcripts containing TE sequences that
originate from pre-mRNA or retained introns in the ma-
ture RNA [33]. Downstream analyses were done using the
discounted quantification based on multi-mapped reads
and the uniquely mapped quantification for both the
STAR alignment and the Bowtie1 alignment, to assess the
impact of uncertainty in multi-mapped reads.
The retrotransposon annotations used were generated

from the RepeatMasker tables, obtained from the UCSC
genome database and provided by TEtranscripts. For
quantifying reads mapping to the TE flanking introns we
generated gtf files containing 1) the TE flanking intron po-
sitions, 2) the intergenic TE positions, and 3) the exonic
TE positions (TEs that fall within an exon, including non-
coding RNA genes). In case of intronic TEs, we use the al-
gorithm described above to discount the transcripts from
pre-mRNA or retained introns. In case of intergenic TEs,
we count all EM estimated reads mapped to TEs without
any discount. In case of exonic TEs, we ignore those
counts altogether, and the exonic TEs do not contribute
to the locus count nor the family level count.

Normalization and transformation of read counts
After quantifying the reads mapping to annotated genes
and TEs, both the gene level counts, and the TE counts
were normalized between samples across all tissue types
with DEseq2. We used the default “median ratio method”
for normalization in DESeq2 [71]. Briefly, the scaling fac-
tor for each sample is calculated as median of the ratio,
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for each gene, of its read count to its geometric mean
across all samples. The assumption of the median ratio
method is that most genes are not consistently differen-
tially expressed between tissues. If there is systematic dif-
ference in ratio between samples, the median ratio will
capture the size relationship. But, this assumption may be
violated when we are comparing large number of tissues
types at the same time, since a large proportion of the
genes may be differentially expressed in at least one tissue
type, or one of the tissues may be extremely biased in their
number of differentially expressed genes. In order to
achieve more robust normalization, we used a two-step
normalization method called the differentially expressed
genes elimination strategy (DEGES) [72]. We performed
preliminary normalization using the “median ratio
method”, filtered out potential differentially expressed
genes in the data, found a subset of robust non-differen-
tially expressed genes, and used the subset to perform the
second round of “median ratio normalization”. The result-
ing pairwise MA plot between tissues after normalization
showed better normalization compared to the regular
one-step normalization. The size factors for each sample
obtained from the two-step normalization on gene counts
were then used to normalize the TE quantifications of the
same sample. The normalized counts were log2 trans-
formed using the variance stabilizing transformation func-
tion in DESeq2 [71, 73] for downstream analysis.

Clustering of samples by expression pattern
We cluster the samples using the “average” method (=
UPGMA) in the hclust function of R, and visualize the
clusters with the ComplexHeatmap package [74]. The
top 150 genes or TEs, with the largest variances on the
log2 transformed read counts were used for clustering.
We did not select genes by any measure of differential
expression across tissues. These genes were simply the
genes showing the largest variance in read count across
all 697 samples, regardless of tissue type. We exclude
genes and TEs on X and Y chromosomes. Based on the
log2 read count of the top 150 TEs, a dissimilarity
matrix is calculated and used for the clustering and
visualization. The average method of hclust computes all
pairwise dissimilarities between the members of the two
clusters and considers the average as the distance be-
tween the two clusters. Hierarchical clustering starts
with each sample assigned to its own cluster and then
proceeds iteratively, at each stage joining the two most
similar clusters, continuing until there is just a single
cluster. For the locus level TE expression, we filtered out
all loci that had less than 5 read counts for every sample.
To compare the clustering of samples based on gene ex-
pression, TE expression and random assignment, we
used the normalized Mutual Information (NMI) measure
[75]. The hierarchical clusters were cut off at k = 16, the

number of different tissue types. Because the resulting
clusters were not accurate enough to distinguish be-
tween similar tissues, we used a broader tissue grouping
to compare with the clusters. The tissues were grouped
to 10 broader types based on preliminary clustering:
bladder/endometrium (BLCA, UCEC), breast (BRCA),
liver (LIHC), colon/rectum (COAD, READ), esophagus/
stomach (ESCA, STAD), head and neck — the squa-
mous epithelium in the mucosal surfaces inside the
mouth, nose, and throat (HNSC), kidney (KICH, KIRC,
KIRP), lung (LUAD, LUSC), prostate (PRAD), and thy-
roid (THCA). The broader tissue type of each sample
was used as the ground truth. Each resulting cluster was
then assigned a group label based on the majority tissue
type. Normalized mutual information was calculated by
comparing the labels from the clustering to the true
class labels. Random assignment clusters were generated
by permuting the tissue types with and without replace-
ment 100 times, and the mean NMI was reported.

Co-expression network analysis with TEs and host genes
Weighted correlation network analysis was done with
the WGCNA package [40]. We start with the signed
pair-wise correlation matrix across the expression levels
(normalized log2 read counts) of all genes and TE fam-
ilies. We calculate the adjacency matrix by raising the
correlation matrix to the power of 14, power parameter
selected using the scale free topology measure, effect-
ively suppressing the low correlations due to noise.
Topological overlap based distance matrix (TOM) is cal-
culated using the network topology resulting from the
adjacency matrix. This procedure was repeated for each
tissue, and a consensus TOM was calculated across all
tissues. We used hierarchical clustering on this consen-
sus topological overlap matrix to identify clusters (mod-
ules) that are shared across tissues. A representative
gene expression profile of the module is defined by the
first principal component of the expression levels of all
members in each module. The representative profile is
compared between each module to identify positive and
negative correlation between modules.

Correlated expression between genes and L1HS 5′
We blasted all the L1HS instances annotated in repeat-
masker against the L1HS consensus sequence and iden-
tified the regions aligning to the 300 bases of the 5′ end
of the consensus sequence. We counted all the reads
mapping to the list of L1HS 5′ ends and normalized
them with the same size factor described above. We
used log2 transformed value of this normalized read
count as the variable representing L1HS transcript level.
Correlation between gene and L1HS 5′ transcripts were
tested in each tissue groups separately, in bladder,
breast, liver, colon/rectum, stomach/esophagus, head
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and neck, kidney, lung, prostate and thyroid. We tested
20,532 genes for each tissue group using a linear model
with log2 L1HS 5′ expression as the dependent variable,
and log2 gene expression as the independent variable.
For a gene to be included in our test, it had to be
present in at least eight individual patients. We also re-
quired that the gene be expressed with a minimum RPM
of 2 in 75% of the samples to be included in the dataset.
In addition to the radiation therapy for thyroid tissue,
we considered effective library size (sum of all normal-
ized counts) and the batch ID provided by the TCGA
project as additional covariates. Since there was signifi-
cant co-expression across all TE classes especially for
the intronic TEs, we included the expression profile of
the intronic TE module N1 identified during the co-ex-
pression network analysis as a covariate in our linear
model. The linear model we used is described below.

log2L1HS � log2geneþ log2effective library size
þ batchþ radiationþ log2N1 profile

We tested all combination of linear models that can be
created by including or excluding these variables. Second-
order Akaike Information Criterion (AICc) was used to se-
lect the best linear model. We used the coefficient and p-
value from the best model to calculate the q-values. Genes
with q-value < 0.0001 in at least two tissues were identified
as correlated genes.

Correlation between TE and KRAB-ZFPs
To understand the positive correlation between TEs and
KRAB-ZFPs, we looked at the correlation between each
KZFPs and TEs at the family level and at the individual
TE locus level in different tissue types. We tested the
correlation for 366 KRAB Zinc Finger Proteins that were
identified in Imbeault et al. [50] and also found in our
gene expression data. Because the search space of pair-
wise combinations of KZFP and individual TE loci was
too large, we examined the relationship in a step-wise
approach. In the first step, we tested the correlation be-
tween all pairwise combinations of 366 KZFPs and 979
TE subfamilies using the TE quantification at the family
level in each tissue type. Then, in the second step, once
the significantly correlated KZFP and TE family was
identified, we focused on those pairs. We tested the cor-
relation between the expression of the significant KZFP
and the expression of each individual locus of the signifi-
cant TE family in the tissue where the initial co-expres-
sion was found to identify individual TE loci that are co-
expressed with the KZFP.
Overlap between co-expression and binding was ex-

amined at the family level and at the locus level. At the
family level, we downloaded the family enrichment re-
sults from Imbeault et al. [50] and identified pairs of TE

families and KZFP that had an enrichment score greater
than 1. We compared those families enriched with bind-
ing of specific KZFPs to our co-expression results, to
check if the TE families were co-expressed with the
same KZFPs. At the locus level, we compared the co-
expressed TE loci with the binding peaks reported in the
dataset GSE78099. We took + − 250 bp around the
boundary of peaks and found overlap with TE annota-
tions from Repeatmasker. We checked if the TE locus
overlapping with ChIP-seq peaks were found to be co-
expressed with any KZFPs.
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with L1HS 5′ transcript level. Table S6. Housekeeping genes. Figure S1.
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