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Abstract 

Although physical activity is widely recommended for preventing and treating cardiovascular complications of type 
2 diabetes mellitus (T2DM), the underlying mechanisms remain unknown. MicroRNA-126 (miR-126) is an angioge-
netic regulator abundant in endothelial cells (ECs) and endothelial progenitor cells (EPCs). It is primarily involved in 
angiogenesis, inflammation and apoptosis for cardiovascular protection. According to recent studies, the levels of 
miR-126 in the myocardium and circulation are affected by exercise protocol. High-intensity interval training (HIIT) or 
moderate-and high-intensity aerobic exercise, whether acute or chronic, can increase circulating miR-126 in healthy 
adults. Chronic aerobic exercise can effectively rescue the reduction of myocardial and circulating miR-126 and 
vascular endothelial growth factor (VEGF) in diabetic mice against diabetic vascular injury. Resistance exercise can 
raise circulating VEGF levels, but it may have a little influence on circulating miR-126. The Several targets of miR-126 
have been suggested for cardiovascular fitness, such as sprouty-related EVH1 domain-containing protein 1 (SPRED1), 
phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2), vascular cell adhesion molecule 1 (VCAM1), high-mobility 
group box 1 (HMGB1), and tumor necrosis factor receptor-associated factor 7 (TRAF7). Here, we present a comprehen-
sive review of the roles of miR-126 and its downstream proteins as exercise mechanisms, and propose that miR-126 
can be applied as an exercise indicator for cardiovascular prescriptions and as a preventive or therapeutic target for 
cardiovascular complications in T2DM.
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Introduction
Type 2 diabetes mellitus (T2DM) is a metabolic disorder 
defined by serum glucose concentrations. The underlying 
pathophysiology is related to insulin resistance (IR), and 
β cell failure is required for diabetes to develop. It is char-
acterized by hyperglycemia or hyperinsulinemia which 
would cause macrovascular and microvascular complica-
tions [1]. Epidemiological data have shown that cardio-
vascular disease (CVD) affects approximately 32.2% of 

patients with T2DM, accounting for over half of all fatali-
ties recognized as a primary cause of mortality in them 
[2]. Glycemic control can decrease the glycated hemo-
globin value and reduce macrovascular risks in patients 
with T1DM [3]. It seems that intensified glycemic 
therapy may reduce CVD risk in younger patients with 
recent-onset T2DM but not in high-risk older individuals 
with established disease [4]. A meta-analysis of data even 
shows that intensive glucose-lowering treatment has no 
benefits on death from cardiovascular causes in patients 
with T2DM [5]. Consequently, physical exercise as one of 
the first management strategies has been recommended 
to improve glycometabolism for cardiovascular benefits 
[6].

Open Access

Diabetology &
Metabolic Syndrome

†Yixiao Ma, Hua Liu and Yong Wang equally contributed to this work

*Correspondence:  yangyi999999@foxmail.com

4 Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan Sports 
University, Wuhan 430079, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13098-022-00942-6&domain=pdf


Page 2 of 15Ma et al. Diabetology & Metabolic Syndrome          (2022) 14:169 

In one survey for over eight years, people with diabe-
tes who walk at least 2 h per week have a 34% reduction 
in CVD mortality compared to those who do not exer-
cise [7]. Exercise can reduce cardiovascular inflamma-
tion, blood pressure, and glucose metabolism. It has been 
reported to prevent the generation of reactive oxygen 
species (ROS) and ischemia damage, has anti-fibrosis 
and anti-apoptosis capabilities on diabetic myocardial 
and endothelial cells [8, 9]. The American Association 
of Clinical Endocrinologists and American College of 
Endocrinology recommend that each people with T2DM 
needs individualized exercise prescriptions to exert the 
maximum impact of exercise on the cardiovascular sys-
tem [10]. Nevertheless, the underlying mechanisms of 
exercise in diabetic CVD are poorly understood.

MiRNAs are non-coding RNAs with a length of 20 ~ 24 
nucleotides that can recognize the 3’-untranslated region 
of mRNA and inhibit the post-transcription target. They 
have been recognized as chemical messengers that regu-
late biological processes such as cell proliferation, differ-
entiation, and survival [11]. Dysregulation of miRNAs 
leads to abnormal transcription of target mRNAs, which 
is believed to be related to various diseases. For example, 
circulating miR-126 is down-regulated throughout the 
pathophysiological processes of T2DM [12]. MiR-126 
plays an essential role in the health of ECs, since mice 
with its deletion exhibit severe vascular leakage, dys-
function, and hemorrhaging [13]. Interestingly, aerobic 
exercise can partially rescue miR-126 abundance in dia-
betic cardiac muscle and stimulate myocardial angiogen-
esis by activating the vascular endothelial growth factor 
(VEGF) pathway [14]. Exercise can also increase circu-
lating endothelial progenitor cell (EPC)-exosomes and 
their carried miR-126 for vascular repair in patients with 
T2DM [15].

In this review, we summarize the impact of diabetes 
and exercise on the abundance of miR-126, and highlight 
the role of miR-126 and its downstream targets that have 
been confirmed to participate in angiogenesis, vascular 
inflammation, cardiac autophagy and endothelial apop-
tosis. Current evidences suggest that miR-126 can be an 
exercise indicator for cardiovascular health and as a pre-
ventive or therapeutic approach for cardiovascular com-
plications of T2DM.

Vascular pathophysiology in T2DM
Diabetic vascular disorders mainly include atherosclero-
sis, hypertension, and peripheral artery disease, which 
are developed by the abnormalities in ECs and vascu-
lar smooth muscle cells (VSMCs). ECs are located on 
the vasculature’s inner lining for the regulation of blood 
flow and pressure, and the functions of leukocytes and 
platelets. Diabetes dramatically accelerates vascular 

inflammation and the formation of atherosclerotic 
plaques. Atherosclerotic plaque is formed by the accu-
mulation of apoptotic ECs and macrophages, the migra-
tion and proliferation of VSMCs, and the deposits of lipid 
in the intima with fibrous tissue proliferation and calci-
nosis, which can result in severe vascular complications 
such as myocardial infarction or stroke [16]. The funda-
mental pathophysiology of diabetic macroangiopathy is 
depicted in Fig. 1. Furthermore, diabetes-related micro-
vascular pathology is characterized primarily by sparse 
capillaries, excessive vascular permeability, and abnor-
mal neovascularization, which eventually leads to local 
edema and microvascular inflammation [17, 18].

Hyperglycemia, hyperinsulinemia, and insulin resist-
ance/insufficiency are the primary reasons of vascular 
injury in diabetes. Hyperglycemia inhibits endothelial 
NO synthase (eNOS) and induces oxidative stress 
through polyol, advanced glycation end products (AGEs), 
hexosamine, and protein kinase C pathways [19]. Hyper-
insulinemia caused by IR induces reduction of the 
translocation of glucose transporter 4 (GLUT4), the 
accumulation of diacylglycerol and cellular lipids, impair-
ment of insulin signal pathway, and metabolism problems 
[20]. Therefore, these pathological changes in T2DM 
contributes to the incidence and development of macro-
vascular and microvascular complications.

MiR‑126 expression in diabetic cardiovascular 
complications
Decreased miR‑126 as a possible cardiac biomarker 
of T2DM
MiR-126 located in intron 7 of the EGFL7 gene, is 
exclusively expressed in ECs and EPCs. It can affect the 
translation of endothelial-specific proteins to maintain 
endothelial functions. Moreover, obesity [21], diabetes 
[22, 23] and exercise [14, 15] have been shown to regulate 
the miR-126 expression. In patients with T2DM, miR-
126 is an independent predictor for long-term all-cause 
death and likely to be an epigenetic predictor/mediator of 
cardiovascular complications [24]. Low level of miR-126 
in plasma and in the coronary venous sinus and aorta is 
significantly associated with left ventricular function and 
cardiac repair potential in heart failure patients [25]. In 
addition, several logistic regression analyses indicate that 
hyperglycemia decreases the concentration of miR-126 in 
the heart [22] and plasma [23], which contributes to dia-
betic macroangiopathy and microangiopathy [26, 27].

The two strands of pre-miR-126 develop into miR-
126-3p and miR-126-5p. Unlike several other miRNAs, 
the pre-miR-126 passenger strand (miR-126-5p) is not 
degraded and substantially has functions as the guide 
strand (miR-126-3p). They have the ability to identify 
complementary mRNA molecules and significantly 



Page 3 of 15Ma et al. Diabetology & Metabolic Syndrome          (2022) 14:169 	

trigger target mRNA degradation or translation silencing 
[28]. The targets of miR-126-3p predicted by Targetscan 
and MiRanda analysis have been verified to play a role in 
cardiovascular mainly including phosphoinositide-3-ki-
nase regulatory subunit 2 (PIK3R2) [29], sprouty-related 
EVH1 domain-containing protein 1 (SPRED1) [30], 
VCAM-1 [31], and tumor necrosis factor receptor-asso-
ciated factor 7 (TRAF7) [32]. The targets of miR-126-5p 
include high-mobility group box  1 (HMGB1) [33], acti-
vated leucocyte cell adhesion molecule (ALCAM) [34] 
and Notch1 inhibitor delta-like1 homolog (Dlk1) [35]. As 
shown in Table 1, these targets are primarily involved in 
angiogenesis, vascular inflammation, and EC apoptosis, 

which might explain why circulating low levels of miR-
126 have been regarded as a biomarker for diabetic car-
diovascular diseases. Although miR-126-3p has many 
benefits on endothelial function, it can induce athero-
sclerosis by increasing VSMCs proliferation via insulin 
receptor substrate-1 (IRS-1) inhibition [36]. IRS-1 is con-
sidered to be a risk factor for coronary artery disease [37] 
and its activation in the hearts of patients with T2DM 
induces a lower myocardial glucose utilization [38]. 
Additionally, miR-126-3p also suppresses target gene 
insulin receptor substrate-2 (IRS-2) to inhibit β cell pro-
liferation closely correlated with the IR [39]. Thus, miR-
126 and their distinct targets provide new mechanistic 

Fig. 1  Vascular pathology in T2DM. T2DM induces macrovascular and microvascular dysfunction by hyperglycemia and hyperinsulinemia. Diabetic 
macroangiopathy (atherosclerosis) is made of intimal hyperplasia, foam cell infiltration, arterial wall calcification, and lumen stenosis. Capillary 
immature and increased permeability are features of diabetic microangiopathy. In diabetic cardiomyopathy, infiltrating inflammatory cells induce 
cardiac enlargement and fibrosis. All these pathological alters lead to diabetes-related heart failure. The arrow in the image means high permeability 
through apoptosis of ECs

Table 1  The target mRNAs of miR-126-3p and miR-126-5p, and their pathways and vascular functions

Target mRNAs Pathway Cardiac and vascular effects References

miR-126-3p PIK3R2, SPRED1 PI3K-Akt-eNOS-VEGF, SPRED1-Raf-ERK-VEGF Promoting EC growth, and migration [29, 30]

VCAM1, ADAM9 VCAM1-NF-κB, ADAM9-MerTK Decreasing vascular inflammation [31, 40]

TRAF7 TRAF7-c-FLIP-caspases Decreasing EC apoptosis [32, 41]

IRS-1 IRS-1-PI3K-Akt Increasing VSMCs proliferation [36]

miR-126-5p Dlk-1 Dlk-1-Notch1-Akt-eNOS Promoting EC growth, and migration [35, 42]

HMGB1, ALCAM HMGB1-RAGE/TLR-NF-κB, ALCAM-CD6-VCAM1/ICAM1 Decreasing EC vascular inflammation [33, 34, 43]
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insights into energy metabolism and diabetic vascular 
complications.

EPCs deficiency in diabetic vascular complications
Circulating EPCs derived from bone marrow cells con-
tribute to vascular repair by incorporating them into ECs 
monolayers and secreting vascular growth factors [44]. 
A low concentration of circulating EPCs defineded with 
CD34 + and kinase insert domain-conjugating receptor 
(KDR) + cells independently predicts a fourfold increase 
in the incidence of cardiovascular events in coronary 
artery disease patients [45]. Moreover, in multivariate 
analysis, reduced circulating EPC levels are a significant, 
independent predictor of poor prognosis for established 
cardiovascular disease [45]. Diabetes impairs both the 
quantity and function of circulating EPCs [46]. Anti-dia-
betic drug ticagrelor could significantly increase circulat-
ing EPCs in diabetic patients with non-ST elevation acute 
coronary syndrome [47]. Besides, EPCs isolated from 
obese diabetic mice significantly have reduced the abil-
ity of angiogenesis in vitro and even an anti-angiogenesis 
phenotype [48].

MiR-126 is abundant in EPCs and increases the pro-
liferation, migration and tube-like structures of EPCs by 
targeting VEGF pathway [49, 50]. Injection of EPCs with 
overexpressing miR-126 can induce reendothelialization 
and endothelial healing by promoting extracellular sig-
nal-regulated kinase (ERK)/VEGF and Akt/eNOS sign-
aling pathways in non-obese diabetic rats with carotid 
artery injury [51]. Microvesicles (MVs) released from 
EPCs as a kind of extracellular vehicle (EV) can modulate 
cell migration, apoptosis, and oxidative stress [46]. The 
protective effects of EPC-MVs are compromised in dia-
betes due to the reduction of their carried miR-126 [46]. 
It is acknowledged that EV is an effective way to avoid 
miRNAs degradation during transport. MiRNAs carried 
by EVs can have a variety of physiologic and pathologi-
cal functions by suppressing their post-transcription of 
target mRNAs [52]. For example, EV can protect against 
acute myocardial ischemia injury by lowering cell apop-
tosis and increasing cell survival via carrying miR‑126 
-3p by PIK3R2/VEGF signaling pathway [53, 54]. There-
fore, EPCs or their EV can provide a resource of miR-
126 and promote vascular repair for diabetic vascular 
complications.

MiR‑126 expression induced by exercise
Exercise can be classified into acute and chronic exercises 
according to exercise time, and aerobic and resistance 
exercise based on oxygen metabolism. Exhausted exer-
cise, high-intensity interval training (HIIT), and high-, 
medium-, or low-intensity exercise are all classified by 
intensity. The current study shows that aerobic exercise 

is proposed to be more effective than resistance train-
ing (RT) in reducing endothelial activation markers and 
inflammatory cytokines [55]. Particularly, the expression 
of miR-126 can be comprehensively influenced by vari-
ous exercise. Thus, we summarize the results of miR-126, 
VEGF, EPCs, and EPC-exosomes after different exercise 
protocols in myocardium and circulation in Table 2.

MiR‑126 expression is increased by aerobic exercise
The expression profile of circulating miRNAs provides 
insight into the potential exercise mechanism of the car-
diovascular system, in which miR-126 is one of these 
miRNAs that can be directly altered by exercise inter-
vention [81]. Based on the few studies conducted so 
far, chronic aerobic exercise has been demonstrated to 
raise circulating and myocardial miR-126 levels in both 
healthy and diseased people. As shown in Table  2, four 
weeks of high-intensity exercises can elevate the level of 
circulating miR-126 in healthy individuals [62, 63]. More-
over, ten weeks of moderate-and high-volume swimming 
in Wister rats significantly increases the level of circu-
lating miR-126 with exercise-induced cardiac angiogen-
esis in a dose–response manner [73]. Chronic running 
increases the myocardial expression of miR-126 in STZ 
rats and db/db mice [22, 72], but has no impact on cir-
culating miR-126 [72]. Likewise, there is no change of 
miR-126 in the hypertensive rat’s plasma after ten-week 
swimming, but the level of its downstream target gene 
protein PIK3R2 reduces from an increase of 51% to nor-
mal [79]. The comparative study on chronic exercise of 
diabetic mice from 8-week-old and 16-week-old indicates 
that early exercise intervention can increase myocardial 
miR-126 and VEGF, and better improve the onset and 
progression of diabetic heart disease [72]. Combination 
of exercise and diet control for six weeks in obese adoles-
cents increases serum miR-126 and vascular endothelial 
diastolic functions [82]. These findings suggest that miR-
126 could be the essential molecule influenced by chronic 
aerobic exercise in a dose–response manner and might 
be involved in early protecting the cardiac function.

Acute aerobic exercise is a single bout of aerobic activ-
ity that usually uses % maximal oxygen uptake (V̇O2max) 
to measure the intensity of exercise. V̇O2max is the high-
est oxygen consumption attainable during maximal or 
exhaustive exercise per minutes. A single symptom-
limited exercise test is a kind of exhaustion test. When 
a healthy subjects perform this test by bicycling, the cir-
culating miR-126 will be increased [56]. After a 30-min 
aerobic exercise at 75% V̇O2max in obese adults, circu-
lating miR-126 is also increased and is continued to 
increase 1  h [70]. A 42-km marathon can immediately 
increase plasma miR-126 by 1.9-fold in trained run-
ners, and then decline to pre-race level within 24 h [60]. 
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Table 2  Effects of different exercise protocols on the expression of circulating and myocardial miR-126, EPCs, EPC-exosomes, and 
VEGF

miR-126 in Table 2 refers to miR-126-3p. ↑: increased; ↓: decreased; ↔ : negligible effect; c-miR-126: circulating-miR-126; mu-miR-126: muscle-miR-126; m-miR-126: 
myocardial-miR-126; c-VEGF: circulating-VEGF; m-VEGF: myocardial-VEGF; HVT: high volume session; MT: Moderate training; CE: chronic exercise; HDL: high-density 
lipoprotein; MVs: microvesicles; EPC-exo: EPC-exosomes; SHR: spontaneously hypertensive rats; STZ rats: diabetic rats built by injection with streptozotocin; SHR: 
spontaneously hypertensive rats; MI: myocardial infarction

Species Exercise intervention Exercise Type The changes of miR-126, EPCs, EPC-exosomes, and 
VEGF after exercise

Healthy individuals A single symptom-limited exercise test Bicycling c-miR-126↑; [56]

Healthy individuals HIIT: 3—min 85% of a peak power output, 4—min intervals 
at 40% PPO, 30 min

Bicycling c-miR-126↑, endothelial MVs ↔ ; [57]

Healthy individuals HIIT: 4 × 30 s all—out, 7: 30 min—intervals at 45% PPO Bicycling c-miR-126↑; [58]

Healthy individuals HIIT: 95% of a peak power output, 4 × 4 min, 3—min 
intervals at 45% PPO

Bicycling c-miR-126↑; [58]

Healthy individuals HIIT: 90—95% of a peak power output, 4 × 4 min, 3—min 
intervals

Bicycling c-miR-126 ↔ , c-VEGF↑; [59]

Healthy individuals A marathon Running c-miR-126↑; [56, 60]

Healthy individuals HT: 70% of the individual anaerobic threshold, 4 h Bicycling c-miR-126↑; [56]

Healthy individuals MT: 60% of a peak power output, 30 min Bicycling c-miR-126 ↔ , endothelial MVs ↔ ; [57]

Healthy individuals MT: 60% V̇O2max, 30 min Running EPC↑; [61]

Healthy individuals MT: 60% of a peak power output, 90 min; Bicycling c-miR-126↑, c-VEGF↑; [59]

Healthy individuals MT: 55% of a peak power output, 130 min; Bicycling c-miR-126↑; [58]

Healthy individuals CE: (4—7) × 30 s, all—out, 30 s intervals at warm—up 
speed, 3 d/wk × 4 wks

Running c-miR-126↑; [62]

Healthy individuals CE: 4 × 30 s, all—out, 30 s intervals at 8.0 km/h, 2 d/wk × 4 
wks

Running c-miR-126↑; [62, 63]

Healthy individuals CE: 74.75% of HRmax, 25 min, 3 d/wk × 4 wks Running c-miR-126↑; [62]

Healthy individuals CE: 55%—75% V̇O2max, 3 d/wk × 20 wks Bicycling c-miR-126↑; [64]

Healthy individuals CE: marathon routine training Running EPC↑; [65]

Healthy individuals 3 sets × 15 repetitions of six machine resistance exercises RT EPC↑, c-VEGF↑; [66, 67]

Healthy individuals 3 sets × 15 repetitions of three machine resistance exer-
cises

RT c-miR-126 ↔ ; [56]

Healthy individuals 60%, 70% or 80% of 1RM; 12 repetitions × 4 exercises, 
30 min

RT EPC↑, c-VEGF↑; [67]

Healthy individuals CE: 3 sets of 10 repetitions × 5, 3 d/wk × 6 wks RT c-VEGF↑; [68]

Healthy individuals CE: resistance routine training RT mu-miR-126↓; [69]

Obese individuals HT: 75% V̇O2max, 30 min Running c-miR-126↑; [70]

T2DM patients MT: 60% V̇O2max, 30 min Running EPC ↔ ; [61]

T2DM patients Strength training circuit, 30 min and walking at 60%—70% 
of HRR, 40 min

RT & walking c-miR-126 ↔ ; [71]

C57BL/6 J mice CE: 5 or 10 m/min; 60 min/d, 5 d/wk × 4 wks Running EPC↑, EPC-miR-126↑, EPC-exo↑, EPC-exo-miR-126↑; [15]

db/db mice CE: 9—13 m/min, 10 × 5 min, a slope of 10°, 5 d/wk × 8 
wks

Running m-miR-126↑, m-VEGF↑, c-miR-126 ↔ ; [72]

Wistar rats CE: 60 min/d, 5% body overload, 5 d/wk × 4 wks Swimming m-miR-126↑, m-VEGF↑; [73]

Wistar rats CE: 60 min/d in 1–8 week; 120 min/d in the 9th week, 
180 min/d in the 10th week; 5% body overload, 5 d/wk

Swimming m-miR-126↑, m-VEGF↑; [73]

Wistar rats CE: voluntary exercise, 3000 m/d, 8 wks Running m-miR-126↑; [74]

STZ rats CE: 95—100% V̇O2max, 6d/wk × 6 wks Running m-miR-126↑, m-VEGF↑; [75]

STZ rats CE: voluntary exercise, > 2000 m/d; 6 wks Running m-miR-126↑; [22, 76]

STZ rats CE: 25 m/min, 30 min, a slope of 5%; 8wks Running m-miR-126↑, m-VEGF↑; [14]

STZ rats CE: 10—39 m/min, 30 min, 5 d/wk × 6 wks Running mu-miR-126↑; [77]

Obese Zucker rats CE: 4% of body overload, 60 min, 5 d/wk × 10 wks Swimming m-miR-126↑, m-VEGF↑; [78]

SHR rats CE: 4% of body overload, 60 min, 5 d/wk × 10 wks Swimming c-miR-126 ↔ ; [79]

MI rats CE: 15 m/min, 3—min × 7 & 25 m/min, 4 min × 7, 5d/
wk × 4 wks

Running m-miR-126↑; [80]
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Uhlemann and colleagues believed that the rise of cir-
culating miR-126 after an acute aerobic exercise as evi-
dence of damage of the ECs layer [56]. However, the fact 
is that neither mature ECs exfoliation nor ECs mon-
olayer injury occurs after exercise, even after 30  min of 
acute cycling at 85% peak power [57]. Tissue hypoxia 
induced by high-intensity exercise might be responsible 
for the increase of miR-126 expression. Hypoxia induces 
the expression of hypoxia-inducible factor -1α (HIF-1α) 
and its downstream Ets-1 which can regulate miR-126 in 
vascular ECs [83, 84]. In addition, EPCs promoted from 
the bone marrow into the bloodstream might be another 
reason for circulating miR-126 increase. However, the 
circulating EPCs do not change in T2DM patients follow-
ing a 30 min-treadmill exercise at 60% V̇O2max [61] and 
increase in marathon athletes and in mice by eight week-
aerobic exercise [15, 65]. Therefore, miR-126 expression/
release can be different in different conditions of health, 
and after different protocols of aerobic exercise. It is 
recommended that exercise with moderate intensity or 
above can significantly increase circulating miR-126.

MiR‑126 expression is increased by HIIT
HIIT consists of bouts of more than 90% V̇O2max fol-
lowed by a brief rest period and seems to induce larger 
beneficial adaptation in the cardiovascular system [85]. 
Even a session of HIIT can completely prevent the nor-
mal postprandial reduction of endothelial function [86] 
and increase the circulating miR-126 levels including 
miR-126-3p and miR-126-5p in healthy individuals [57, 
58]. In clinical experiments, the isolated high-density 
lipoprotein from chronic heart failure patients after 
moderate intensity exercise training rescues the miR-126 
reduction in co-cultured ECs compared with no-exercise 
chronic heart failure patients [87]. In addition, the study 
finds that high volume training (HVT) with cycling for 
130 min at 55% peak power output (PPO) could signifi-
cantly elevate serum miR-126 level immediately [58]. 
One session of HVT with 90 min cycling at 60% PPO dra-
matically raises circulating miR-126 abundance in young 
male cyclists, but 4 × 4 min HIIT at 90–95% PPO had no 
influence [59]. Schmitz and colleagues also found that no 
acute elevation of circulating miR-126 was observed after 
HIIT with running 4 × 30 s at maximum speed in moder-
ately trained students, but obviously elevated after four-
week training sessions [63]. Therefore, HIIT can increase 
the abundance of serum miR-126, but it is influenced by 
training level of the subjects and the amount of exercise 
time.

MiR‑126 expression is affected by resistance exercise
Resistance training (RT) has remarkable cardiovascu-
lar benefits. For example, a 12-week training program 
consisting of moderate-intensity resistance exercise 
improved cardiovascular fitness in overweight and 
obese participants [88]. RT is recommended to improve 
blood pressure, reduce arterial stiffness, and benefit 
for glycemic control as a complement to aerobic exer-
cise programs [89]. It has been shown that the strength 
training intervention for one week has no impact on 
the circulating miR-126 among older diabetic patients 
and control subjects [71]. The researchers observe that 
decreased miR-126 in muscle biopsies could reliably 
distinguish between powerlifters and controls, imply-
ing that it might help define the powerlifter phenotype 
[69]. Although RT does not enhance the plasma level 
of miR-126, it still promotes a rise in serum VEGF and 
the level of circulating EPCs [66, 67]. The increase of 
plasma VEGF and HIF-1α after anaerobic RT is proba-
bly due to muscle ischemia during exercise [67]. Eccen-
tric training is another strength training technique 
which is also confirmed to cause an increase of HIF-1α 
in untrained skeletal muscle and to up-regulate VEGF 
and eNOS expressions [90]. Therefore, RT has cardio-
vascular and muscular effects, but its mechanism may 
not be associated to miR-126.

The level of miR‑126 in EPCs and EPC‑EVs is increased 
by exercise
EPCs carried miR-126 may contribute to exercise-
induced cardiovascular protection. After 12  h of a 
marathon, professional runners had a higher circu-
lating percentage of EPCs which is accompanied by 
favorable effects on heart rate and blood pressure [65]. 
In diabetes patients, although circulating EPC-EVs are 
increased, their carried miR-126 and the expression of 
VEGF receptor 2(VEGFR-2) are decreased [46]. Sur-
prisedly, exercise can significantly increase the number 
of circulating EPCs and EPC-exosomes and their car-
ried miR-126 in mice, which protects ECs against from 
hyperglycemia-induced damage [15]. Our study showed 
that long-term moderate exercise mice promoted a 
higher circulating EPC-exosomes which could alleviate 
the dysfunction of injured ECs via SPRED1 downregu-
lation and VEGF upregulation [15]. Furthermore, three 
years of regular endurance resistance exercise increased 
the circulating levels of EPCs and VEGF [66]. However, 
a 30-min running at 60% V ̇O2max could not change the 



Page 7 of 15Ma et al. Diabetology & Metabolic Syndrome          (2022) 14:169 	

number of EPCs in the impaired glucose tolerance and 
T2DM subjects, only conversely increases in the con-
trol group [61]. Thus, chronic exercise may provide a 
potential approach to reduce diabetic vascular compli-
cations by elevating the number of EPCs, EPC-EV, and 
its carried miR-126.

Mechanism of exercise‑induced miR‑126 
in improving cardiovascular function in diabetes
Exercise-induced miR-126 should be a valuable marker 
for optimizing individual training interventions based 
on its biological effects. MiR-126 has multiple func-
tions such as glucose metabolism, neovascularization, 
inflammatory resistance, autophagy, and anti-apoptosis 
effects by modulating the expressions of its target genes. 

Figures 2 and 3 summarize the targets of miR-126 elicited 
by exercise for the beneficial effects on cardiovascular 
health in diabetes.

Glycometabolism
Exercise has the potential to improve glycemic con-
trol in diabetes depending on the duration and inten-
sity of physical activity. For example, a single bout of 
moderate-intensity aerobic exercise reduces fasting glu-
cose (FG) level, but less effectively than HIIT in patients 
with T2DM [91]. Resistance exercise can lead to a mod-
est reductions in FG [68, 92, 93]. RT enhances glucose 
uptake via increasing transport of glucose into skel-
etal muscle by GLUT4 translocation [94, 95]. The major 
molecular pathways of aerobic exercise are associated 

Fig. 2  The mechanism of exercise in improving cardiovascular function in diabetes. Exosomes carried miR-126-3p/-5p plays an important role 
in control of angiogenesis, autophagy, anti-apoptosis, and glycogenesis, which together contribute to improve diabetic cardiovascular health 
in diabetes. SPRED1 and PIK3R2 suppress VEGF by separately inactivating the downstream Ras/Raf-1/ERK and PI3K/Akt signaling pathways. Akt 
phosphorylation is related to autophagy by affecting FoxO and mTOR, as well as anti-apoptosis by increasing Bcl-2. Akt can also phosphorylate 
glycogen synthase kinase-3β(GSK3β) for inactivation, which reduces inhibition of GS to increase glycogen
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with insulin sensitivity improvement which can increase 
skeletal muscle glucose absorption by reducing adi-
pokines, inflammation, and oxidative stress [96]. RT can 
also considerably lower the inflammatory biomarker 
C-reactive protein, total cholesterol, and low-density 
lipoprotein cholesterol to increase insulin sensitivity and 
decrease the risk of CVD [68, 92]. The expression of miR-
126 can be surprisingly increased or maintained well in 
circulating EPC-MVs when the plasma glucose level is 
well-controlled in diabetic patients by drug management 
[46]. It assumes that exercise has a significant influence 
on the increase of miR-126, which might be mediated by 
blood glucose regulation, but this has yet to be verified.

MiR-126 is closely associated with glucose homeostasis. 
The study finds that the glycogen content is much more 

in the placentas of miR-126−/− mice [97]. Akt activa-
tion is a critical step to phosphorylate GSK3β in glycogen 
synthesis process. It is evidenced that miR-126 enhances 
the biological function of EPCs under oxidative stress 
via PI3K/Akt/GSK3β signaling pathways [98]. Interest-
ingly, there is an increase in cardiac IRS1-PI3K activity 
and a reduction of GLUT4 in patients with T2DM [38]. 
MiR-126 is a negative regulator of IRS-1 [99] and can be 
increased by exercise which improves insulin sensitiv-
ity and the activation of Akt in diabetic heart [15, 100]. 
However, exercise does not enhance IRS-1-mediated 
PI3K activity, but up-regulate GLUT4 protein expres-
sion in diabetic skeletal muscle [101]. Moreover, exercise 
can decrease [102] or increase [103] myocardial glycogen 

Fig. 3  The molecular mechanisms of exercise-induced exosomal miR-126 for anti-inflammation in diabetes. Exercise-induced exosomes modify the 
downstream target genes IκBα, HMEB1, and VCAM-1 via their carried miR-126. The anti-inflammatory effects in diabetic cardiovascular system are 
achieved by inhibiting inflammatory substances, such as HMGB1 and TNF-a activate IKK to enhance phosphorylation of the NF-κB (p65 and p50) 
complex. Then NF-κB enters the nucleus via nuclear pore to stimulate IκBα genes and NF-κB target genes production, which can activate the NF-κB 
inflammatory pathway
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synthesis. A report showed that 13-week swimming sig-
nificantly reduced high blood glucose and cardiac glyco-
gen in Zucker diabetic fatty rats via Akt/GSK3 signaling 
pathway [102]. Another study found that exercise did not 
correct abnormal cardiac glycogen accumulation in the 
db/db mice [103]. The mechanism of exercise induced 
glycogen production is complicated in diabetic heart. 
The AMP-activated protein kinase (AMPK) pathway also 
directly controls carbohydrate metabolism. Although 
AMPK activation enhances cellular glucose absorption 
and decreases glycogen production by inhibiting glyco-
gen synthase activity, glucose-induced allosteric activa-
tion of glycogen synthase can mask the effect of AMPK 
to promote glycogen accumulation, contributing to meta-
bolic disorders [104]. Whether miR-126 participates in 
the exercise-related glycogen alteration requires further 
investigation.

Angiogenesis
As shown in Table 1 and Fig. 2, SPRED1 and PIK3R2 are 
two essential miR-126-3p targets in the promotion of 
ECs growth and migration. SPRED1 is a member of the 
sprouty/spred protein family which can suppress VEGF 
by inactivating the downstream Ras/Raf-1/ERK signal-
ing pathway [49]. By targeting the SPRED1 and PIK3R2, 
miR-126 regulates vascular endothelium permeabil-
ity and angiogenesis [29]. Moreover, eNOS can be acti-
vated by PI3K/Akt/VEGF dependent pathway to control 
vasodilatation [105]. High glucose suppresses angiopoi-
etin-1 (Ang-1) through the miR-126/PIK3R2 pathway 
in ECs [106]. This pathway not only fine-tunes VEGF-
signaling on the formation of the initial vascular plexus 
but also strongly enhances the activity of Ang-1 on vessel 
stabilization and maturation. In addition, Notch1 inhibi-
tor delta-like1 homolog (Dlk1) is the target gene of miR-
126-5p that can inhibit Notch1 activation and limit G1-S 
phase progression to proliferation, up-regulation of miR-
126-5p consequently can preventing the pathological 
process of atherosclerosis by inhibiting Dlk1 [35].

MiR-126/VEGF pathway is an essential exercise 
mechanism in diabetic cardiovascular protection. Exer-
cise modulates miR-126 and its targets for physiologi-
cal response and adaptation. Chronic and acute aerobic 
exercise promotes an increase in myocardial capillary/
fiber ratio via miR-126/SPRED1 and PIK3R2 pathways 
in rats [73]. Particularly, acute HIIT can raise circulating 
VEGF, although its effect on circulating miR-126 is con-
troversial [59, 62]. Therefore, based on the responses of 
miR-126 and VEGF, more consideration should be given 
to choosing appropriate intensity exercise for angiogen-
esis, such as HIIT or chronic aerobic exercise with mod-
erate intensity.

Anti‑inflammation
The vascular inflammation is a crucial cause of accel-
erating atherosclerosis and diabetic vascular disorder. 
Nuclear factor-kappa B (NF-κB) plays a central role 
in the induction of many pro-inflammatory cytokines 
to regulate cell stress, cell survival, and cell prolifera-
tion. Likewise, NF-κB in diabetic heart is medicated by 
tumor necrosis factor-α (TNF-α), interleukin-1(IL-1), 
and interleukin-6 (IL-6) contributing to IR development 
and cardiac dysfunction [107]. Exercise has significant 
benefits on the reduction of oxidative stress and vascu-
lar inflammation depending on the appropriate exercise 
protocols. Moderate endurance exercise always exerts 
an anti-inflammatory effect by inhibiting pro-inflamma-
tory cytokines [108], reducing NF-κB activation [109], 
limiting IR [110] and reserving mitochondrial activity 
[111]. Even a single session of aerobic exercise also can 
lower postprandial lipemia, monocytic TNF, and NF-κB 
activity in peripheral blood mononuclear cells against 
high-fat diet-induced inflammation [112, 113]. Interest-
ingly, IκBα is a physiological inhibitor protein of NF-κB, 
and its phosphorylation by IκB kinase (IKK) promoting 
ubiquitination and active NF-κB release [114]. NF-κB 
p65 and NF-κB p50 can be transferred into the nucleus, 
stimulating IκBα and pro-inflammatory cytokines gene 
expressions, and then moved from the nucleus via the 
nuclear pore to cytoplasm by binding with IκBα. MiR-
126 is an important regulatory factor in the inflammatory 
response, because it can directly inhibit IκBα [115]. How-
ever, the study found that IκBα protein did not alter dur-
ing moderate activity but considerably was reduced by 
exhaustive exercise [31]. It is suggested that the increased 
inflammation may be closely related to exercise load.

Patients with T2DM have a high incidence rate of CVD 
partly due to vascular inflammation that accelerates ath-
erosclerosis and diabetic endothelial dysfunction. Many 
inflammatory mediators are involved in this process, 
such as increased IL-6, VCAM-1, and monocyte chem-
oattractant protein [116]. As the downstream target of 
NF-κB, VCAM-1 targeted by miR-126-3p can be up-reg-
ulated by hyperinsulinemia [117, 118]. Aerobic exercise 
training can reduce soluble VCAM-1 and decrease leu-
kocyte adherence [119]. In addition, miR-126 also con-
trols the sirtuin 1 (SIRT1) and superoxide dismutase-2 
expression against ROS imbalance in hind limb ischemia-
subjected ob/ob mice [120]. Exercises decrease ROS 
production and increase NO availability in hypertensive 
patients [121] and the diabetic patients [122]. Inhibiting 
miR-126 increases the inflammatory markers and ROS 
generation in EPCs cultured under hyperglycemic con-
ditions by PI3K/Akt pathway [123], which is crucial for 
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modulating EPC migration and proliferation in T2DM 
[49, 123].

As a nuclear non-histone DNA-binding protein, 
HMGB1 is suppressed by miR-126-5p. HMGB1 level 
is increased in the serum of hyperglycemic rats and 
the management of hyperglycemia with insulin might 
decrease serum HMGB1 level [124]. HMGB1 could up-
regulate toll-like receptors (TLR) [125] and receptor for 
advanced glycation end-products (RAGE) to enhance 
proinflammatory activities [126]. A tight junction com-
plex composed of Claudin, Occluding, and ZO-1 is 
down-regulated potentially by the HMGB1/RAGE/Erk 
signaling pathway in the differentiated epithelium [126]. 
Overexpressing miR-126 in ECs under hyperglycemic 
condition could decrease inflammatory cytokines includ-
ing TNF-α, ROS, and NADPH oxidase activity by inhib-
iting HMGB1 [33]. Human umbilical cord mesenchymal 
stem cell-derived exosomes carried overexpressing miR-
126 alleviate the hyperglycemia-induced inflammation 
by reducing HMGB1 in human retinal ECs [127]. Moreo-
ver, HMGB1 is negatively related to post-exercise heart 
rate recovery in post-infarction patients, indicating that 
HMGB1 was involved in autonomic dysfunction dur-
ing exercise [128]. As shown in Fig. 3, exercise decreases 
inflammation and improves diabetic cardiovascular 
function, probably through the miR-126-5p/HMGB1 
pathway.

Autophagy
Autophagy is a critical defense mechanism for myocar-
dial cell protection. It plays an important role in main-
taining homeostasis by restoring or eliminating damaged 
organelles and lipids. MiR-126 regulates the level of 
beclin-1 and improves cardiac function after acute myo-
cardial infarction [129]. Beclin-1 is a specific mediator 
of autophagy that can be phosphorylated on Thr388 by 
AMPK [130], and its absent reduces excessive autophagy-
induced cardiomyocyte death in the diabetic heart [131]. 
In addition, beclin-1 can be phosphorylated by unc51-
like kinase1 (Ulk1) in response to amino acid deficiency 
and mTOR inhibition [132]. mTOR complex1 inhibits 
autophagy and regulates cell survival in brain injury and 
disease through the insulin/PI3K/Akt signaling pathway 
[133]. T2DM patients often have autophagy deficiency. 
Metformin increases autophagy flux in cardiomyocytes 
by activating SIRT1 or AMPK phosphorylation, con-
tributing to cardio-protection [134]. On the contrary, 
antihyperglycemic medications through the insulin path-
way decrease autophagy and exacerbate heart failure 
[134]. MiR-126-induced loss of IRS-1 suppresses glucose 
uptake, leading to energy deprivation, and its depletion 

can reduce autophagy by AMPK-dependent phosphoryl-
ation of Ulk1 [135].

Glycophagy is an alternative pathway for cytosolic 
glycogen storage and degradation. Starch Binding 
Domain 1 (STBD1) is linked to the Atg8 family mem-
ber GABA Type A Receptor Associated Protein Like 1 
(GABARAPL1) at the N-terminus and glycogen at the 
C-terminal CBM20 domain. This process subsequently 
stimulates glycogen phagocytosis and lysosome fusion, 
which leads to autophagosome maturation. Excess gly-
cogen can then be removed from the lysosome by acid 
alpha-glucosidase (GAA) [136, 137]. Unlike the mac-
rophagy, cardiomyocyte glycophagy occurs under the 
condition of insulin and exogenous high glucose neces-
sarily accompanied by an increase in STBD1 expression 
[138]. Thus, as shown in Fig. 2, the reduction of miR-126 
in diabetes myocardium is associated with autophagy and 
glycogen synthesis, which lead to glycogen pathology in 
the myocardium. So far, the regulatory mechanisms of 
exercises on glycogen accumulation and glycophagy are 
still inconclusive, and whether it is related to miR-126 
needs further elucidation.

Anti‑apoptosis
Hyperglycemia causes the apoptosis of ECs and pan-
creatic β cells, aggravating the development of diabetic 
vascular complications [139]. MiR-126-5p inhibits cell 
apoptosis via its direct target protein TRAF7 which is one 
of the TRAF proteins involved in cell death and survival 
[32]. TRAF7 is a crucial regulatory protein that regulates 
whether the NF-κB transcription factor is activated or 
repressed [140]. TRAF7 also suppresses ECs apoptosis by 
increasing unusual polyubiquitination of the cellular fas-
associated death domain-like IL-1-converting enzyme 
inhibitory protein (c-FLIP) [141] and the caspase-3-de-
pendent pathway [142]. MiR-126-3p improves cell sur-
vival and decreases the expression of Bax and caspase-3 
in high-glucose-induced human retinal ECs via target-
ing IL-17A and activating the PI3K/Akt pathway [143]. 
Due to the prevention of vascular apoptosis, exercise 
improves cardiovascular function. Aerobic exercise train-
ing significantly lowered blood pressure and heart rate 
in spontaneously hypertensive rats by increasing Bcl-2 
levels [79]. Treadmill exercise promotes p-Akt expres-
sion, which assisted in the reduction of retinal apoptosis 
and neuron apoptosis in diabetic mice [144]. These find-
ings imply that miR-126 and its downstream targets may 
be involved in the prevention of high glucose-induced 
apoptosis.
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Conclusions
Exercise is an important method for reducing cardio-
vascular risk and mortality rate in T2MD. MiR-126 can 
promote angiogenesis, decrease vascular inflammation, 
regulate autophagy and reduce endothelial apoptosis by 
targeting its downstream proteins. Endurance aerobic 
exercise with moderate-intensity or above can raise the 
level of circulating and myocardial miR-126 in diabetes, 
whereas RT need further investigation. Chronic aerobic 
exercise is preferred to acute ones for long-term advan-
tages in the expressions of miR-126 and VEGF. MiR-126 
is responsible for the beneficial effects of exercise and 
could be applied as an exercise indicator for cardiovas-
cular prescriptions and as a preventive or therapeutic 
target for cardiovascular complications in T2DM.
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