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Abstract

Background: Lung adenocarcinoma, the most common type of lung cancer, has a high level of morphologic
heterogeneity and is composed of tumor cells of multiple histological subtypes. It has been reported that immune
cell infiltration significantly impacts clinical outcomes of patients with lung adenocarcinoma. However, it is unclear
whether histologic subtyping can reflect the tumor immune microenvironment, and whether histologic subtyping
can be applied for therapeutic stratification of the current standard of care.

Methods: We inferred immune cell infiltration levels using a histological subtype-specific gene expression dataset.
From differential gene expression analysis between different histological subtypes, we developed two gene
signatures to computationally determine the relative abundance of lepidic and solid components (denoted as the
L-score and S-score, respectively) in lung adenocarcinoma samples. These signatures enabled us to investigate the
relationship between histological composition and clinical outcomes in lung adenocarcinoma using previously
published datasets.

Results: We found dramatic immunological differences among histological subtypes. Differential gene expression
analysis showed that the lepidic and solid subtypes could be differentiated based on their gene expression patterns
while the other subtypes shared similar gene expression patterns. Our results indicated that higher L-scores were
associated with prolonged survival, and higher S-scores were associated with shortened survival. L-scores and S-
scores were also correlated with global genomic features such as tumor mutation burdens and driver genomic
events. Interestingly, we observed significantly decreased L-scores and increased S-scores in lung adenocarcinoma
samples with EGFR gene amplification but not in samples with EGFR gene mutations. In lung cancer cell lines, we
observed significant correlations between L-scores and cell sensitivity to a number of targeted drugs including
EGFR inhibitors. Moreover, lung cancer patients with higher L-scores were more likely to benefit from immune
checkpoint blockade therapy.
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Conclusions: Our findings provided further insights into evaluating histology composition in lung adenocarcinoma.
The established signatures reflected that lepidic and solid subtypes in lung adenocarcinoma would be associated
with prognosis, genomic features, and responses to targeted therapy and immunotherapy. The signatures therefore
suggested potential clinical translation in predicting patient survival and treatment responses. In addition, our
framework can be applied to other types of cancer with heterogeneous histological subtypes.

Keywords: Lung adenocarcinoma, Histology, Tumor immune microenvironment, Gene signature, Prognosis,
Genomic alterations, Drug sensitivity, Immunotherapy

Background
Lung cancer is the leading cause of cancer-related deaths
in the USA, causing more than 20% of all cancer deaths
in 2020 [1]. Depending on the stage at the time of diag-
nosis, the prognosis of lung cancer differs substantially
among patients. The 5-year survival rate is approxi-
mately 55% for localized lung cancer, in contrast to only
5% for distant spread [1]. Of all lung cancer cases, about
85% are non-small cell lung cancer (NSCLC) and 15%
are small cell lung cancer [2]. Lung adenocarcinoma,
squamous lung carcinoma, and large-cell lung carcinoma
are the three major histological types of NSCLC, ac-
counting for 47%, 35%, and 12% of all NSCLC cases, re-
spectively. The application of immune checkpoint
blockade therapy (ICBT) has improved the overall prog-
nosis of NSCLC. However, only about 15% of patients
have durable benefit from it [3]. The limited response
rate to immunotherapy has become a major impediment
preventing further prognostic improvement in late-stage
NSCLC.
Histology is an important feature of tumors and is as-

sociated with major clinical outcomes. Early-stage lung
adenocarcinoma can be further divided into five histo-
logical subtypes: lepidic, solid, acinar, papillary, and
micropapillary [4]. Typically, lung adenocarcinoma is
composed of cells with varying histological subtypes,
which is known as intratumor heterogeneity. For ex-
ample, a lung adenocarcinoma tissue may show 50% of
papillary, 30% of acinar, and 20% of lepidic patterns at
different tumor sub-regions. As such, it has been highly
recommended by pathologists to include percentages of
histological subtypes during histological review [4]. In
general, the lepidic subtype is associated with low-grade
tumor; acinar and papillary subtypes are associated with
intermediate-grade tumor; solid and micropapillary sub-
types are associated with high-grade tumor [5, 6]. The
lepidic subtype is associated with good prognosis [5–9],
while the solid and micropapillary subtypes are associ-
ated with poor prognosis [7, 10–14]. Interestingly, the
expression level of PD-L1 varies among different histo-
logical subtypes: solid and micropapillary tumors have
higher levels than the other subtypes [15–17]. However,
it remains unclear how these different histological sub-
types vary in their immune microenvironment and

whether they show different sensitivity to targeted treat-
ments and immunotherapies.
Several studies have shown that the tumor immune

microenvironment (TIME) plays critical roles in the de-
velopment, progression, and metastasis of cancer [18–
20]. In many different cancer types including lung
adenocarcinoma, the infiltration levels of immune cells
in TIME are associated with patient prognosis [21–25].
In lung adenocarcinoma, T cells seem to be the main
type of infiltrating immune cell [26] and the extent of T
cell infiltration is positively correlated with patient prog-
nosis [25]. Varn et al. [22] reported that the infiltration
of CD8+ T cells and naïve B cells were associated with
good prognosis while the infiltration of myeloid cells
was associated with poor prognosis in early-stage lung
adenocarcinoma. Generally, the presence of immuno-
suppressive features, including the absence of T cell in-
filtration and the presence of suppressive macrophages,
is associated with poor prognosis [25]. It has also been
reported that NSCLC patients with higher PD-L1 pro-
tein level tend to have longer survival times when
treated by ICBT [27–29]. Nevertheless, the effectiveness
of using PD-L1 expression for predicting ICBT response
is still under debate [27, 30, 31].
In this study, we analyzed the gene expression data for

micro-dissected lung adenocarcinoma tumors with
homogenous histological subtypes and found that the
five histological subtypes varied dramatically in their im-
munological features. Additionally, we found the lepidic
and solid subtypes had distinguishable gene expression
patterns while papillary, micropapillary, and acinar sub-
types shared similar expression patterns. According to
these observations, we defined two gene expression sig-
natures to characterize lepidic and solid lung adenocar-
cinoma subtypes, respectively. Given a gene expression
profile for a lung adenocarcinoma sample, these two sig-
natures can be used to calculate a lepidic-score (L-score)
and a solid-score (S-score) that quantify the relative
abundance of lepidic and solid components in the sam-
ple. We found that higher L-scores were associated with
better prognosis and response to immunotherapy. More-
over, the L-scores of lung cancer cell lines were corre-
lated with their sensitivity to targeted drugs such as
EGFR inhibitors. Our analyses revealed critical links
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between histological composition and clinical outcomes
in lung adenocarcinoma.

Methods
Dataset collection and processing
The level 3 RNA-seq data of lung adenocarcinoma
(LUAD) generated by The Cancer Genome Atlas
(TCGA) were retrieved from FireBrowse (http://
firebrowse.org) [32]. Processed RNA-seq data of LUAD
samples from The National Cancer Institute’s (NCI’s)
Clinical Proteomic Tumor Analysis Consortium (CPTA
C) were retrieved from NCI’s Genomic Data Commons
(GDC) [33, 34]. The large-scale drug sensitivity data
generated by the Genomics of Drug Sensitivity in Cancer
(GDSC) was retrieved from the GDSC database [35].
Ten microarray datasets used in this study were re-
trieved from the Gene Expression Omnibus (GEO) [36]
with accession numbers GSE58772 (n = 48) [37],
GSE14814 (n = 133) [38], GSE8894 (n = 138) [39],
GSE13213 (n = 117) [40], GSE31210 (n = 246) [41],
GSE32989 (n = 69) [42], GSE93157 (n = 65) [43],
GSE11969 (n = 149) [44], GSE26939 (n = 116) [45], and
GSE72094 (n = 442) [46]. Microarray data from the
GEO database provide expression at the probeset level
and were transformed into gene-level expression by
selecting the probeset with the maximum intensities to
represent a gene (for data from one-channel microarray:
GSE58772 [37], GSE14814 [38], GSE8894 [39],
GSE31210 [41], GSE32989 [42], GSE93157 [43],
GSE72094 [46]) or by calculating the average levels of
probesets for the same gene (for data from two-channel
microarray: GSE13213 [40], GSE11969 [44], GSE26939
[45]). Processed RNA-seq gene expression data repre-
sented as Transcript Per Million and clinical data from
Bachereau et al. [47] were retrieved from the European
Genome-phenome Archive with accession number
EGAS00001004343.
TCGA somatic mutation and copy number variation

data were also downloaded from FireBrowse (http://
firebrowse.org). Only non-silent mutations from somatic
mutation data were indicated in the analyses. Some gen-
omic features such as non-synonymous mutation rate
and homologous recombination pathway defect score of
TCGA LUAD samples were retrieved from a published
article by Thorsson et al. [48].
The Zabeck dataset GSE58772 [37] was used to per-

form immune infiltration analysis and to define gene sig-
natures for lepidic and solid histological subtypes. The
data contains expression profiles for 10 acinar, 10 solid,
10 lepidic, 9 micropapillary, and 9 papillary tumor sam-
ples purified by microdissection. Zhu dataset GSE14814
[38], TCGA LUAD [32], and CPTAC LUAD [33] were
used to validate the signatures with provided histological
subtype information. The datasets TCGA LUAD [32],

GSE8894 [39], GSE13213 [40], and GSE31210 [41], with
considerable number of patients (n > 60) with high-
quality patient survival times and statuses, were used for
prognostic analysis. These data have survival information
in the form of either overall survival (TCGA LUAD and
GSE13213) or recurrence-free survival (GSE8894 and
GSE31210). With a high number of patients and avail-
able somatic mutation and copy number variation data,
TCGA LUAD [32] was used to investigate the associ-
ation of signatures with genomic features. Additionally,
datasets GSE11969 [44], GSE26939 [45], and GSE72094
[46] were used to validate the findings, with clinical in-
formation regarding TP53/EGFR mutation status for
each patient. Regarding the association of signatures
with drug sensitivity of cancer cell lines, datasets
GSE32989 [42] and GDSC [35] with corresponding in-
formation were utilized. Lastly, to investigate the associ-
ation of signatures with patient response to
immunotherapy, Prat dataset GSE93157 [43] and Ban-
chereau dataset [47] were implemented. The former
contains 22 adenocarcinoma and 13 squamous cell car-
cinoma patients treated with pembrolizumab and nivolu-
mab, and the latter contains 81 non-small cell lung
cancer patients treated with atezolizumab, providing
treatment outcome information for each patient.
In the analyses, only lung adenocarcinoma samples/

cell lines included in these datasets were used unless
specified. Details about all datasets, including the num-
ber of samples/cell lines, descriptions, and relevant pub-
lications, are included in Additional file 1: Table S1.

Computational inference of immune cell infiltration in
tumor samples
We applied the previously published BASE computa-
tional algorithm [21, 22, 49, 50] to infer the infiltration
level of immune cells in tumor samples based on their
gene expression profiles. This algorithm estimates the
infiltration levels of immune cells by examining the ex-
pression levels of immune-cell-specific genes. Full details
of the algorithm have been described in a prior publica-
tion [22]. In this study, we calculated the infiltration
scores of six different immune cell types including naive
B cells, memory B cells, CD8+ T cells, CD4+ T cells, NK
cells, and myeloid cells.

Differential gene expression analysis between different
histological subtypes
We identified genes that are specifically expressed in
each of the five histological subtypes using the Zabeck
dataset [37]. For each subtype, we divided samples into
two groups with one containing samples of this subtype
and the other containing the remaining samples in the
dataset. The expression of all genes was compared be-
tween the two groups by using the Student’s t-test. The
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resulting p-values were adjusted for multiple tests using
the Benjamini-Hochberg method. Principal component
analysis (PCA) was based on the expression of 1000
genes, which were obtained by merging the top 200
most specific genes (it may not be significant) for each
subtype.

Defining gene signatures to characterize lepidic and solid
histological subtypes
Here we use the lepidic subtype as the example. From
the above-described differential expression analysis, we
have determined the t-score and p-value for all genes by
comparing lepidic samples with all other samples using
Student’s t-test, which resulted in two vectors {t} and
{p}. Based on them, we defined a pair of weighted pro-
files, denoted as wþ ¼ ðwþ

1 ;w
þ
2 ;…;wþ

g Þ and w− ¼ ðw−
1 ;

w−
2 ;…;w−

g Þ. For gene k with a t-score of tk and p-value of

pk, w
þ
k and w−

k were obtained by (i) calculating −I(tk > 0)
log pk and −I(tk < 0) log pk, (ii) trimming at 10 to avoid
extreme values, and (iii) rescaling the values to [0, 1].
The w+ and w− form the gene signature for the lepidic
subtype with genes that are more up-regulated and
down-regulated being assigned larger values in w+ and
w−, respectively. The gene signature for solid subtype
can be defined similarly.

Calculation of lepidic-scores and solid-scores in tumor
samples
The defined gene signatures were then used to calculate
sample-specific L/S-scores to measure the lepidic/solid
components in lung adenocarcinoma samples. To this
end, we applied a rank-based method similar to the gene
set enrichment analysis (GSEA) [51, 52]. First, given the
expression profile for a tumor sample, we sorted all
genes in decreasing order of expression level to obtain a
ranked expression vector e = (e1, e2, ..., en). Second, we
examined whether genes with high weight in w (w+ or
w−) had a skewed distribution in {e}, and quantified
skewness by comparing a foreground function f(i) with a
background function b(i).

f ið Þ ¼
Pi

k¼1 ekwkj j
Pn

k¼1 ekwkj j ; 1≤ i≤n

b ið Þ ¼
Pi

k¼1 ek 1−wkð Þj j
Pn

k¼1 ek 1−wkð Þj j ; 1≤ i≤n

While b(i) represents a random background distribu-
tion, f(i) captures the skewed distribution of highly in-
formative genes in a gene expression profile. For
example, if genes with high weights tend to have higher
expression, f(i) will increase more rapidly than b(i).
Third, we calculated the maximum deviation between
f(i) and b(i) and normalized it against a null distribution

estimated from permuted data, resulting in pairs of scores,
S+ and S− from w+ and w−, respectively. Fourth, the final
score for this sample was calculated as S = S+ − S−. A
higher L- or S-score indicates a higher relative abun-
dance of lepidic or solid components in a tumor.

Association of L-scores and S-scores with genomic
features
We used the following steps to identify genes with muta-
tion status correlated with L-scores and S-scores of sam-
ples. First, we selected all genes that were mutated in at
least 20 tumor samples in TCGA LUAD [32]. Second,
for each of the selected genes, we defined two sample
groups based on the mutation status of this gene. Third,
we conducted the Wilcoxon rank sum test to compare
the L- or S-scores of the two groups. Genes with p <
0.01 were selected as significant genes. A similar proced-
ure was used to identify genes with amplification/dele-
tion status correlated with L- and S-scores. The somatic
mutation, amplification, and deletion information of
genes in TCGA LUAD [32] were downloaded from Fire-
Browse (http://firebrowse.org).

Statistical analysis
The R package “survival” was implemented to perform
survival analyses. Survival distributions between two pa-
tient groups were compared using the log-rank test
through the “survdiff” function. Univariate and multi-
variate Cox regression models were performed using the
“coxph” function. Wilcoxon rank sum test and Student’s
t-test were performed for comparing the values between
two groups of samples through the R function “wilcox.t-
est” and “t.test,” respectively. Multiple test correction
was performed by using the Benjamini-Hochberg
method to obtain adjusted p-values in the form of false
discovery rate (FDR). p-values less than 0.05 are consid-
ered statistically significant, if stated otherwise. All stat-
istical analyses in this study were conducted using the R
software.

Results
Different histological subtypes of lung adenocarcinoma
vary substantially in the tumor immune
microenvironment
To compare the TIME among different histological sub-
types, we investigated a gene expression dataset for 48
lung adenocarcinoma samples (Zabeck dataset
GSE58772 [37]). These samples were carefully prepared
by microdissection to obtain pure histology and catego-
rized based on the tumor growth pattern. We applied
the BASE computational method [21, 22, 49, 50] to de-
termine the infiltration levels of immune cells in these
samples based on their gene expression profiles. Specif-
ically, we calculated the infiltration of six major immune

Nguyen et al. Genome Medicine            (2022) 14:5 Page 4 of 15

http://firebrowse.org


cell types: naïve B cells, memory B cells, CD8+ T cells,
CD4+ T cells, NK cells, and myeloid cells. We found
that different histological subtypes varied substantially in
their immune cell infiltration patterns. Interestingly, le-
pidic growth pattern tumors tended to have low infiltra-
tion in myeloid cells but high infiltration in other
immune cell types. In contrast, solid growth pattern tu-
mors demonstrated an opposite trend. As shown, com-
pared with other histological subtypes, lepidic growth
pattern tumors had significantly higher infiltration in
naïve B cells, memory B cells, CD8+ T cells, and NK
cells (p < 0.05); solid growth pattern tumors had signifi-
cantly lower infiltration of these immune cell types but
significantly higher infiltration of myeloid cells (Fig. 1;
Additional file 2: Fig. S1). Generally, the other three
histological subtypes (acinar, papillary, and micropapil-
lary) showed an intermediate level of immune infiltra-
tion, with the exception that acinar growth pattern
tumors had the lowest infiltration level of NK cells (Fig.
1; Additional file 2: Fig. S1).
Then, we investigated the expression levels of a set of

immunostimulatory and immunoinhibitory genes and
found that many of these genes were differentially

expressed between different histological subtypes. Le-
pidic growth pattern tumors showed the lowest levels of
immune checkpoint B7-H3 (CD276) expression (Add-
itional file 2: Fig. S2), which was in line with high infil-
tration levels of various immune cells in lepidic growth
pattern tumors (Fig. 1). Markers of myeloid cells were
expressed with a significantly higher level in the solid
growth pattern tumors (Additional file 2: Fig. S2), which
was consistent with the highest myeloid infiltration level
in this histological subtype (Fig. 1). On the contrary,
markers associated with immune activation, CD28 and
CD70, showed significantly higher expression levels in
the lepidic growth pattern tumors (Additional file 2: Fig.
S2), which, again, was consistent with the immune cell
infiltration results.

Defining gene signatures to characterize lepidic and solid
tumor cells in lung adenocarcinoma samples
We investigated whether gene expression patterns could
distinguish different histological subtypes of lung adeno-
carcinoma. Using the above-described gene expression
data from the Zabeck dataset [37], we identified
subtype-specific genes by comparing gene expression of

Fig. 1 The infiltration levels of immune cells vary significantly between different histological subtypes of lung adenocarcinoma. Boxplots showing
the infiltration levels of A Naive B, B Memory B, C CD8+ T, D CD4+ T, E NK, and F myeloid in five different lung adenocarcinoma histological
subtypes (acinar, lepidic, micropapillary, papillary, solid). p-values were calculated by comparing samples of the corresponding subtype with all
other samples using the Wilcoxon rank sum test. p-values of significantly higher and lower immune infiltration levels are shown in red and green
colors, respectively. The Zabeck dataset GSE58772 [37] was used in this analysis
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each histological subtype with gene expression of all
other subtypes using Student’s t-test. The significant
genes for each subtype (FDR < 0.01) are listed in Add-
itional file 1: Table S2A-E. We identified 7325, 3579,
438, 532, and 244 significant genes (unadjusted p-value
< 0.005) for the lepidic, solid, acinar, micropapillary, and
papillary subtypes, respectively. We noted that no sig-
nificant genes could be identified to differentiate the
papillary subtype from other types after multiple test
correction (FDR < 0.05). Thus, the expression patterns of
lepidic and solid subtypes are more specific compared
with the other subtypes. This result was confirmed by
principal component analysis (PCA) based on 1000 se-
lected genes (merging the top 200 most specific genes
from each of the five histological subtypes). PCA results
revealed distinct clustering of the lepidic and solid sub-
types while the acinar, papillary, and micropapillary sam-
ples could not be distinguished from each other (Fig. 2A).
For each subtype, we obtained a t-score profile that char-
acterized its subtype-specific expression pattern. Pairwise
correlation analysis between their t-score profiles indi-
cated that the lepidic subtype tended to have a nega-
tive correlation with the others, especially, the solid
subtype while the other four subtypes were positively
correlated with each other (Fig. 2B). The same

conclusion can be made based on pairwise correlation
analysis of gene expression profiles at the sample level
(Additional file 2: Fig. S3).
Given these observations, we developed two gene sig-

natures from the gene expression data of the Zabeck
dataset [37] to characterize separately the lepidic and
solid subtypes. These signatures can be used with gene
expression data to determine the relative abundance of
lepidic versus solid components (denoted as L-score and
S-score, respectively) in lung adenocarcinoma samples.
As shown when applied to the Zabeck dataset [37], the
lepidic and solid samples showed scientifically higher L-
scores and S-scores, respectively, than the other samples
(Fig. 2C). This is expected, because the gene signatures
for lepidic and solid subtypes are defined based on the
same dataset. To further evaluate the two signatures, we
applied them to the Zhu dataset GSE14814 [38], which
provides histological annotation for 49 lung adenocar-
cinoma samples. Among these samples, 4 and 18 are an-
notated as lepidic-predominant and solid-predominant,
respectively. In this data, the solid-predominant samples
showed significantly higher S-scores than the other
samples (p = 0.0042, Fig. 2D). Similarly, the lepidic-
predominant samples tended to have higher L-scores
than the other samples (Fig. 2D) but did not reach

Fig. 2 The development of gene signatures for lepidic and solid histological subtypes. A PCA plot clustering histological subtypes based on the
expression values of 1000 genes. These genes were obtained by pooling the top 200 most specific genes from each of the five subtypes. B The
Spearman correlation coefficient between the t-score profiles for each pair of histological subtypes. C The L/S-scores are higher in lepidic/solid-
predominant samples than all other samples in the Zabeck dataset GSE58772 [37]. D The L/S-scores are higher in lepidic/solid-predominant
samples than all other samples in the Zhu dataset GSE14814 [38]. The p-values are based on the Wilcoxon rank sum test
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statistical significance due to the small sample size (only
4 samples are lepidic-predominant). In addition, we have
also validated the signatures in TCGA and CPTAC lung
adenocarcinoma datasets [32, 33], in which a small num-
ber of samples were annotated as lepidic/solid-predom-
inant (Additional file 2: Fig. S4). These results indicated
that the L- and S-scores provided reliable quantifications
of the lepidic/solid components in lung adenocarcinoma.
In the following analyses, we will focus on L- and S-
scores separately, especially the L-score of samples, be-
cause the expression profile of the lepidic subtype devi-
ates from and is negatively correlated with those of the
other four subtypes.

High lepidic score is associated with good prognosis
A large number of lung adenocarcinoma gene expression
datasets have been generated in previous studies. For
many of them, detailed clinical information was pro-
vided, but in most cases, histological composition was
not available. The lepidic/solid gene signatures provide a
useful tool to investigate the association between lung
adenocarcinoma histology and clinical outcomes. To in-
vestigate the effect of histological composition on patient
prognosis, we calculated patient-specific L/S-scores in
four lung adenocarcinoma datasets, including TCGA
LUAD [32], GSE8894 [39], GSE13213 [40], and
GSE31210 [41]. Using the median value of the L/S-
scores, we divided patients into two groups and

compared their survival. As shown, patients with high L-
scores had significantly prolonged survival compared to
patients with low L-scores in all datasets (Fig. 3B–D;
Additional file 1: Table S3). Similar results were ob-
tained when L-score = 0 was used to dichotomize pa-
tient samples (Additional file 1: Table S3). Note that
either overall or recurrence-free survival was used de-
pending on the availability in different datasets.
Moreover, multivariate Cox regression analysis indi-

cated that the L-score was still significant after consider-
ing well-established clinical factors, including age,
gender, and tumor stage (Fig. 3E). When the L-score
was used as a continuous variable, a more significant as-
sociation between L-score and prognosis was observed
in both univariate and multivariate Cox regression ana-
lyses (Additional file 1: Table S3). Similarly, we per-
formed the same analyses for the solid signature and
found that the resulting S-score was also predictive of
patient prognosis in lung adenocarcinoma, with higher
S-scores associated with worse prognosis (Additional file
1: Table S3).
Furthermore, our results showed that combining the

L-score with the S-score could further improve prognos-
tic prediction. In Fig. 3F, we selected patients with high
L-scores and further divided them into two subgroups
with high and low S-scores, respectively. As shown, sig-
nificantly differential survival was observed between
these two subgroups. No similar pattern was found in

Fig. 3 Association of L-scores with patient prognosis in lung adenocarcinoma data. A–D Kaplan-Meier curves of patients’ survival patterns in the
TCGA LUAD [32] (A), the GSE8894 [39] (B), the GSE13213 [40] (C), and the GSE31210 [41] (D) dataset. Patients were stratified into two subgroups
with high and low L-scores using the median as the cut-off values. E Forest plot showing the output from a multivariate Cox regression model
for the dataset GSE31210 [41]. The covariates are binary values, including L-score, age, gender, and tumor stage. F, G Survival curves of the two
subgroups stratified based on S-scores in the top 50% of patients with high L-scores (F) and the bottom 50% patients with low L-scores (G) in
the dataset GSE31210 [41]. p-values were calculated by log-rank tests, and hazard ratios (HR) were determined by univariate Cox
regression models
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the patient subset with low L-scores (Fig. 3G). Neverthe-
less, these results indicated that the L-score and S-score
provided related but complementary information for
prognosis prediction.

Association of lepidic and solid scores with genomic
features
To gain insight on what genomic features might have an
impact on the histological composition in lung adeno-
carcinoma, we examined the association between L-
score and several genomic features using TCGA LUAD
[32]. We found that L-score was negatively correlated
with tumor mutation burden (TMB), represented by non-
silent mutation rate (SCC = −0.21, p = 2.8e−06, Fig. 4A).
The L-score was also negatively correlated with tumor an-
euploidy score, which was calculated as the sum of altered
arms (SCC = −0.28, p = 1.5e−10, Fig. 4B). The aneuploidy
score reflects the degree of chromosome instability, which
is associated with the deficiency of the homologous

recombination pathway. Consistently, the L-score was also
significantly correlated with the deficiency of this pathway
(SCC = −0.31, p = 1.2e−12, Fig. 4C). In contrast, similar
analyses with S-score and the genomic features showed
positive correlations. In particular, S-score was positively
correlated with TMB (SCC = 0.35, p = 1.1e−15, Additional
file 2: Fig. S5A), with tumor aneuploidy score (SCC = 0.28,
p = 2.1e−10, Additional file 2: Fig. S5B), and with
homologous recombination pathway deficiency (SCC =
0.41, p < 2.2e−16, Additional file 2: Fig. S5C).
Following that, we identified genes whose mutation or

gain/loss was correlated with the samples’ L-scores. In
total, the mutation statuses of 32 genes were signifi-
cantly correlated with L-scores. All of them except for
MAGI2 had lower L-scores in mutated samples than the
corresponding wild-type samples (Fig. 4D; Additional file
1: Table S4A). In other words, samples with mutations
in these genes tend to have a lower lepidic composition
in tumors. This result aligns with the association of L-

Fig. 4 Associations between L-scores and genomic features. A–C The correlation between L-score and non-silent mutation rate (A), aneuploidy
score (B), and homologous recombination defects (C), respectively. D Genes with mutation status significantly correlated with the L-score of
samples. E Genes with amplification/deletion status significantly correlated with the L-score of samples. F TP53 mutant samples show significantly
lower L-scores than wild-type samples. G No significant correlation between EGFR mutation status and L-scores. H EGFR amplified samples show
significantly lower L-scores than wild-type samples. In D–H, p-values were calculated by using the Wilcoxon rank sum test. SCC Spearman
correlation coefficient
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scores with a good prognosis as described in the previ-
ous section. In addition, samples with amplification in
16 genes had higher L-scores than wild-type samples,
and samples with CDKN2A deletion had higher L-scores
than wild-type samples (Fig. 4E; Additional file 1: Table
S4B). We performed the analyses with S-score and iden-
tified the mutation status of 279 genes, as well as the
amplification status of 12 genes which were significantly
correlated with S-scores (Additional file 1: Table S4C-
D). There are no genes whose deletion status was signifi-
cantly correlated with S-scores.
The mutation status of the TP53 gene was significantly

correlated with L-scores, with mutated samples being as-
sociated with lower L-scores compared to wild-type
samples (p = 2.5e−07, Fig. 4D; Fig. 4F; Additional file 1:
Table S4A). TP53 plays critical roles in tumorigenesis
[53] and its mutation correlates with poor prognosis in
many cancer types [54–56]. EGFR is another important
driver gene in lung cancer with multiple drugs targeting
its protein products (EGFR inhibitors) being approved
by the FDA [57–59]. The somatic mutation status of
EGFR was not correlated with the L-score (p > 0.1, Fig.
4G). However, samples with EGFR amplification showed
significantly lower L-scores than wild-type samples (p =
4.5e−07, Fig. 4H; Additional file 1: Table S4B). In fact, it
is the most significant among the 16 genes with gain/
loss status correlating with L-score in lung adenocarcin-
oma (Fig. 4E). To further verify this result, we combined
EGFR mutation and amplification information to divide
patients into four groups: with only mutation (mut +
amp-), with only amplification (amp + mut-), with both
(amp + mut+), and with neither (wt). Patients with only
mutated EGFR (mut + amp-) had similar L-scores with
the wild-type patients (wt) (p > 0.1, Additional file 2: Fig.
S6). In contrast, patients with amplified EGFR had sig-
nificantly lower L-scores than the wild-type patients with
p = 5.1e−05 for amp + mut- and p = 0.0022 for amp +
mut + with respect to the wt (Additional file 2: Fig. S6).
These results confirmed that a reduced L-score is associ-
ated with EGFR amplification but not EGFR mutation.
In addition, we observed the opposite patterns for the

association of S-scores with these genes. Samples with
mutated TP53 had higher S-scores than wild-type sam-
ples (p = 4.6e−24, Additional file 1: Table S4C; Add-
itional file 2: Fig. S5D), and while EGFR mutation did
not have a significant association with S-score (p > 0.1,
Additional file 2: Fig. S5E), samples with amplified EGFR
had higher S-scores than wild-type samples with the
most significance (p = 2.3e−05, Additional file 1: Table
S4D; Additional file 2: Fig. S5F). These results suggest
that tumor histology may not just be simply affected by
deregulated oncogenic pathways (e.g., overactivation of
the EGFR pathway), rather, the molecular status of the
driver gene product (e.g., abnormal structure vs. elevated

abundance of the EGFR proteins) might also be
important.

Association of lepidic and solid scores with lung cancer
cell line sensitivity to targeted drugs
Knowing that L-score was negatively correlated with
EGFR amplification status in lung adenocarcinoma, we
then examined the association between L-score and lung
adenocarcinoma cell line sensitivity to EGFR inhibitors.
The GSE32989 data provides the baseline gene expres-
sion profiles of 31 lung adenocarcinoma cell lines as well
as their sensitivity (IC50) to two EGFR inhibitors (erloti-
nib and gefitinib) [42]. In this data, we observed a
significantly negative correlation between L-score and
erlotinib sensitivity (SCC = −0.38, p = 0.039, Fig. 5A)
and between L-score and gefitinib sensitivity (SCC =
−0.65, p = 6.8e−05, Fig. 5B).
We then examined the Genomics of Drug Sensitivity

in Cancer (GDSC) data, which provide cell line sensitiv-
ity information for a total of 138 different drugs (includ-
ing erlotinib) in 714 cancer cell lines, including 124 lung
cancer cell lines (42 are lung adenocarcinoma cell lines)
[35]. In the data, we confirmed the correlation between
L-score and erlotinib sensitivity in lung adenocarcinoma
cell lines with SCC = −0.40 (Fig. 5C), although statistical
significance was not reached due to lack of statistical
power (the IC50 value was only available for only 8 cell
lines). When all lung cancer cell lines were used, we
observed a significant correlation with SCC = −0.40 and
p = 0.0073.
In addition to EGFR inhibitors, our results indicated

that the L-score was correlated with lung cancer cell line
sensitivity to other drugs tested in the GDSC data. For
example, AZD7762, a CHK1 inhibitor, presented a sig-
nificant association with L-score (SCC = 0.44, p =
0.0055, Fig. 5D), suggesting that lung tumors with higher
L-scores might be more responsive to this drug. CHK1
pathway regulating DNA damage and cell cycle re-
sponses is suggested as one of the causes of treatment
resistance in lung cancer and is currently an emerging
target for therapy [60–62]. Similar analyses were per-
formed for the S-signature and identified drugs corre-
lated with S-scores in lung cancer. For example, lung
cancer cell line sensitivity to EHT 1864 (a RAC inhibi-
tor) was correlated with S-score (SCC = −0.47, p =
0.0027, Additional file 2: Fig. S7). Inhibiting the RAC
pathway has been recommended as an alternative option
for treating EGFR inhibitor-resistant patients with lung
cancer [63, 64].

L-score is predictive of patient sensitivity to
immunotherapy in lung cancer
As we have found that different histological subtypes
varied dramatically in the immune microenvironment,
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we investigated the relationship between L-score and pa-
tient response to immunotherapy. We retrieved two
datasets that contained gene expression profiles and
treatment outcome information for lung cancer patients.
The Prat dataset (GSE93157) consists of 22 adenocarcin-
oma and 13 squamous cell carcinoma treated with pem-
brolizumab and nivolumab [43]. The Banchereau dataset
consists of 81 non-small cell lung cancer treated with
atezolizumab [47]. We calculated the L-scores of these
patients based on their gene expression data. Based on
the treatment outcomes, we divided the lung cancer pa-
tients into responders and non-responders. We observed
a significantly higher L-score in the responder group
compared to the non-responder group in both the Prat
cohort [43] (p = 0.030, Wilcoxon rank sum test, Fig. 6A)
and the Banchereau cohort [47] (p = 0.0016, Wilcoxon
rank sum test, Fig. 6B). The PD-L1 protein expression in
tumor (tPD-L1) or immune cells (iPD-L1) has been

measured in the Banchereau dataset [47]. We found that
in patients with no PD-L1 expression the L-score was
predictive of patient response with p = 0.013 for the
tPD-L1 = 0 group and p = 0.051 for the iPD-L1 = 0
group (Fig. 6C). To quantify the ability of using an L-
score to classify responders vs. non-responders, we de-
termined their receiver operating characteristic (ROC)
curves and the area under the curve (AUC). The L-score
could classify the patient groups with AUC = 0.744 in
the Prat cohort [43] (Fig. 6D), AUC = 0.689 for all (n =
81), AUC = 0.675 for tPD-L1 = 0 (n = 55), and AUC =
0.679 for 30 iPD-L1 = 0 NSCLC samples in the Bancher-
eau cohort [47] (Fig. 6D). Furthermore, multivariate lo-
gistic regression analysis indicated the predictive value
of L-score for patient response after considering estab-
lished clinical factors, including age, sex, and CD274 ex-
pression level (Additional file 1: Table S5). In contrast
with L-score, we did not observe a significant association

Fig. 5 Correlations between L-scores and drug sensitivity in lung cancer cell lines. A, B The L-score is negatively correlated with cell sensitivity to
EGFR inhibitors, erlotinib (A) and gefitinib (B) in the dataset GSE32989 [42]. C The L-score is negatively correlated with cell sensitivity to erlotinib
in the dataset GDSC [35]. The association is not significant in lung adenocarcinoma cell lines due to the low sample number with sensitivity data
(red) but is significant in all lung cancer cell lines (gray). D The L-score is positively correlated with cell sensitivity to AZD7762 in the dataset GDSC
[35]. Drug sensitivity is represented as -ln(IC50 + 1) in GSE32989 [42] and as -AUC (area under the curve) in GDSC [35]. SCC Spearman
correlation coefficient
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between S-score and immunotherapy response in both
datasets.

Discussion
In this study, we identified significantly differential im-
mune cell infiltration between the five different histo-
logical subtypes of lung adenocarcinoma using a
histology-specific gene expression data from micro-
dissected tumor samples. We found that the lepidic and
solid subtypes could be determined based on their gene
expression patterns, while the other three subtypes (aci-
nar, micropapillary, and papillary) had similar expression
patterns. Motivated by these observations, we defined
two gene signatures and used them to determine the
relative abundance of lepidic and solid tumor compo-
nents in lung adenocarcinoma samples. We found that
L-scores and S-scores were significantly associated with

patient prognosis and with genomic features such as
TMB in lung adenocarcinoma. In particular, the L-
scores of lung cancer cell lines were negatively corre-
lated with their sensitivity to EGFR inhibitors. Moreover,
using an immunotherapy cohort data, we found that the
L-score was significantly associated with patient re-
sponse to ICBT in lung cancer.
Consistent with previous studies, our results indicated

that samples with higher L-scores (indicating higher pro-
portion of lepidic histology) tended to have a better
prognosis, whereas higher S-scores were associated with
a worse prognosis. These results might be explained at
least partially by results from our immune infiltration
analysis. The lepidic subtype had the highest levels of B
cells, CD8+ T cells, and NK cells, which are known to
play positive roles during immunosurveillance, whereas
the immunosuppressive myeloid cells had the lowest

Fig. 6 Association of the L-score with patient response to immunotherapy in lung cancer. The Prat and Banchereau datasets [43, 47] were used
in this analysis, and patients were divided into two groups based on their response to immunotherapy. Lung adenocarcinoma patients were
separated into responders and non-responders in the Prat cohort [43]. Responders include 1 patient with complete response (CR), 5 with partial
response (PR), and 7 with stable disease (SD). Non-responders are 9 patients with progressive disease (PD). In the Banchereau cohort [47], non-
small cell lung cancer patients were divided into two groups: 37 patients with CR and 44 patients with other responses—10 with PR, 33 with SD,
and 1 with PD. A Responders (1CR + 5PR + 7SD) showed significantly higher L-scores than non-responders (9PD) in the Prat cohort [43]. B
Responders (37CR) showed significantly higher L-scores than non-responders (10PR + 33SD + 1PD) in the Banchereau cohort [47]. Of note, the
responder/non-responder groups were defined differently between the two datasets in order to balance group sizes. C The association of the L-
score with patient response in Banchereau cohort [47] patients with no PD-L1 protein expression in tumor or immune cells. D Receiver operating
characteristic (ROC) curves with the L-score as a predictor of patient response. CR complete response, PR partial response, SD stable disease, PD
progressive disease, tPD-L1 PD-L1 protein expression in tumor cells, iPD-L1 PD-L1 protein expression in immune cells
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infiltration. In contrast, the prognostically unfavorable
solid subtype displayed the opposite pattern in immune
cell infiltration.
It is well known that distinct histological subtypes are

associated with different mutation landscapes in tumor
cells [65, 66]. However, it remains unclear how genomic
alterations of driver genes determine the tumor hist-
ology, and vice versa. In this study, we determined the
significant association of L- and S-scores with tumor
mutation burden and TP53 mutation status, as well as
poor association with EGFR mutation status. We vali-
dated our results in the immunotherapy response dataset
Banchereau [47] and three independent GEO datasets:
GSE11969 [44], GSE26969 [45], and GSE72094 [46]
(Additional file 1: Table S6). Interestingly, in this study,
we found that EGFR amplification but not EGFR muta-
tion was significantly correlated with the L-score and S-
score of tumors. Both amplification and mutation of
EGFR are frequently observed in lung cancers, which
lead to the overactivation of the EGFR singling pathway.
EGFR amplification results in enhanced protein abun-
dance on the membrane of tumor cells, while EGFR mu-
tation gives rise to abnormal protein products. It seems
that, at least in this case for EGFR, the oncogenic path-
ways associated with more protein product has a more
substantial impact on histology compared with effects
from an abnormal protein.
Initially, we planned to develop a deconvolution-based

method to calculate the proportion of the five histo-
logical subtypes in lung adenocarcinoma samples. In
fact, we have attempted to do this by using the CIBER-
SORT [67] and WISP [68] algorithms. However, none of
them could generate effective reference signatures for all
five histological subtypes. Specifically, the gene expres-
sion patterns of acinar, papillary, and micropapillary sub-
types were similar. No subtype-specific genes can be
identified using the Zabeck dataset [37] after correcting
multiple tests. As such, in this study, we focused on the
lepidic and solid subtypes, which had expression pat-
terns distinguishable from the other subtypes. Instead of
calculating the histology proportion, we defined two
gene signatures to quantify the relative abundance of le-
pidic and solid subtypes of tumor cells, respectively.
We showed here that a higher L-score was associated

with low sensitivity to EGFR inhibitors in lung cancer
cell lines. However, the predictive value of the L-
signature was not validated in lung adenocarcinoma pa-
tients treated with EGFR inhibitors due to the lack of
appropriate datasets. Additionally, we showed that this
signature is predictive of patient response to immuno-
therapy in the Prat and the Banchereau datasets [43, 47].
As another caveat, we used all NSCLC samples in the
Banchereau cohort [47], since the histological types
(adenocarcinoma or squamous) of the tumor samples

were not provided. According to our results, we expect
that both EGFR-targeted therapy and immunotherapy
might change the histological composition of lung
adenocarcinoma. Specifically, the tumor subclones of le-
pidic subtypes are likely to survive from EGFR-targeted
treatment but may be killed by immunotherapy. We
have not found data to perform this analysis, but it
would be interesting to examine how the L-score
changes before and after therapeutic treatment when
data become available.
The current L/S-signature is a whole gene signature

that includes all genes with weights assigned according
to their subtype specificity. The signature can be further
simplified by choosing the top most informative (i.e.,
highly weighted) genes to facilitate its clinical applica-
tion. The L/S-scores indicate the relative abundance of
L/S-subtype tumor cells, but do not automatically iden-
tify subtype predominance. To identify L/S-predominant
tumor samples, the scores can be compared with refer-
ence scores that are produced for L/S-specific reference
samples using the same gene expression platform.

Conclusions
In conclusion, we have defined gene signatures to quan-
tify the relative abundance of lepidic and solid subtypes
in lung adenocarcinoma. By using these signatures, we
detected important associations between the L/S-score
and clinical outcomes, which suggested potential clinical
translation. The framework developed in this study can
also be applied to other cancer types with heterogeneous
subtypes.
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