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Abstract

Understanding cell-type-specific gene regulatory mechanisms from genetic variants to diseases remains challenging. To
address this, we developed a computational pipeline, scGRNom (single-cell Gene Regulatory Network prediction from multi-
omics), to predict cell-type disease genes and regulatory networks including transcription factors and regulatory elements.
With applications to schizophrenia and Alzheimer’s disease, we predicted disease genes and regulatory networks for
excitatory and inhibitory neurons, microglia, and oligodendrocytes. Further enrichment analyses revealed cross-disease and
disease-specific functions and pathways at the cell-type level. Our machine learning analysis also found that cell-type disease
genes improved clinical phenotype predictions. scGRNom is a general-purpose tool available at https://github.com/
daifengwanglab/scGRNom.
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Background
Recent genome-wide association studies (GWAS) studies
have identified a variety of genetic risk variants associated
with multiple brain diseases. For example, a recent study
found 109 pleiotropic loci significantly associated with at
least two brain disorders [1]. Many cross-disease common
genetic risk factors have revealed many shared functional
consequences in clinical presentations [2]. Recent studies
have also revealed shared symptoms at both psychiatric
and physical levels between neurodegenerative and neuro-
psychiatric diseases [3]. For instance, 97% of Alzheimer’s

disease patients develop neuropsychiatric symptoms
throughout the disease [4]. Besides, additional insights
into each disease’s progression and causes have further
demonstrated the highly interlinked nature of both disease
types [5]. However, our understanding of the molecular
mechanisms of genetic variants between diseases remains
elusive, particularly at the cell-type levels.
Alzheimer’s disease (AD) and schizophrenia (SCZ) are

neurodegenerative and neuropsychiatric diseases, re-
spectively. Both are significantly associated with genetic
variants and have complex underlying cellular and mo-
lecular mechanisms from genotype to phenotype [6, 7].
Notably, AD is physiologically characterized by accumu-
lations of amyloid beta plaques and neurofibrillary tau
protein tangles in the brain [8]. Amyloid beta plaques
primarily originate from the apolipoprotein E-encoding
gene APOE and its multiple variants. The APOE gene is
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a single step in the broader amyloidogenic processing
pathway (APP), and additional genes involved in the
process contribute to the regulation of amyloid beta pro-
duction [6]. Much work has identified major genes of
interest involved in the APP [6]. However, a distinct
need still exists to further explore these disease loci to
understand better the interplay between their regulatory
elements and eventual amyloid beta creation and accu-
mulation. Similarly, neurofibrillary tau tangles are associ-
ated with many genetic loci and require a study of the
highly complex molecular mechanisms required to
achieve disease pathology [8]. Further, the downstream
effects from both amyloid beta and neurofibrillary tan-
gles within and between various cell types add additional
complexity toward linking specific regulatory events and
elements with clinical pathology [9, 10].
Also, SCZ is a neuropsychiatric disorder characterized

by disruptions in dopamine, glutamate, and GABA-based
receptor signaling pathways [11]. Pathologically, the direct
connection is less clear between known molecular abnor-
malities and observed physical changes through neuro-
logical imaging studies [12]. Thus, attempting to
understand the interactions between activation of known
risk genes and higher-level pathway disruptions may help
elucidate the causes for structural shifts in SCZ patients
[10]. At a psychiatric level, the alterations to various cor-
tical structures create multiple forms of symptoms, in-
cluding positive (e.g., hallucinogenic episodes) and
negative (e.g., anti-social tendencies) [13]. Finally, GWAS
for AD cohorts has revealed multiple conserved genetic
loci that could encode shared risk factors between the two
diseases [14]. Clinical presentations, specifically psychiatric
effects, create a crucial point of intersection to be explored
where general psychosis was found in up to 60% of AD
patients, including hallucination events as well as other ef-
fects mirroring those of the positive symptoms found in
SCZ patients [15]. Thus, studying shared risk variants and
genes between both diseases may help elucidate functional
genomics of interest in both diseases and can further un-
cover cross-disease and disease-specific mechanisms be-
tween neurodegenerative and neuropsychiatric diseases.
Recently, advances in single-cell sequencing technolo-

gies have generated a great deal of excitement and interest
in studying functional genomics at cellular resolution. For
example, scRNA-seq and scATAC-seq techniques have
measured the transcriptomics and epigenomics of individ-
ual cells in the human brain [16, 17]. Further computa-
tional analyses have clustered cells into many cell types
[16]. The cells in the same type share similar transcrip-
tional activities such as gene expression and genomic
functions. Differential gene expression across cell types is
a complex, multi-gene dynamic process that tightly regu-
lates and controls functions and is governed by gene regu-
latory factors such as transcriptional factors (TFs) and

non-coding regulatory elements. These factors cooperate
as a gene regulatory network (GRN) to facilitate the cor-
rect cellular and molecular functions on the genome scale.
Disrupted cooperation can give rise to abnormal gene ex-
pression, such as those present in diseases. Therefore,
GRN has been used as a robust system to infer genomic
functions and molecular mechanisms, especially for hu-
man diseases [18].
Recent analyses have also revealed that brain disease

risk variants are located in non-coding regulatory ele-
ments (e.g., enhancers). The risk genes likely have cell-
type-specific effects for both neuronal and non-neuronal
cell types [19, 20]. Besides, recent single-cell studies sug-
gest changes to cell-type-specific gene expression in
brain diseases [9, 10]. However, our understanding of
the underlying gene regulatory mechanisms driving cell-
type- and disease-specific gene expression, especially
across diseases, remains elusive. To better understand
cell-type gene regulatory mechanisms, several computa-
tional methods have recently been developed to predict
cell-type GRNs [21], such as PIDC [22], GENIE3 [23],
and GRNBoost2 [24], aiming to provide deeper mechan-
istic insights on how transcription factors regulate target
gene expression at the cell-type level. However, these
methods typically only use single omics (e.g., tran-
scriptomics) and predict networks based on statistical
associations (e.g., co-expression), providing insufficient
mechanistic insights into gene regulation at the cellular
resolution. For instance, how the disease variants affect
the transcription factor binding sites (TFBSs) on the
distal regulatory elements (e.g., enhancers) that control
disease genes is still unclear, especially at the cell-type
level. Thus, it is essential to integrate emerging multi-
omics data to understand cell-type gene regulation, espe-
cially involving non-coding regulatory elements. Recent
studies have shown that integrating multi-omics data
can reduce the impact of noise from a single omics data
and achieve better prediction accuracy [25].
To explore these ideas, we developed a computational

pipeline, scGRNom (single-cell Gene Regulatory Net-
work prediction from multi-omics), to integrate multi-
omics data and predict cell-type GRNs linking TFs,
regulatory elements (e.g., enhancers and promoters), and
target genes. scGRNom is a general-purpose tool open-
source available at https://github.com/daifengwanglab/
scGRNom [26]. In particular, we applied scGRNom to
the multi-omics data at the cellular resolution, such as
chromatin interactions, epigenomics, and single-cell
transcriptomics of primary cell types in the human
brain, including different excitatory and inhibitory neur-
onal types, microglia, and oligodendrocyte. Our predic-
tions have high overlapping with state-of-the-art
methods for revealing TFs and target genes [21], but
they provide additional information on cell-type gene
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regulation, such as linking the regulatory elements to
the genes. We also found that the enhancers in our cell-
type GRNs are enriched with GWAS SNPs in human
brain diseases, including psychiatric disorders and AD.
Thus, we further linked the GWAS SNPs that interrupt
TFBSs to cell-type disease genes based on the cell-type
GRNs for SCZ and AD and found cross-disease and
disease-specific genomic functions at the cell-type level.
Finally, we found that the cell-type disease genes shared
by AD and SCZ have improved predicting clinical phe-
notypes in AD, like disease staging and cognitive
impairment.

Methods
Predicting gene regulatory networks from multi-omics
data
scGRNom is a computational pipeline in R as a general-
purpose tool [26] to (I) integrate multi-omics datasets for
predicting gene regulatory networks linking transcription
factors, non-coding regulatory elements, and target genes
and (II) identify disease genes and regulatory elements.
scGRNom can be applied in general to predict either bulk
or cell-type disease genes and regulatory networks. First,
for predicting gene regulatory networks from multi-omics,
scGRNom has three steps (Fig. 1), each of which is avail-
able as an R function:

Step 1: Finding chromatin interactions. The function,
scGRNom_interaction, inputs the chromatin interaction
data (e.g., Hi-C) and predicts all possible interactions be-
tween enhancers and promoters in the data or the user-
provided list—for example, those from topologically as-
sociating domains (TADs) in Hi-C data. In addition, the
function uses an R package, GenomicInteractions [27], to
annotate interacting regions and link them to genes.
Step 2: Inferring the transcription factor binding sites on

interacting regions. The function, scGRNom_getTF, infers
the transcription factor binding sites (TFBSs) based on
consensus binding site sequences in the enhancers and
promoters that potentially interact from the previous step
scGRNom_interaction. It outputs a reference gene regula-
tory network linking these TF, enhancers, and/or pro-
moters of genes. In particular, this function uses
TFBSTools [28] to obtain the position weight matrices of
the TFBS motifs from the JASPAR database [29] and pre-
dicts the TFBS locations on the enhancers and promoters
via mapping TF motifs. The function further links TFs
with binding sites on all possible interacting enhancers
and promoters and outputs the reference regulatory net-
work. Furthermore, this function can run on a parallel
computing version via an R package, motifmatchr [30] for
computational speed-up.
Step 3: Predicting the gene regulatory network. The

function, scGRNom_getNt, predicts the final gene

Fig. 1 The computational pipeline, scGRNom, for predicting the gene regulatory network via multi-omics data. The pipeline inputs the chromatin
interactions (e.g., from Hi-C) of regulatory elements (e.g., enhancer-promoter), identifies the transcription factor binding sites (TFBSs) on interacting
regulatory elements, predicts TF-target gene expression relationships (e.g., high coefficients from Elastic net regression), and finally outputs a gene
regulatory network linking TFs (cyan), regulatory elements (purple) to target genes (green)

Jin et al. Genome Medicine           (2021) 13:95 Page 3 of 15



regulatory network based on the TF-target gene expres-
sion relationships in the reference network. The refer-
ence gene regulatory network from the previous step
provides all possible regulatory relationships (wires) be-
tween TF, enhancers, and target genes. However, the
chromatin interacting regions are broad, so that many
TFs likely have binding sites on them. Also, changes in
gene expression may trigger different regulatory wires in
the reference network. To refine our maps and deter-
mine the activity status of regulatory wires, we apply
elastic net regression, a machine learning method that
has successfully modeled TF-target gene expression rela-
tionships in the gene regulatory networks by our
previous work [10]. Further, suppose the chromatin ac-
cessibility information is available (e.g., from scATAC-
seq data for a cell type). In that case, the function can
also filter the enhancers based on their chromatin acces-
sibilities and then output the network links only having
the enhancers with high accessibility (e.g., overlapped
with scATAC-seq peaks). The parameter “open_chrom”
inputs a list of user-defined chromatin accessible
regions.
Mathematically, given a gene expression dataset and a

reference network (e.g., from scGRNom_getTF), the
function uses the TF expression to predict each target
gene expression and finds the TF with high regression
coefficients. Given a target gene, let y∈Rn be a gene ex-
pression vector modeling its expression values across n
samples (e.g., n cells from single-cell data) and X∈Rn�m

be the gene expression matrix of m TFs across n sam-
ples. Those m TFs should link to the target gene from
the reference network, implying possible regulatory rela-
tionships to the gene. The elastic net regression model
then aims to find the optimal coefficients for m TFs c�∈
Rm to solve the following optimization problem:

c� ¼ argminc y−Xck k2 þ α ck k2 þ β ck k1
� �

;

where α and β are parameters to adjust the contributions
from L2 and L1 regularizations of c∈Rm . The samples
are randomly divided into the training and testing sets
by the parameter, train_ratio (e.g., if train_ratio = 0.7,
then 70% training and 30% testing data). The optimal TF
coefficients c∗ are estimated by the training data. Also,
for the model evaluation, the mean square error (MSE)
of the regression is calculated and reported by ‖ytest −
Xtestc

∗‖2 using the testing data. Further, the top TFs with
high coefficients can be either selected by absolute coef-
ficient values (the parameter, cutoff_absolute) or a
percentage from all m TFs (the parameter, cutoff_per-
centage). Finally, the function outputs a final gene regu-
latory network linking the top TFs as well as their linked
enhancers (from the reference network, if any) to all
possible target genes.

Identifying cell-type disease genes and regulatory
elements
In addition to predicting gene regulatory networks, the
pipeline also provides another function, scGRNom_dis-
Genes, for identifying cell-type disease genes and regula-
tory elements (e.g., enhancers, promoters). This function’s
input includes a cell-type gene regulatory network and a
list of GWAS SNPs associated with a disease (Fig. 2). The
function uses an R package, GenomicRanges [31], to over-
lap these disease SNPs with the enhancers and promoters
of the input cell-type gene regulatory network, and then
find the ones that interrupt the binding sites of all possible
TFs (TFBSs) on the enhancers and promoters by motif-
breakR [32]. It finally maps the overlapped enhancers or
promoters and TFs with interrupted TFBSs onto the input
network to find the linked genes and enhancers/pro-
moters as the output cell-type disease genes and regula-
tory elements.

Application to multi-omics data and data processing for
predicting cell-type gene regulatory networks in the
human brain
We applied the scGRNom pipeline to the multi-omics
data for the human brain, including cell-type chromatin
interactions [19], transcription factor binding sites [28],
single-cell transcriptomics [16], and recent cell-type
open chromatin regions [17] for predicting cell-type
GRNs in the human brain. In particular, we predicted
cell-type gene regulatory networks for major cell types:
excitatory and inhibitory neurons, microglia, and oligo-
dendrocyte for the human brain [16]. The excitatory
neuronal types include Ex1, Ex2, Ex3e, Ex4, Ex5b, Ex6a,
Ex6b, Ex8, and Ex9. The inhibitory neuronal types in-
clude In1a, In1b, In1c, In3, In4a, In4b, In6a, In6b, In7,
and In8. We first input recently published cell-type
chromatin interactome data in the human brain [19] to
scGRNom_interaction to reveal all possible interactions
from enhancers to gene promoters in the neuronal,
microglia, and oligodendrocyte types. The genome anno-
tation was from TxDb.Hsapiens.UCSC.hg19.knownGene
[33]. We then predicted a reference regulatory network
for each of these cell types using scGRNom_getTF. Fi-
nally, given a cell type, we input the single-cell gene ex-
pression data for the type and the reference network
from scGRNom_getTF to scGRNom_getNt for predicting
the cell-type gene regulatory network (GRN).
Specifically, to make our predicted networks compar-

able across cell types, we made the following data prep-
aration and processing steps. First, although different
studies have generated increasing numbers of single-cell
data (e.g., for microglia [9]), we used the data from one
study (GSE97942) [16] that includes the gene expression
data (UMI) of individual cells of primary cell types, all
from one postmortem tissue of human frontal cortex,
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aiming not to introduce additional batches from differ-
ent studies, which helps our further comparative ana-
lyses across cell types. In addition, we filtered the genes
that express in less than 100 cells. We then normalized
gene expression by Seurat 4.0 [34] for further removing
noises and batches across cell types. We also applied the
method MAGIC [35] to impute the single-cell gene ex-
pression of all cells to address potential dropout issues.
Then, for each cell type, we removed the lowly expressed
genes with log10(sum of imputed gene expression levels
of the cells of the cell type+1) < 1. The numbers of genes
and cells for each cell type used for prediction are avail-
able in Additional file 1.
For predicting a cell-type GRN using the Elastic net

regression model, we randomly split the cells into
70% training and 30% testing sets. We then selected

the best Elastic net model that minimized the mean
square error (MSE). We then filtered the target genes
based on the goodness of fit by MSEs. In particular,
we removed the target genes predicted by Elastic net
regression with MSE > 0.1 and also TF-target gene
with absolute Elastic net coefficient < 0.01. The out-
put cell-type GRN consists of the network edges that
link TFs, enhancers (if any), and target genes (TGs),
as well as the Elastic net coefficient of TF-TGs for
each edge. Finally, we provided two versions of each
cell-type GRN (Additional file 2):

(I) The edges that include the enhancers that overlap
the cell-type open chromatin regions predicted by re-
cent scATAC-seq data (broad excitatory and inhibi-
tory neurons, microglia, and oligodendrocyte) [17]

Fig. 2 Identification of cell-type disease genes and regulatory elements. The function of our pipeline, scGRNom_disGenes, predicts cell-type disease
genes and regulatory elements. First, it inputs a cell-type GRN (top right) and disease-associated SNPs from GWAS (top left). Second, the function
identifies the disease SNPs that interrupt the binding sites of the TFs on the enhancers or promoters that link to the target genes in the input GRN
(middle). Finally, the function outputs a list of the target genes and regulatory elements (enhancers or promoters) linked by disease SNPs (bottom).
Red star: SNP. Cyan triangle: TF. Purple ellipse: enhancer. Green square: cell-type disease gene
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(II) The edges that only include the top 10% TFs with
absolute coefficients for each target gene without
considering cell-type open chromatin regions (for
scATAC-seq data might be likely noisy and no open
chromatin regions available for neuronal subtypes)

Comparison with state-of-the-art methods
We compared our scGRNom predictions with existing
state-of-the-art methods. In particular, we input the
single-cell gene expression data for each cell type to a
recently published benchmark framework, BEELINE
[21], and predicted the cell-type regulatory networks
using three of the most consistent and highly accurate
methods, PIDC [22], GENIE3 [23], and GRNBoost2 [24].
These methods only input gene expression data to pre-
dict all possible TF-target gene (TG) regulatory links
based on their expression relationships, without consid-
ering the regulatory elements or open chromatin regions
at the cell-type level. Thus, after applying to our proc-
essed single-cell gene expression data, they generated
more network edges than us because scGRNom only
keeps the TF-TG links in which TFs have binding sites
on the regulatory elements (e.g., enhancers and pro-
moters). Therefore, to make these networks comparable
with ours, we extended our networks by selecting up to
the top 30% TFs for each TG and then checked if our
TF-TG links predicted by the state-of-the-art method
(also up to top 30% TFs for each TG selected for each
method). In particular, given a cell-type GRN by
scGRNom, we selected top K TFs per target gene (TG)
to see if the TF-TG pairs were also predicted by PIDC,
GENIE3, or GRNBoost2 (again picking top K TFs per
TG). We varied K values from 0 to 30% and then calcu-
lated the percentages of the scGRNom’s TF-TG pairs
that can be predicted by one of those methods (Add-
itional file 3: Figure S1).

GWAS SNPs and heritability enrichment analyses for the
enhancers in the cell-type gene regulatory networks in
the human brain
Genome-wide association studies (GWAS) have iden-
tified a variety of genetic risk variants, including sin-
gle nucleotide polymorphisms (SNPs) that are
significantly associated with diseases and phenotypes
(i.e., the traits). For example, recent GWAS studies
have identified many SNPs associated with AD (2357
credible SNPs) [6] and SCZ (6105 credible SNPs) [7].
In addition to the credible SNPs, we also included
additional SNPs with p<5e−5 from the AD and SCZ
GWAS summary statistics for linking potential add-
itional cell-type disease genes [36]. We applied the
partitioned linkage disequilibrium score regression
(LDSC) [37] to evaluate the heritability explained by
the enhancers of our cell-type gene regulatory

networks for GWAS SNPs. In particular, our herit-
ability enrichment analyses used the GWAS summary
statistics for the diseases or traits: SCZ [7], AD [6],
autism spectrum disorder (ASD) [38], bipolar disorder
(BPD) [39], amyotrophic lateral sclerosis (ALS) [40],
major depressive disorder (MDD) [41], intelligence
[42], multiple sclerosis (MS) [43], Parkinson’s disease
(PD) [44], attention-deficit hyperactivity disorder
(ADHD) [45], education [46], type 2 diabetes (T2D)
[47], inflammatory bowel disease (IBD) [48], and cor-
onary artery disease (CAD) [49]. Also, we provided
the numbers of GWAS SNPs for AD and SCZ that
interrupt the binding sites of at least one of all pos-
sible TFBSs and the binding sites of the regulatory
TFs in each cell-type GRN (Additional file 3: Table
S1).

Identification and enrichment analyses of cell-type
disease genes
Given a cell type and a disease type (AD or SCZ), we in-
put the cell-type GRNs (both versions) and the GWAS
SNPs for the disease to the scGRNom_disGenes function
for identifying the cell-type disease genes. We identified
the cell-type disease genes (AD and SCZ) for all the cell
types as above, including excitatory and inhibitory neur-
onal subtypes, microglia, and oligodendrocyte (Add-
itional file 4). We also merged the disease genes for
excitatory/inhibitory neuronal subtypes as the broad ex-
citatory/inhibitory neuronal disease genes. We used the
web app, Metascape [50], to find the enrichments of
cell-type disease genes such as KEGG pathways, GO
terms, protein-protein interactions, and diseases (via
DisGeNET). Enrichment p-values shown in this paper
were adjusted using the Benjamin-Hochberg (B-H) cor-
rection. Also, we looked at the expression levels of our
cell-type disease genes in the disease samples. In particu-
lar, we compared the published population gene expres-
sion data in AD for single-cell expression [9].

Machine learning prediction of clinical phenotypes from
cell-type disease genes
Finally, we used the machine learning approach to pre-
dict clinical phenotypes from our cell-type disease genes
using the population data of the ROSMAP project, an
independent AD cohort [51]. Given a clinical phenotype,
we assume that Xi ∈ R

d represents the expression data of
d disease genes for the ith individual in the cohort and
Yi ∈ {0, 1} represents the binarized class of the ith indi-
vidual’s phenotype with i ∈ 1, …, n individuals for train-
ing. We then found the optimal logistic regression
model with the parameters fβ�0; β�1∈Rdg to classify the
phenotype from the disease gene expression data via
minimizing the following loss function:
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β�0; β
�
1

� � ¼ argmaxβ0;β1

Xn

i¼1

−Y i log β0 þ βT1 Xi
� �

− 1−Y ið Þ log 1−β0−β
T
1 Xi

� �

where (.)T is the transpose operation. Also, we per-
formed cross-validation (K = 5) for the individual sam-
ples with 80% training and 20% testing sets. We also
balanced the class sample size in each training set by the
weighting method [52] so that the baseline of the classi-
fication accuracy is 50% for two classes. We used the in-
dividuals from the training sets to train the classification
model. We then used the individuals from the testing
sets to evaluate the classification performance, i.e., ac-
curacy. In particular, we predicted four clinical pheno-
types in ROSMAP: Braak stages that measure the
severity of neurofibrillary tangle (NFT) pathology (Braak
early stages (0, 1, 2, 3) vs. late stages (4, 5, 6)), CERAD
scores that measure neuritic plaques (no AD vs. AD),
the diagnosis of cognitive status (DCFDX, no or mild
cognitive impairments (1, 2, 3) vs. Alzheimer’s dementia
(4, 5)), and the cognitive status at the time of death
(COGDX, no or mild cognitive impairments (1, 2, 3) vs.
Alzheimer’s dementia (4, 5)).

Results
Predicting cell-type gene regulatory networks in the
human brain
We applied the scGRNom pipeline to the multi-omics
data for the human brain, including cell-type chromatin
interactions [19], transcription factor binding sites [28],
single-cell transcriptomics [16], and cell-type open chro-
matin regions [17] (“Methods” section). We predicted
the cell-type gene regulatory networks (GRNs) for both
glial and neuronal cell types in the human brain, includ-
ing microglia, oligodendrocyte, excitatory neuronal sub-
types (Ex1, Ex2, Ex3e, Ex4, Ex5b, Ex6a, Ex6b, Ex8, and
Ex9), and inhibitory neuronal subtypes (In1a, In1b, In1c,
In3, In4a, In4b, In6a, In6b, In7, and In8). Each cell-type
GRN links TFs to enhancers to target genes (TGs) and
has two versions that (I) only include the network edges
with open cell-type enhancers predicted by recent
scATAC-seq data [17] and (II) only include the edges
with top 10% TFs with highest absolute coefficients for
each target gene without using cell-type open chromatin
regions. The reason why we included the second version
is that the open chromatin regions predicted by
scATAC-seq may not be highly accurate and cell-type-
specific, given that the scATAC-seq data is noisy and
also currently unavailable for neuronal subtypes (e.g.,
Ex1-9, In1-8). The network statistics such as numbers of
cells, edges, TFs, enhancers, and TGs for all cell-type
GRNs in the human brain as above are available in Add-
itional file 1. For instance, we found that the microglia

GRN with open chromatin regions consists of 47,353
edges linking 180 TFs, 1893 microglia open enhancers,
and 1236 TGs. The edge lists of cell-type GRNs are
available in Additional file 2.
Our GRNs reveal many known cell-type-specific regu-

lations. Figure 3A visualizes the subnetworks among TFs
for select cell types (i.e., TGs are also TFs). For example,
two known TFs, MEF2A and RFX3, that control micro-
glia phenotypes play hub roles in the microglia network
[53, 54]. The nuclear factors NFIA, NFIX, and FOXP1
controlling neural differentiation and gliogenesis are also
hub genes in the oligodendrocyte network [55–57].
MEF2C regulating inhibitory and excitatory synapses is a
central node in both excitatory and inhibitory networks
(e.g., Ex1 and In6b) [58]. In addition to cell-type TFs, we
also observed the cell-type-specific expression relation-
ships between TFs and TGs (high correlation). For in-
stance, in Fig. 3B, E2F3-LRRK2, STAT2-FBXO32, IRF2-
DYNC1, and ATF4-EPB41L1 show cell-type-specific
expression relationships across the cells of microglia,
oligodendrocyte, Ex1, and In6b types.
In addition, we compared our predicted cell-type gene

regulatory networks with existing state-of-the-art
methods for predicting cell-type gene regulatory net-
works, particularly those that are consistent and highly
accurate PIDC, GENIE3, and GRNBoost2 benchmarked
by BEELINE [21] (“Methods” section). The percentages
of the overlapped TF-TG links of the cell-type network
between scGRNom (both versions) and the state-of-the-
art methods are over 50% (“Methods” section, Additional
file 3: Figure S1). This suggests a high consistency be-
tween scGRNom and these methods. However, these
methods predicted TF-TG links without providing infor-
mation on regulatory elements like enhancers. Thus, we
looked further at the enhancers in our cell-type GRNs
and found that they have significantly high heritability
enrichments for GWAS SNPs of multiple brain diseases
and traits (p<0.05, “Methods” section). For example, the
enhancers in our excitatory-neuron and inhibitory-
neuron GRNs have high enrichments for AD, SCZ,
major depressive disorder, intelligence, and education
(Fig. 4A, Additional file 3: Figure S2). Besides, these
brain-cell-type enhancers do not have significant enrich-
ment of GWAS SNPs for non-brain diseases. Therefore,
the heritability enrichment analysis suggests that the en-
hancers in our cell-type GRNs have potential pleiotropic
roles associated with multiple brain diseases or traits. Fi-
nally, we also compared our cell-type networks with
public GRN databases such as TRRUST [59], Dorothea
[60], and RegNetwork [61]. We found that the overlaps
are not significant (hypergeometric test p-value > 0.999,
Additional file 3: Table S2). In fact, those public GRNs
were primarily inferred by integrating different studies
from the literature (e.g., via physical interactions, co-
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expressed genes at the bulk tissue level) and thus may
not be specific for the neuronal and glial cell types in
the human brain. However, the overlapped network
edges suggest the potential associations of those public
GRNs with the human brain’s cell types. For example,
we found that 319 TRRUST edges, 5935 Dorothea edges,
and 106 RegNetwork edges overlap with at least one of
our cell-type GRNs.

Identifying cell-type disease genes in AD and SCZ for
neuronal and glial cell types
We used these cell-type GRNs to link GWAS SNPs with
disease risk genes for each cell type, advancing know-
ledge on cross-disease and disease-specific interplays
among genetic, transcriptional, and epigenetic risks at
cellular resolution. In particular, we chose SCZ and AD,
two majorly represented neuropsychiatric and neurode-
generative diseases with potential convergent underlying
mechanisms [4], and we linked a number of cell-type
disease genes (“Methods” section, Additional file 4) and
performed their enrichments (Additional file 5). We
found that many disease genes present in one or a few
cell types only, suggesting potential cell-type-specific
contributions to AD and SCZ (Additional file 3: Figure
S3). As shown in Fig. 4B, the cell-type AD genes are also
significantly enriched with known disease genes for AD
and other dementia diseases such as brain atrophy and
cerebral amyloid angiopathy (p < 0.01). For example, the
microglia AD genes, including APP, CLU, BACE2, and
BIN1, are specifically enriched for other diseases such as
neurofibrillary degeneration, Parkinson’s dementia, and
aging memory impairment. Also, the cell-type SCZ

genes are enriched for various disorders such as neuro-
developmental, mental, and mood disorders and depres-
sion (p < 0.01, Fig. 4C). Furthermore, many cell-type
disease genes have corresponding expression activities in
the disease samples. For example, 72 excitatory AD
genes (86%) and 65 inhibitory AD genes (80%) (plus 22
oligodendrocyte AD genes and three microglia AD
genes) are significantly differentially expressed in the
corresponding cell types in AD individuals, respectively
(p < 0.05) [9].
The functional enrichment analyses for our cell-type

disease genes also uncover known genomic functions
and pathways at the cell-type level. For instance, the
microglia AD genes are enriched with amyloid beta for-
mation and clearance [62], MAPK signaling [63], and
neuron death [64] (Fig. 4D), and the oligodendrocyte
AD genes are enriched with Tau protein binding [65].
This is vital to understanding a multitude of diseases
that commonly demonstrate atrophy of cortical tissue as
a hallmark feature. In SCZ genes, we also found that
multiple key hallmark pathways were enriched, such as
dopaminergic synapse [66], trans-synaptic signaling [67],
and synapse organization [68] for excitatory SCZ genes
(Fig. 4E). For inhibitory SCZ genes, we observed that
MAPK family signaling [69], regulation of NMDA recep-
tor activity [70], dopaminergic synapses [66], and neuro-
transmission [70] are enriched.

Comparative analyses reveal the interplays between
genomic functions, pathways, cell types, and diseases
In addition to cell-type-specific pathways in these dis-
eases, we also identified those involving multiple cell

Fig. 3 Cell-type gene regulatory networks (GRNs) in the human brain. a The subnetworks of select cell-type GRNs among TFs (i.e., TG is also TF):
Ex1 (top left), microglia (top right), In6b (bottom left), and oligodendrocyte (bottom right). b The expression levels of the cells for select TFs and
TGs across the four cell types in a. TF: x-axis. TG: y-axis. The select TF-TG pairs from top to bottom are E2F3-LRRK2, STAT2-FBXO32, IRF2-DYNC1,
and ATF4-EPB41L1. The red darkness corresponds to the expression level
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types in each disease, implying that potential cell-type
interactions drive the disease pathology. For example,
the enrichment of SCZ primarily includes changes in
synapse structures and cell shaping and differentiation
(Fig. 5A). Clinically, this is consistent with the consensus
that SCZ is strictly neuropsychiatric as opposed to
degenerative. In particular, cell morphogenesis and regu-
lation of neuron differentiation are enriched in all four
major cell type SCZ genes (p < 0.01). Early life neurode-
velopmental genetic markers may suggest causal links
with alterations in hippocampal cell differentiation
points on the front of cell morphogenesis, leading to
cascades of downstream effects [71]. This has primarily
been studied and modeled within the scope of iPSC-
based analyses, which make correlations and connec-
tions to the clinical presentation more difficult due to
the additional abstraction from the standard pathology-
based analysis. Also, the BDNF signaling pathway that
potentially relates to intercellular communications is
enriched as well in multiple cell types (p < 0.01) [72]. Fi-
nally, we also observed that protein-protein interactions

(PPIs) are enriched among the disease genes of the cell
types at a higher level. As shown in Fig. 5B, the SCZ
genes for dopaminergic synapse, NMDA receptors, glu-
tamate binding, and activation are shared by multiple
cell types and have strong PPIs, implying protein-level
cross-type coordination [73]. In AD, multiple pathways
were significantly enriched across various cell types (Fig.
5C). For instance, the catabolic process for the AD key
player, amyloid precursor protein (APP), is enriched
with both glial and neuronal types (p < 0.01) [74].
Furthermore, we found that cross-disease conserved

functions/pathways are involved in one or multiple cell
types, revealing potential novel functional interplays
across cell types and diseases (Fig. 5D). For example, the
cell morphogenesis involved in differentiation is
enriched in both AD and SCZ neuronal genes. Another
example is that the vesicle-mediated transport is
enriched for both AD and SCZ microglia genes. In total,
we found 11 microglia genes shared by AD and SCZ. In
particular, the VEGF signaling pathway is enriched in
the SCZ microglia genes. In the general theme of AD

Fig. 4 Enrichments of cell-type enhancers and disease genes. a Partitioned heritability enrichment of GWAS SNPs associated with various diseases
and traits (bar) on the enhancers of In1a GRN. Bar height is −log10(p value) of the enrichment. The diseases and traits are schizophrenia (SCZ),
Alzheimer’s disease (AD), autism spectrum disorder (ASD), bipolar disorder (BPD), amyotrophic lateral sclerosis (ALS), major depressive disorder
(MDD), intelligence, multiple sclerosis (MS), Parkinson’s disease (PD), attention-deficit hyperactivity disorder (ADHD), education, type 2 diabetes
(T2D), inflammatory bowel disease (IBD), and coronary artery disease (CAD). The red line represents p value = 0.05. b The disease enrichments of
cell-type AD genes. Rows are diseases/traits. Columns are cell types. Darkness is proportional to −log10(p) of the enriched term. c The disease
enrichments of cell-type SCZ genes. Rows are diseases/traits. Columns are cell types. Darkness is proportional to −log10(p) of the enriched term.
d The enrichments of functions and pathways (e.g., GO, KEGG, REACOME) in the microglia AD genes. Bar darkness and length are proportional to
−log10(p) of the enriched term. e The enrichments of functions and pathways (e.g., GO, KEGG, REACOME) in the excitatory neuronal SCZ genes.
Bar darkness and length are proportional to −log10(p) of the enriched term
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pathology, increased VEGF expression has been linked
to worse cognitive outcomes in postmortem analysis
[75]. Similarly, multiple meta-analyses have revealed dif-
ferential expression levels between healthy controls and
SCZ patients [76]. However, little has been done to link
potential gene function to cell-type-level interactions
and pathways. Here, these SCZ-AD shared microglia
genes may help explain shared higher-level dysfunction
between both diseases as evidenced by higher expres-
sion. Also, we found that some functions involve differ-
ent cell types across diseases. The dendrite development
has been found in both SCZ and AD pathology [77, 78].
We found that it is mainly enriched with microglia in
AD but neuronal types in SCZ.
More interestingly, when exploring the interactions

between cell types that change between diseases, the
disease-specific pathologies enter to explain the cause of
discrepancies. In particular, for AD, it is shown that
phagocytic microglia are activated during the early stages
of synaptic decline, leading to eventual neuroinflamma-
tion and programmed cell death [79]. For SCZ, the

oligodendrocyte enrichment reveals similar intercellular
mechanisms between excitatory and inhibitory neurons,
specifically those regulating neuron differentiation (Fig.
5A), providing potential direction for future exploration
and validation of the communication role of oligoden-
drocytes [80].

Prediction of clinical phenotypes from cell-type disease
genes
Finally, we want to investigate the clinical applications of
our cell-type disease genes. To this end, we looked at
the population-level gene expression data for AD in the
ROSMAP cohort [51]. In particular, we first found that
many cell-type AD genes have significantly associated
expression levels with clinical phenotypes across individ-
uals in ROSMAP. For example, out of 195 cell-type AD
genes, we found that 72 genes are significantly associated
with the Braak stages that measure the severity of neuro-
fibrillary tangle (NFT) pathology (ANOVA p < 0.05), 78
genes with the CERAD scores that measure neuritic pla-
ques (ANOVA p < 0.05), 89 genes with the diagnosis of

Fig. 5 Cross-cell-type conserved and cell-type-specific functions, pathways, and protein-protein interactions in schizophrenia and Alzheimer’s disease.
Darkness in heatmaps is proportional to −log10(p) of the enrichment. a The enrichments of select conserved and specific functions/pathways (e.g.,
GO, KEGG, REACTOME) across cell-type disease genes in schizophrenia. b The enrichments of protein-protein interactions among major cell-type
disease genes in schizophrenia: excitatory neuron (broad, red), inhibitory neuron (broad, blue), microglia (green), and oligodendrocyte (purple). c The
enrichments of select conserved and specific functions/pathways across cell-type disease genes in Alzheimer’s disease. d The enrichments of select
conserved and specific functions/pathways across cell-type disease genes between schizophrenia and Alzheimer’s disease
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cognitive status (DCFDX) (ANOVA p < 0.05), 73 genes
with the cognitive status at the time of death (COGDX)
(ANOVA p < 0.05), and 92 genes with the Mini-Mental
State Examination (MMSE) scores (Pearson correlation
p < 0.05). In total, 135 cell-type AD genes were signifi-
cantly associated with at least one clinical phenotype in
ROSMAP (Additional file 6).
In addition to statistically significant associations be-

tween our cell-type disease genes and clinical pheno-
types, we also applied the machine learning approach to
predict clinical phenotypes from these cell-type disease
genes using ROSMAP data (“Methods” section). Specif-
ically, for each clinical phenotype, we used the logistic
regression model to classify individual states of the
phenotype (as classes) from their expression data of 53
AD-SCZ shared cell-type genes. We performed the
cross-validation (K = 5) for the individual samples with
80% training and 20% testing sets. As shown in Fig. 6,
our average accuracy values for classifying all four major
clinical phenotypes: Braak stages, CERAD scores,
DCFDX status, and COGDX status, are much higher
than the baselines (50%), the random select genes, and
AD genes from the latest GWAS study [6]. This suggests
that using cell-type disease genes shared by AD and SCZ
has improved predicting those clinical phenotypes, espe-
cially for cognitive-related ones in AD.

Discussion
This paper focuses on the scGRNom’s application to
single-cell data for AD and SCZ. However, scGRNom is

general-purpose for understanding functional genomics
and gene regulation in other diseases. Besides the cell
types, the pipeline also predicts the gene regulatory net-
works for cell clusters (unknown cell types) and bulk tis-
sue types. Furthermore, recent eQTL studies have
identified various SNPs associating with gene expression
in multiple brain tissue types using the population data
such as GTEx [81] and PsychENCODE [10]. Although
those brain eQTLs suggest the SNP-gene association at
the bulk tissue level, we still found that several eQTLs in
PsychENCODE match our linked GWAS SNPs and cell-
type disease genes, e.g., SNPs chr2:127846321 for and
chr20:43598154 for STK4, two microglia disease genes
for AD and SCZ, respectively. This suggests potential
cell-type effects of these human brain eQTLs. Thus, in-
creasing single-cell data at the population level allows us
to predict the cell-type eQTLs [82], which will likely
help understand cell-type gene regulation and refine
linking disease genes at the cell-type level.
For linking disease genes, we primarily used the inter-

rupted TFBSs by GWAS SNPs. Future studies utilizing
scGRNom would be able to take advantage of the ever-
growing number of GWAS for a wide variety of diseases
as well as single-cell data. However, additional informa-
tion can also help link GWAS SNPs to disease genes.
For example, existing tools such as FUMA [83] have
linked GWAS loci to genes by integrating information
from multiple resources, providing more functional link-
ages from genotype to genes to phenotype in human dis-
eases. Thus, incorporating multiple GWAS data (e.g.,

Fig. 6 Prediction accuracy of AD clinical phenotypes from disease genes. The AD population data for prediction was from the ROSMAP cohort [51].
AD clinical phenotypes include Braak—stages that measure the severity of neurofibrillary tangle (NFT) pathology; Cerad—scores that measure neuritic
plaques; Cogdx—cognitive status at the time of death; and Dcfdx—the diagnosis of cognitive status. The bar height represents the average accuracy
of cross-validation (K = 5) from the prediction using logistic regression (“Methods” section). Red: scGRNom’s cell-type disease genes shared by AD and
SCZ (SCZ-AD genes). Green: AD genes from GWAS [6]. Blue: randomly select genes (same number as SCZ-AD genes)
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various brain regions) exposes key areas of observed
phenotypes. Previous studies have demonstrated the
caution that must be exercised when attempting to cor-
relate GWAS data with clinical phenotypes, and
methods such as our analysis mitigate these effects [20].
A similar methodology as outlined could be used where
common loci within each set of summary statistics are
incorporated and established before integration into the
cell-type GRNs, thus linking neuronal spatial informa-
tion with known mutation sites in patients along with
potentially cell-type-specific functionality. Expanding
past the cell types examined here into additional multi-
cellular analyses is also possible given expanded interac-
tome data. Notably, this would allow for further
investigation of complex neuropsychological diseases
and cases where the line between different clinical classi-
fications becomes blurred and leads to additional
complications about clinically relevant genetic therapies.
One such example includes autism spectrum disorder
(ASD), where clinical presentations can vary in multiple
axes of severity, creating a broad spectrum of pheno-
types. In such cases, potentially linking specific symp-
toms or aspects of a particular subset of ASD to
particular brain regions and cell types allows for a
better-informed picture of functional consequences asso-
ciated with genetic mutation sites. Such connections
could aid in determining genetic risk factors associated
with variations in edge case patients; they also create the
opportunity to take advantage of induced pluripotent
stem cell (iPSC) technology using genetic engineering
technologies to create point mutations matching compu-
tationally identified genes. Moreover, because the single-
cell multi-omics data we used for predicting cell-type
GRNs are not specific for particular diseases (AD or
SCZ), we used the SNPs disrupting all possible TFs on
the enhancers and promoters from our cell-type GRNs
to link at large cell-type disease genes. However, the
scGRNom pipeline is general-purpose and able to work
for incoming disease-specific single-cell multi-omics and
link to cell-type disease genes via interrupted regulatory
TFs in the diseases.
Machine learning has also been widely used to analyze

multi-omics, such as multiview learning and deep learn-
ing [10, 84]. Multiview learning has great potential for
understanding functional multi-omics and revealing
nonlinear interactions across omics. Therefore, integrat-
ing such emerging machine learning approaches will en-
able identifying different cross-omic patterns, especially
for increasing single-cell multi-omics data and providing
more comprehensive mechanistic insights in cell-type
gene regulation and linking to disease genes. For ex-
ample, this means adding more omics such as methyla-
tion data that reflect epigenetic changes that may occur
due to wide variations of inherited and environmental

factors [85]. At a deeper functional level, variations in
methylation have been attributed to alterations in spli-
cing activity, ultimately impacting the regulation and ex-
pression of key genes [86]. Additionally, integrating
proteomic data at a single-cell level enhances the
broader picture formed through additional data sources
even further [87]. Lastly, expanding past simple methyla-
tion and proteomics allows for the ability to include all
forms of data incorporated through the single-cell cy-
tometry [88].

Conclusions
We developed a computational pipeline, scGRNom, to
integrate multi-omics data and predict gene regulatory
networks (GRNs), which link TFs, non-coding regulatory
elements (e.g., enhancers), and target genes. With appli-
cations to the data from single-cell multi-omics of the
human brain, we predicted cell-type GRNs for both
neuronal (e.g., excitatory, inhibitory) and glial cell types
(e.g., microglia, oligodendrocyte). Further, scGRNom can
input cell-type GRNs and disease risk variants to link
disease genes at the cell-type level, such as brain diseases
like AD and SCZ. These disease genes revealed con-
served and specific genomic functions across neuro-
psychiatric and neurodegenerative diseases, providing
cross-disease regulatory mechanistic insights at the cel-
lular resolution. Although this paper focuses on AD and
SCZ, scGRNom is a general-purpose tool for under-
standing functional genomics and gene regulation in
other diseases, at either bulk tissue or cell-type levels. Fi-
nally, scGRNom is open-source available at https://
github.com/daifengwanglab/scGRNom [26].
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