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Abstract

Background: Recent studies have indicated an association of gut microbiota and microbial metabolites with type 2
diabetes mellitus (T2D). However, large-scale investigation of the gut microbiota of “prediabetic” (PD) subjects has
not been reported. Identifying robust gut microbiome signatures of prediabetes and characterizing early
prediabetic stages is important for the understanding of disease development and could be crucial in early
diagnosis and prevention.

Methods: The current study performed amplification and sequencing on the variable regions (V1–V5) of the 16S
rRNA genes to profile and compare gut microbiota of prediabetic individuals (N = 262) with normoglycemic
individuals (N = 275) from two cohorts in India and Denmark. Similarly, fasting serum inflammatory biomarkers were
profiled from the study participants.
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Results: After correcting for strong country-specific cohort effect, 16 operational taxonomic units (OTUs) including
members from the genera Prevotella9, Phascolarctobacterium, Barnesiella, Flavonifractor, Tyzzerella_4, Bacteroides,
Faecalibacterium, and Agathobacter were identified as enriched in normoglycaemic subjects with respect to the
subjects with prediabetes using a negative binomial Wald test. We also identified 144 OTUs enriched in the
prediabetic subjects, which included members from the genera Megasphaera, Streptococcus, Prevotella9, Alistipes,
Mitsuokella, Escherichia/Shigella, Prevotella2, Vibrio, Lactobacillus, Alloprevotella, Rhodococcus, and Klebsiella.
Comparative analyses of relative abundance of bacterial taxa revealed that the Streptococcus, Escherichia/Shigella,
Prevotella2, Vibrio, and Alloprevotella OTUs exhibited more than fourfold enrichment in the gut microbiota of
prediabetic subjects. When considering subjects from the two geographies separately, we were able to identify
additional gut microbiome signatures of prediabetes. The study reports a probable association of Megasphaera
OTU(s) with impaired glucose tolerance, which is significantly pronounced in Indian subjects. While the overall
results confirm a state of proinflammation as early as in prediabetes, the Indian cohort exhibited a characteristic
pattern of abundance of inflammatory markers indicating low-grade intestinal inflammation at an overall
population level, irrespective of glycemic status.

Conclusions: The results present trans-ethnic gut microbiome and inflammation signatures associated with
prediabetes, in Indian and Danish populations. The identified associations may be explored further as potential early
indicators for individuals at risk of dysglycemia.

Background
Type 2 diabetes mellitus (T2D) is a prevalent disease
characterized by imbalances in regulation of blood glu-
cose, and in the levels of blood lipids, blood platelet ag-
gregation, and blood pressure [1–3]. Multiple gene
variants associated with T2D have been identified, partly
explaining the heritability of the disorder [4]. Appar-
ently, the genetic susceptibility conferring risk of overt
diabetes is triggered by numerous environmental risk
factors including unhealthy diet, sedentary lifestyle, and
smoking. Several of the diabetes-related environmental
risk factors may mediate part of their diabetogenic im-
pact through changes of the intestinal microbiota [5]. As
such, aberrant composition and function of the intestinal
microbiota have recently been implicated in the patho-
genesis of T2D as well as several other metabolic disor-
ders [6–11].
The T2D phenotype of Asian Indians is different

from that of Europeans and is characterized by unique
fat distribution, as well as changes in blood lipid com-
position and inflammatory markers [12, 13]. Several
earlier studies have reported sub-clinical inflammation
in the general Indian population in context of insulin
resistance and prediabetes [12, 14–17]. Even when
compared with other South Asian populations, it has
been observed that while general adiposity could ex-
plain the difference in insulin resistance in Chinese and
Malays, abdominal fat distribution and inflammation
were the significant factors that contributed to excess
insulin resistance in Asian Indians [17]. This character-
istic phenotype of Asian Indians could possibly be
linked to the gut microbiota through the unique dietary
patterns of the Indian population. A distinctive feature

of the gut microbiota of healthy Indian subjects is the
predominance of the genera Prevotella, Faecalibacter-
ium, Collinsella, and Megasphaera [18–21]. Further-
more, Asian Indians with T2D have been reported to
have alterations in abundances of all kinds of microbes
spanning Eubacteria, Archaea, and eukaryotes [22].
Elevated abundance of specific bacterial genera like
Escherichia has also been reported in Indians with T2D
when compared to healthy individuals [22, 23].
The natural history of T2D includes a stage of predi-

abetes (PD) where blood glucose levels are higher than
normal, but not high enough to warrant the diagnosis
of diabetes [24]. Prevention of disease progression is
possible at this stage [25–28]. A few studies with
limited sample size have reported a possible associ-
ation between the gut microbiome composition and
prediabetes [10, 29–33]. However, there have been no
studies comparing different ethnicities, looking for a
prediabetes signature in the gut microbiota. The
current study aims to investigate the gut microbiota in
Indian and Danish adults with normoglycemia and
compare it with the microbiota of individuals with pre-
diabetes in the two countries. Besides genetic differ-
ences between the Indian and Danish individuals,
Denmark and India have entirely different cultural,
climatic, socio-demographic and dietary patterns. This
study is intended to serve as a unique resource in the
quest to obtain specific microbiome signatures of pre-
diabetes which can help in better understanding of the
disease pathophysiology and may be explored further
for identifying potential early indicators/ biomarkers
for individuals with risk of dysglycemia, across popula-
tions of different ethnicities.
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Methods
Participant enrollment and sample collection in Denmark
A total of 259 Danish volunteers [138 normoglycemic
(NG) controls and 121 with prediabetes (PD)] were re-
cruited from the DanFund [34] and ADDITION-PRO
cohorts [35] and by advertisement in local newspapers.
All Danish subjects were of White European ethnicity,
aged 35 to 74 years, with a body mass index (BMI) from
20 to 40 kg/m2. Individuals with known diabetes of any
kind, who were treated with antibiotics within 4months,
were pregnant or lactating, or unable to give informed
consent were ineligible for inclusion.
Individuals with HbA1c below 5.7% (39 mmol/mol)

and fasting plasma glucose below 6.1 mmol/L at time of
screening were eligible for inclusion as normoglycemic
controls. Individuals with a history of gestational
diabetes were ineligible for inclusion as normoglycemic
controls. Individuals with fasting plasma glucose of 6.1
to 6.9 mmol/L or glycated hemoglobin A1c of 5.7 to
6.4% (39 to 47 mmol/mol) were eligible for inclusion as
prediabetics.
Fecal samples were collected by the participants

following standardized procedures, including home
sampling with immediate freezing at − 18 °C and transfer
in an insulating polystyrene container with dry ice or
cooling elements for final storage at − 80 °C within 48 h.

Participant enrollment and sample collection in India
The Indian cohort comprised of 278 individuals [137
with normal glucose tolerance (NG) and 141with predia-
betes (PD)] attending a tertiary care center for diabetes
between April 2014 and April 2016. Diagnosis of normal
glucose tolerance and impaired glucose tolerance was
based on the results of a standard oral glucose tolerance
test (OGTT), performed using a 82.5 g oral glucose load
(equivalent to 75 g of anhydrous glucose). Study subjects
were adults of either sex aged between 35 and 65 years.
Individuals suffering from chronic and severe ailments
(such as cancer and tuberculosis) and those who had
used medications such as dipeptidyl peptidase-4 inhibi-
tors, acarbose, glucagon-like peptide-1 receptor agonists,
and orlistat were excluded from the study. A special kit
containing the collection tubes, bed-pan liner, and dry
ice required for collection of fecal samples were given to
the study subjects. The fecal samples were frozen at −
20 °C within 1 h and then transferred to the − 80 °C
freezer.
It may be noted here that although the current report

pertains to microbial signatures associated with predia-
betes (PD), the cohort recruitment in India and
Denmark was done as part of a bigger research project
“MicrobDiab - Studies of interactions between the gut
Microbiome and the human host biology to elucidate
novel aspects of the pathophysiology and pathogenesis

of type 2 Diabetes”. The NG samples from India and
Denmark reported in this work also forms the basis of a
related study of the MicrobDiab project, aimed at deci-
phering the trans-ethnic microbial signatures associated
with T2D.

Phenotyping of study participants
Phenotyping of the study participants from both India
and Denmark included recording basic physical vari-
ables, viz. height, weight, waist circumference, BMI, and
blood pressure, along with a wide variety of biochemical
tests and serum levels of 11 inflammation biomarkers
(details in Additional file 1). In addition, a structured
questionnaire was used to obtain information on age,
gender, duration of prediabetes, family history of
diabetes, food habits, physical activity patterns, smoking,
allergic conditions, disease related to the gastrointestinal
tract, etc.

Microbiome sequencing
It may be noted here that to minimize confounding ef-
fects of the technical procedures, the standard operating
procedures for recruitment of study participants, bio-
logical sample processing, and microbial DNA extraction
of stools were synchronized. Furthermore, DNA sequen-
cing of all samples were performed collectively in one
sequencing center at the Translational Health Science
and Technology Institute, India. Similarly, profiling of
inflammation biomarkers from all samples were also
performed in the same laboratory (details of protocols in
Additional file 1).
Extraction of DNA was performed from 200mg stool

sample from each participant using a standard INRA
protocol [36]. The variable regions (V1–V5) of the 16S
rRNA genes were amplified using 27F(C1) and 926R(C5)
primers followed by sequencing of the equimolar librar-
ies performed on a 454 GS FLX+ pyrosequencer plat-
form (Details in Supplementary Methods in Additional
file 1). In addition to the samples collected from volun-
teers recruited in this study, 16S rRNA gene sequencing
was also performed for additional microbiome samples
collected from Indian and Danish volunteers with T2D
for an allied study, using the same protocols and multi-
plexed sequencing runs mentioned above. Sequence data
for all microbiome samples have been submitted to
NCBI SRA and are available with SRA accession
PRJNA517829 [37].

Sequence analysis
The sequenced reads were demultiplexed using sequen-
cing barcode information (Additional file 2: Table S1)
and subsequently quality filtered (average PHRED
score > 20). Considering a minimum sequencing cover-
age of 5000 high-quality reads per sample, a total of 18,
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380,379 sequences encompassing the V1–V5 region of
the 16S rRNA gene were obtained from 864 micro-
biome samples. V3–V5 regions from all the se-
quenced reads (having variable read-lengths) were
subsequently extracted using V-Xtractor 2.0 [38], and
any read which did not encompass the complete V3–
V5 region was not considered for further analysis. A
total of 17,030,870 quality-checked and trimmed reads
pertaining to 864 samples were considered for the
downstream OTU picking step (average sequencing
depth of 19,712 ± 7774 SD reads/sample). While many
contemporary studies have preferred exact sequence
variant-based analysis [39, 40] of amplicon sequencing
data over OTU picking, these methods are mostly de-
signed for processing of sequencing data generated on
an Illumina platform, and to the best of our know-
ledge, there has been no validation of the utility of
exact sequence variants vs OTUs on 454 single-end
sequencing data. Further, resorting to identifying
exact variants with 100% sequence identity may be
construed as an attempt to go beyond what the ac-
curacy of the sequencing technologies allows, and a
more conservative OTU-based approach in context of
noise arising from sequencing error, intra-genomic
heterogeneity, etc., was preferred for the current
study. OTU picking was performed using an “open
reference OTU picking” approach as implemented in
the QIIME pipeline v1.9.1 [41]. For the process,
Greengenes OTUs clustered at 97% identity (Green-
genes version 13_8) was used as the reference OTU
database [42], while UCLUST v1.2.22q [43] was
chosen as the preferred OTU picking method
(“uclust_ref” run with default parameters for cluster-
ing sequences with 97% identity). Representative se-
quences from each of the OTUs were used for
annotating corresponding taxonomic lineages (using
the tool dada2 [39] considering SILVA database ver-
sion 132 [44] as a reference). Sparse OTUs containing
< 0.002% of the total number of high-quality reads se-
quenced were removed. A final OTU abundance table
with a total of 1897 OTUs, including 1471 OTUs
bearing correspondence to OTUs already cataloged in
the Greengenes database, as well as 426 de novo
OTUs identified from 864 samples was created. A
subset of 537 microbiome samples pertaining to
normoglycemic and prediabetic individuals from India
and Denmark, corresponding to 10,647,149 quality-
checked and trimmed reads, was considered for
downstream taxonomic analyses in this study. Func-
tional potential of the gut microbiomes were esti-
mated from the taxonomic distribution using the
tools PiCrust v1.1.0 [45] and Vikodak [46]. Although
estimating functional potential of microbiomes should
ideally be performed with appropriate shotgun

metagenomics data, the current amplicon sequencing-
based study has its limitation in this respect, and
therefore used the above mentioned tools which are
reported to provide reliable estimates from taxonomic
abundance data.

Statistical analysis
Alpha diversity metrics (viz. Shannon diversity, Simpson
index and OTU richness) were calculated using R Vegan
packagev2.5.2 [47]. Given that uneven sequencing depth
of different samples may influence calculation of alpha
diversity measures like OTU richness, this step was per-
formed on rarefied abundance data (equivalent to the
sample having minimum sequencing depth, i.e., ~ 4500
reads/sample). T-tests were performed to assess any
significant differences between the alpha diversity pa-
rameters of samples belonging to different geographies
or health status. Differences between the measured
phenotypic traits of subjects belonging to different coun-
tries/health status were evaluated using Wilcoxon test(s).
P values were corrected for multiple testing using
Benjamini-Hochberg (BH) correction. PCoA plots based
on taxonomic profiles (relative OTU abundance) of
microbiome samples were generated the R Phyloseq
package v1.22.3 [48], wherein weighted UniFrac was
used as the distance metric. Similar PCoA plot was also
generated using imputed functional profile of the micro-
biome samples (KEGG functional modules) wherein
Jensen-Shannon divergence (JSD) was used as the dis-
tance metric. The extent of variation explained by geog-
raphy and disease status was tested with permutational
multivariate analysis of variance (PERMANOVA), using
adonis2 function available in the R Vegan package
v2.5.2. Dispersion of the country and disease status-
specific clusters was evaluated using the betadisper func-
tion available in the R Vegan package v2.5.2. A negative
binomial Wald test using the R package DESeq2v1.10.1
[49] was performed to identify the taxonomic groups (at
all different levels of taxonomic hierarchy), which were
differentially abundant in NG and PD samples (BH cor-
rected p ≤ 0.05) for Indian and Danish cohorts separ-
ately. PD-specific microbiome abundance signatures
were also evaluated after pooling together Indian and
Danish cohorts, while correcting the negative binomial
Wald test results for the anticipated geography-specific
cohort effect. Further a forest-plot-based meta-analysis
of the differentially abundant factors identified in the
pooled analysis was also performed to put in context the
effect sizes (log2 fold enrichment of mean abundances in
PD with respect to NG) and directions in individual
geographies. Additional negative binomial Wald tests
were performed (using DESeq2) separately on Indian
and Danish subjects to identify discriminating OTUs,
while correcting for certain observed covariates of
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glycemic status, viz., waist-to-hip ratio, systolic BP, IL6,
TNFα, LBP, and IAP, which might also influence the
microbiome structure. Corrections were also performed
for age and gender of the subjects, given that the age
and gender distribution of normoglycemic and predia-
betic cohorts from the two countries had some varia-
tions. Spearman correlations between abundances of
differentially abundant microbial OTUs (between NG
and PD subjects) and measured phenotypic traits of the
subjects were calculated. It is relevant to mention here
that HbA1c levels were used to define the NG and PD
groups, and one might expect that correlations identified
might be artifacts of the partitioning process. However,
HbA1c levels for all subjects taken together were ob-
served to follow a normal distribution (in both geog-
raphies), and therefore, partitioning of the subjects (NG/
PD) based on clinically prescribed HbA1c thresholds is
not expected to have any confounding effects on the
computed correlations. Heatmaps depicting identified
significant correlations were generated using the R
“gplots” package v3.0.1. The correlations were evaluated
separately for the Indian and Danish cohorts. Random
forest (RF) classifier(s) were constructed for classifying
PD samples based on gut microbiome composition using
R Random forest package (v4.6–12). Detailed methods
are provided in Additional file 1.

Results
Distinct phenotypes and inflammation marker levels in
Indian and Danish cohorts
Table 1 (and Additional file 3: Table S2) shows the
clinical and biochemical characteristics of the Danish in-
dividuals (normoglycemic = 138, prediabetic = 121) and
Indian (normoglycemic = 137, prediabetic = 141) individ-
uals participating in the study. Among Danish partici-
pants, individuals with prediabetes were significantly
(Wilcoxon test, padj < 0.05) older, had higher waist to hip
ratios, and higher systolic blood pressure compared to
normoglycemic participants. While the clinical differ-
ences seen between the normoglycemic individuals and
individuals with prediabetes in Denmark are as expected
[50, 51], no significant differences in these respects could
be observed in Indian participants with prediabetes
when compared to the normoglycemic volunteers. When
comparing countries, the Danish subjects with prediabe-
tes were significantly older, taller, heavier, and had
higher systolic blood pressure compared to their Indian
counterparts. Similar differences in height, weight, and
systolic blood pressure were also observed when normo-
glycemic individuals from both countries were com-
pared. Another intriguing observation pertained to the
magnitude of difference in HbA1c levels between the
prediabetic and normoglycemic individuals from two
countries. The normoglycemic individuals from India

had an overall higher level of HbA1c (median = 37
mmol/mol) compared to the Danish normoglycemic
participants (median = 33mmol/mol). In effect, the
difference between HbA1c levels of normoglycemic and
prediabetic individuals appeared to be much higher in
case of Danes, when compared to Indians.
Results on a panel of 11 fasting serum inflammatory

biomarkers are also presented in Table 1. Among Danes,
individuals with prediabetes had significantly (Wilcoxon
test, padj < 0.05) higher levels of interleukin 6 (IL6),
tumor necrosis factor α (TNFα), lipopolysaccharide-
binding protein (LBP), and intestinal alkaline phosphat-
ase (IAP) compared to normoglycemic individuals. In
the Indian cohort, there were no significant differences
in any of the circulating inflammatory markers in
individuals with prediabetes when compared to those
with normoglycemia. Interestingly, irrespective of the
glycemic status, the overall levels of high-sensitivity C-
reactive protein (hsCRP), TNFα, and LBP were signifi-
cantly higher among Indians compared to Danes
(Additional file 4: Table S3). On the other hand, the
overall levels of interleukin 13 (IL13) and monocyte-
chemoattractant protein 1 (MCP1) were higher among
Danes. Considering the inter-individual variations in the
biomarkers, we also reanalyzed the data from normogly-
cemic and prediabetic subjects while dividing into
tertiles and found some interesting insights (Add-
itional file 5: Table S4). Among Danes, while considering
the tertile-based data analysis (particularly the tertile 2
and/or tertile 3 levels of biomarkers), most of the inflam-
matory markers were significantly higher in individuals
with prediabetes compared to normoglycemic individ-
uals. The only exceptions were interleukin 10 (IL10) and
interleukin 17A (IL17A) levels, which were significantly
lower in individuals with prediabetes. Similar analysis in
Indians showed significantly higher levels of inflamma-
tory biomarkers like high-sensitive C-reactive protein
(hsCRP), IL1β, IL13, IL17A, IL6, TNFα, and IAP in indi-
viduals with prediabetes compared to normoglycemic
individuals.

Dominant and core bacterial taxa in Danish and Indian
gut microbiota
While the gut microbiota of Danish participants were
significantly (t-test, p < 0.05) more diverse when com-
pared to the Indian volunteers (Additional file 6: Figure
S1), no significant differences in alpha diversity were
observed between microbiota belonging to the normo-
glycemic and prediabetic groups in the respective co-
horts. Firmicutes, followed by Bacteroidetes, were the
dominant phyla across all samples in both populations
(Additional file 6: Figure S2, Additional file 7: Table
S5A). While Actinobacteria, Proteobacteria, and Elusimi-
crobia were seen to be present in significantly (negative
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binomial Wald test; Benjamini-Hochberg-corrected
padj < 0.05) higher proportions in the Indian cohort, Bac-
teroidetes, Tenericutes, Verrucomicrobia, and Synergis-
tetes were observed to be significantly enriched in the
Danish subjects. When resolved at a family level (Add-
itional file 6: Figure S3, Additional file 7: Table S5B),
Ruminococcaceae, Bacteroidaceae, Rikenellaceae, and
Christensenellaceae were among the major families
which exhibited more than twofold enrichment in Danes
compared to Indians (negative binomial Wald test;
Benjamini-Hochberg-corrected padj < 0.05). In contrast,
Prevotellaceae, Veillonellaceae, Erysipelotrichaceae,
Lactobacillaceae, Coriobacteriaceae, Streptococcaceae,

and Atopobiaceae were seen to be significantly enriched
(over twofold) in the Indian cohort.
A search for core genera (present in at least 80% of

the subjects with minimum 0.1% abundance) in the gut
microbiota of normoglycemic and prediabetic individuals
showed Dorea, Agathobacter, Collinsella, Lachnoclostri-
dium, Lachnospira, Blautia, Faecalibacterium, Rose-
buria, and Subdoligranulum to be present ubiquitously
in subjects from both ethnic groups (Fig. 1). Although
Megasphaera and Lactobacillus could be identified as a
core microbiota in the gut of Indian subjects, their
prevalence was very low in the Danish population. On
the other hand, Parabacteroides and Alistipes were only

Table 1 Differences in phenotypic traits in Danish and Indian cohorts

Parameter Median (and IQR) value in
Danish samples

Median (and IQR)
value in Indian
samples

Wilcoxon test p value
(after BH correction)

NG PD NG PD NG vs PD
(Denmark)

NG vs PD
(India)

Denmark vs India
(NG)

Denmark vs India
(PD)

Age (years) 51(12) 64(12) 48(13) 51(14) 2.18E−17 2.7E−01 4.04E−03 3.00E−20

Gender F = 90 F = 55 F = 74 F = 68 – – – –

M= 48 M = 66 M = 63 M = 73

Height (cm) 170(15) 172(14) 159.4(14.7) 162.4(14.2) 9.50E−01 3.4E−01 1.13E−16 2.74E−13

Weight (kg) 79.1(15.3) 82.2(19.6) 67.3(21) 70(15.3) 7.79E−02 8.6E−02 1.54E−09 3.50E−10

Waist to hip
ratio

0.89(0.135) 0.94(0.1) 0.89(0.11) 0.91(0.12) 6.62E−06 1.9E−01 3.09E−01 9.18E−03

BP systolic
(mmHg)

128(23.8) 137(25) 120(24) 122(24) 8.03E−04 6.8E−01 3.16E−04 4.53E−11

BP diastolic
(mmHg)

80(14) 83(15) 78(14) 79(12) 8.47E−02 5.5E−01 2.22E−04 9.18E−03

Glucose
(mmol/L)

5.3(0.6) 6.2(0.5) 5(0.4) 5.8(0.6) 9.17E−33 2.2E−27 1.22E−08 2.56E−14

(mg/dL) 95.4(10.8) 111.6(9.0) 90(7.2) 104.4(10.8)

HbA1c
(DCCT%)

5.2(0.3) 5.8(0.2) 5.5(0.5) 5.7(0.6) 9.50E−35 6.7E−11 2.06E−10 6.61E−01

(mmol/mol) 33(3.3) 40(2.2) 37(5.5) 39(6.6)

hsCRP (mg/L) 1.76(1.92) 2.08(2.84) 2.7(4.8) 2.8(5.1) 2.26E−01 5.6E−01 7.09E−05 1.74E−03

IL1β (pg/mL) 0.66(0.97) 0.87(0.74) 1.04(0.8) 1.07(0.9) 2.26E−01 5.6E−01 2.61E−04 2.70E−03

IL10 (pg/mL) 6.13(8.96) 5.18(7.54) 5.12(5.9) 5.19(5.8) 3.96E−01 7.3E−01 5.92E−02 8.80E−01

IL13 (pg/mL) 2.21(6.09) 2.70(6.07) 1.30(1.4) 1.39(2.0) 4.68E−01 5.6E−01 8.54E−06 1.36E−04

IL17A (pg/mL) 7.12(8.58) 5.90(6.23) 4.64(5.9) 5.09(5.7) 2.01E−01 5.6E−01 8.50E−05 1.55E−01

IL23 (pg/mL) 162.68(225.2) 190.40(174.6) 200.7(259.2) 213.3(290.1) 4.68E−01 9.7E−01 5.92E−02 3.40E−01

IL6 (pg/mL) 1.45(1.63) 2.08(3.16) 2.26(1.6) 2.32(2.1) 4.67E−04 5.6E−01 2.45E−06 2.46E−01

MCP1 (pg/mL) 1238.04(666.6) 1378.70(690) 838.8(846.1) 689.6(689.2) 2.26E−01 3.8E−01 8.71E−09 6.27E−17

TNFα (pg/mL) 2.80(1.66) 3.66(1.84) 5.15(3.3) 5.23(4.3) 1.35E−05 1.0E+ 00 1.51E−19 3.50E−08

LBP (μg/mL) 11.23(6.98) 13.84(7.56) 16.74(8.4) 15.4(8.1) 7.93E−04 5.6E−01 3.29E−10 4.69E−02

IAP (μg/mL) 0.32(0.21) 0.37(0.27) 0.35(0.32) 0.36(0.27) 3.91E−02 5.6E−01 2.97E−01 7.90E−01

Abbreviations: BP blood pressure, HbA1c glycated hemoglobin, hsCRP high-sensitive C-reactive protein, IL1β interleukin 1β, IL10 interleukin 10, IL13 interleukin 13,
IL17A interleukin 17A, IL23 interleukin 23, IL6 interleukin 6, MCP1 monocyte-chemoattractant protein 1, TNFα tumor necrosis factor α, LBP lipopolysachharide-
binding protein, IAP intestinal alkaline phosphatase
Note: The significantly different parameters (Benjamini-Hochberg-corrected padj < 0.05) in the PD group from each cohort are highlighted in bold face fonts

Pinna et al. Genome Medicine           (2021) 13:36 Page 6 of 20



present in a small fraction of the Indian samples, but
could be identified as core genera in the Danish popula-
tion. Strong geography-specific patterns were identified
in the distribution of core OTUs (Additional file 8: Table
S6). While a total of 32 OTUs were observed to be

ubiquitously present across samples from both the
geographies with normalized abundance> 0.01%, OTUs
specific to the Danish (29 OTUs) and Indian (16 OTUs)
participants could also be identified. Out of the 29 core
OTUs specific to the Danish samples, 17 were

Fig. 1 Core genera indifferent groups. Core genera identified in normoglycemic (NG) and prediabetic (PD) groups of samples corresponding to
the Indian (IN) and Danish (DK) cohorts. Genera which are present in at least 80% of the samples belonging to a particular group, having a
minimum (normalized) abundance of 0.1%, have been defined to constitute the core. The values indicated in the heatmap represent ubiquity of
a taxon as a percentage of samples (in the respective groups) wherein the taxon is present at a relative abundance of ≥ 0.1%
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Firmicutes, while 11 belonged to the phylum Bacteroi-
detes, including 6 from the genus Bacteroides. In con-
trast, the Indian cohort had only 3 Bacteroidetes OTUs,
all from the genus Prevotella9, along with 12 Firmicutes
OTUs and a single OTU belonging to the genus Senega-
limassilia (phylum Actinobacteria).

Gut microbiome composition in individuals with
prediabetes
Principal coordinate analysis (PCoA) based on OTU
abundance using weighted UniFrac distance (see Supple-
mentary Methods in Additional file 1) did not reveal any
prediabetes-specific patterns when the Danish and In-
dian samples were combined (Fig. 2a). Instead, a strong
country-specific effect on gut microbiota was apparent
from the distinct clustering of Indian and Danish sam-
ples. The strong effect of geography on the gut micro-
biome was also confirmed by a PERMANOVA test
(R2 = 11.2%; p = 0.001). A negative binomial Wald test,
after correcting for the country-specific cohort effect,
identified 160 OTUs, which were differentially abundant
(padj < 0.05) in the samples based on glycemic status
(Additional file 9: Table S7). OTUs belonging to Prevo-
tella9, Phascolarctobacteriumfaecium, Barnesiellaintesti-
nihominis, Flavonifractorplautii, Tyzzerellanexilis,
Bacteroidesnordii, Faecalibacterium, and Agathobacter
were among the OTUs that were enriched in normogly-
cemic subjects by two folds or more (Table 2). In
addition, three OTUs from the family Ruminococcaceae,
and one OTU each from the families Muribaculaceae
and Christensenellaceae had more than twofold enriched
abundance in normoglycemic subjects. In contrast,
OTUs enriched by two folds or more in the subjects
with prediabetes included those belonging to Mega-
sphaera, Streptococcus, Prevotella9, Alistipes, Mitsuo-
kella, Escherichia/Shigella, Prevotella2, Vibrio cholerae,
Lactobacillus, Alloprevotella, Rhodococcus, Klebsiella

and two more belonging to the family Ruminococcaceae.
A meta-analysis of the differentially abundant factors
presented in Table 2 is provided in Additional file 6:
Figure S4. The forest plot depicts the effect sizes and di-
rections of the factors in individual geographies, as well
as the combined effect size. For almost all the OTUs
identified through negative binomial Wald test on the
pooled data (after correcting for the country-specific co-
hort effect), the effect direction of microbial association
with dysglycemia was observed to be same in both geog-
raphies. However, effect sizes showed geography-specific
trends and in many cases did not attain statistically sig-
nificant values in one of the geographies. OTUs which
showed different effect directions included those belong-
ing to Phascolarctobacteriumfecium, Tyzerella_4 nexiilis,
Eschirichia/Shigella, Prevotella2, Alloprevotella, and one
de novo OTU belonging to Lactobacillus. In most of
these cases, the effect was significantly strong in one of
the geographies, which influenced the combined effect
during pooled analysis. Further, for one of the OTUs be-
longing to Falvonifractor plautii, contrasting effects were
observed during pooled (cohort-effect corrected) and
meta-analyses, which can probably be attributed to dif-
ferences in fitting its taxonomic abundance data to nega-
tive binomial distributions, once for the pooled data and
subsequently for the geography-specific abundance data.
When the Indian and Danish cohorts were considered

separately, additional OTUs discriminating between the
normoglycemic and prediabetic groups could be identi-
fied (Tables 3, 4, Additional file 10: Table S8, Additional
file 11: Table S9). A total of 89 OTUs were found to be
differentially abundant (padj < 0.05) in either the normo-
glycemic or the prediabetic group in Indian subjects
(Additional file 10: Table S8A). In the Danish cohort, 56
OTUs were found to be differentially abundant (padj <
0.05) in either of these two groups (Additional file 11:
Table S9A). Normoglycemic subjects from India were

Fig. 2 Taxonomic and functional diversity of microbiomes. PCoA plots based on a OTU presence using weighted Unifrac distances and b KEGG
functional modules present in different microbiome samples (as inferred with Picrust) using JSD distances. The microbiome samples have been
plotted along the first two principal components
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characterized by an overabundance (two folds or more)
of multiple OTUs belonging to the Prevotella9 group
(which includes Prevotella copri), along with a few OTUs
belonging to the family Ruminococcaceae, including the
short-chain fatty acid (SCFA) producing Faecalibacter-
ium [52] (Table 3). The Danish normoglycemic subjects
also exhibited enriched abundance (two folds or more)
of OTUs from the family Ruminococcaceae, along with
a few OTUs from the genera Phascolarctobacterium and

Oscillibacter and three OTUs belonging to Prevotella9
(Table 4). Indian participants with prediabetes, on the
other hand, were enriched in OTUs belonging to the
genera Lactobacillus, Megasphaera, Subdoligranulum,
Escherichia/Shigella, Dialister, Vibrio, Streptococcus,
Achromobacter, and Blautia. Overall, an enrichment of
Firmicutes OTUs was apparent in the Indian predia-
betics. In Danish subjects with prediabetes, multiple
OTUs belonging to the genus Bacteroides and family

Table 2 Differentially abundant OTUs between NG and PD subjects from both Danish and Indian cohorts

OTU IDs Taxonomic affiliation Log2 fold
change

Log2 FC
standard error

BH-adjusted
p value

Mean %
abundance

Enriched in NG

291725 Prevotella_9 − 1.7680 0.5088 8.88E−03 0.2918

556835 Phascolarctobacterium faecium − 1.5371 0.4627 1.38E−02 0.2914

190975 Barnesiella intestinihominis − 1.6235 0.4381 4.56E−03 0.0567

335550 Flavonifractor plautii − 1.1188 0.3509 1.86E−02 0.0457

4315782 [Family]Ruminococcaceae − 2.4732 0.7731 1.83E−02 0.0147

659361 Tyzzerella_4 nexilis − 2.4165 0.8183 3.45E−02 0.0097

583656 Bacteroides nordii − 1.7518 0.3759 1.97E−04 0.0092

583256 Faecalibacterium − 1.7176 0.2714 5.54E−08 0.0087

211935 Agathobacter − 1.0416 0.3203 1.66E−02 0.0086

177679 [Family]Muribaculaceae − 1.4553 0.4535 1.79E−02 0.0048

819181 Ruminococcaceae_UCG-002 − 1.0428 0.3378 2.38E−02 0.0033

593008 Christensenellaceae_R-7_group − 1.7182 0.5400 1.88E−02 0.0033

denovo32180
Ruminococcaceae_UCG-010 − 2.0100 0.7128 4.73E−02 0.0030

Enriched in PD

817140 Megasphaera elsdenii 1.7989 0.3362 1.12E−05 1.1755

349024 Streptococcus equinus/gallolyticus/infantarius/lutetiensis 2.0231 0.3458 7.59E−07 0.8744

339221 Prevotella_9 1.4210 0.3933 6.20E−03 0.8176

357046 Alistipes finegoldii/onderdonkii 1.3202 0.3080 8.10E−04 0.4661

13811 Mitsuokella 1.3869 0.3688 4.05E−03 0.3890

1111294 Escherichia/Shigella albertii/ boydii/coli/dysenteriae/fergusonii/flexneri/
sonnei/vulneris

2.0982 0.3131 6.45E−09 0.3829

264967 Megasphaera 1.9031 0.3591 1.21E−05 0.3539

566899 [Family]Ruminococcaceae 1.0812 0.3529 2.50E−02 0.3489

269937 Prevotella_2 2.5823 0.5627 2.47E−04 0.2158

345899 Prevotella_9 1.5634 0.4830 1.69E−02 0.1898

1767788 Vibrio cholerae 3.3938 0.6447 1.37E−05 0.1604

denovo49732
Lactobacillus 1.1079 0.3289 1.21E−02 0.1374

546557 Alloprevotella 2.5351 0.5821 6.27E−04 0.1229

278795 Rhodococcus baikonurensis/ boritolerans/degradans/ erythropolis/
globerulus/hoagii/ opacus/qingshengii/rhodochrous

1.1766 0.2996 2.43E−03 0.1102

211191 [Family]Ruminococcaceae 1.0446 0.3314 1.99E−02 0.1033

Differentially abundant OTUs between NG and PD subjects, belonging to the Indian and Danish cohorts (pooled together), identified using a negative binomial
Wald test (corrected for geography-specific cohort effect). A positive log2 fold change value indicates higher relative abundance of the OTU in PD subjects and
vice versa. P values were adjusted for multiple testing using Benjamini-Hochberg correction. Up to top 15 OTUs (sorted according to mean abundance values)
which are at least twofold enriched (padj < 0.05) either in the NG or the PD group are listed
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Lachnospiraceae were enriched. Interestingly, several
fold enrichments of two OTUs belonging to Prevotella2
group (which includes Prevotella stercorea) were identi-
fied in the Danish subjects with prediabetes. It may how-
ever be noted that most of the prominent cohort-
specific microbial associations with glycemic status listed
in Tables 3 and 4 did not follow a similar significant
trend in the other cohort. In some cases, certain dis-
criminating OTUs (e.g., those belonging to Prevotella9
specific to the Indian cohort) were absent in the other
cohort.

It may also be noted that the above observations
present an overall view of microbial associations that
can either be directly related to the glycemic status, or
any associated comorbidities, or other intrinsic/extrinsic
host factors relevant to the studied cohorts. While for
the Indian subjects, none of the measured physical/ bio-
chemical parameters (other than glucose levels or
HbA1c) or inflammation markers, as reported in Table 1,
showed significant variations between the normogly-
cemic and prediabetic cohorts, the Danish subjects
showed differences in multiple parameters including

Table 3 Differentially abundant OTUs between NG and PD subjects (Indian cohort)

OTU IDs Taxonomic affiliation Log2 fold
change

Log2 FC
standard
error

BH-adjusted p
value (padj)

Mean %
abundance

Log2 FC in
Denmark (and padj
value)

Enriched in NG (India)

526358 * Faecalibacterium − 1.4023 0.3430 2.00E−03 0.0272 0.2549 (0.7247)

363017 * Ruminococcaceae_UCG-002 − 1.2560 0.2843 5.70E−04 0.0254 − 0.5792 (0.1898)

211935 * Agathobacter − 1.4328 0.4420 2.65E−02 0.0142 − 0.4730 (0.6316)

583256 * Faecalibacterium − 2.8392 0.3956 1.27E−10 0.0126 − 0.4154 (0.6150)

321743 * Prevotella_9 − 1.5612 0.4585 1.75E−02 0.0097 − 0.8695 (NA)

177679 [Family]Muribaculaceae − 1.8582 0.5292 1.35E−02 0.0062 − 1.1579 (0.5283)

3910247 * Alloprevotella − 2.7503 0.7581 9.27E−03 0.0056 0.5692 (NA)

4295618 Prevotella_9 − 1.6808 0.5665 4.82E−02 0.0054 0.0614 (NA)

denovo143775 Prevotella_9 − 4.3633 1.1914 8.48E−03 0.0037 NA

denovo94756 Prevotella_9 − 3.6581 1.1732 3.53E−02 0.0028 NA

Enriched in PD (India)

1121530 * Lactobacillus ruminis 1.6953 0.2990 1.56E−06 2.8598 − 0.5500 (0.7993)

264967 * Megasphaera 2.7006 0.4177 1.54E−08 0.6834 0.1234 (NA)

361811 * Subdoligranulum 1.6443 0.2547 1.54E−08 0.5463 0.2621 (0.6316)

1111294 * Escherichia/Shigella albertii/boydii/coli/
dysenteriae/fergusonii/flexneri/sonnei/vulneris

3.0148 0.3638 4.12E−14 0.5294 − 0.1181 (0.9126)

661,229 * GKS98_freshwater_group 1.9029 0.5708 2.04E−02 0.4334 − 0.5283 (NA)

333178 * Lactobacillus ruminis 1.4600 0.3529 1.73E−03 0.3985 − 1.2126 (0.6758)

1105343 * Ruminococcaceae_UCG-013 1.2424 0.3720 2.02E−02 0.3401 0.7922 (0.0164)

583746 * Dialister succinatiphilus 1.3217 0.4431 4.71E−02 0.3357 − 1.9138 (0.3338)

1767788 Vibrio cholerae 4.6414 0.8994 2.20E−05 0.3053 2.1842 (0.1198)

denovo49732 * Lactobacillus 2.2333 0.3784 4.27E−07 0.2630 − 0.7778 (0.7655)

292057 Lactobacillus phage/reuteri/salivarius 1.8088 0.5630 2.80E−02 0.2333 1.0336 (NA)

813217 * Klebsiella aerogenes/oxytoca/pneumoniae 1.2564 0.3633 1.50E−02 0.1797 0.5921 (0.7735)

355307 * Subdoligranulum 1.4338 0.2712 1.27E−05 0.1645 0.4640 (0.3236)

558264 * Achromobacter insolitus/xylosoxidans 1.6829 0.4317 3.73E−03 0.1429 0.1816 (NA)

328283 * Streptococcus 1.9115 0.4641 1.81E−03 0.1397 0.6262 (NA)

Differentially abundant OTUs between NG and PD subjects, belonging to the Indian cohort, identified using a negative binomial Wald test. A positive log2 fold
change value indicates higher relative abundance of the OTU in PD subjects and vice versa. P values were adjusted for multiple testing using Benjamini-Hochberg
correction. Up to top 15 OTUs (sorted according to mean abundance values) which are at least twofold enriched (padj < 0.05) either in the NG or the PD group are
listed. The rightmost column depicts the log2 fold change (if any) for the same OTU in the Danish cohort with the respective padj values in brackets. “NA” in the
rightmost column indicates absence (or limited abundance and/or ubiquity) of the OTU in the Danish cohort. OTUs marked with an asterisk (*) were also found to
exhibit significant differential abundance between NG and PD groups in the Indian cohort after correcting for following factors—age, gender, waist-to-hip ratio,
systolic BP, IL6, TNFα, LBP, and IAP. Further details in Additional file 13 Tables S8A and S8B
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waist-to-hip ratio, systolic BP, IL6, TNFα, LBP, and IAP
levels, as well as differences in age and gender distribu-
tion of the normoglycemic and prediabetic volunteers
who could be recruited for the study. Given this obser-
vation, negative binomial Wald tests were repeated on
the data from Indian and Danish cohorts, while correct-
ing for the mentioned covariates (see Additional file 1).

It was intriguing to note that post correcting for covari-
ates, 129 differentially abundant OTUs (padj < 0.05) were
identified to be associated with either the normogly-
cemic or the prediabetic groups belonging to the Indian
cohort (Additional file 10: Table S8B). As expected for
the Indian cohort, most of the differentially abundant
OTUs (64 out of 89) between normoglycemic and

Table 4 Differentially abundant OTUs between NG and PD subjects (Danish cohort)

OTU IDs Taxonomic affiliation Log2 fold
change

Log2 FC
standard error

BH-adjusted p
value (padj)

Mean %
abundance

Log2 FC in India (and
padj value)

Enriched in NG (Denmark)

530653 Prevotella_9 − 2.1696 0.6476 2.72E−02 0.5973 0.8215 (0.1061)

556835 Phascolarctobacterium
faecium

− 2.5626 0.5608 6.30E−04 0.5759 0.4750 (0.8399)

840914 Prevotella_9 − 3.0817 0.7375 2.77E−03 0.2892 0.9944 (0.2645)

569244 * [Order]Mollicutes_RF39 − 2.2544 0.5219 1.84E−03 0.0900 0.7955 (0.4533)

366352 Ruminococcus_1 − 1.3403 0.3808 1.75E−02 0.0898 − 0.3344 (0.8399)

300855 Family_XIII_AD3011_
group

− 1.0533 0.3375 4.91E−02 0.0185 0.0672 (0.9621)

denovo21348 Prevotella_9 − 3.3626 1.0755 4.91E−02 0.0093 0.1213 (NA)

denovo64437 Oscillibacter − 1.6014 0.4896 3.37E−02 0.0092 1.2417 (0.1523)

denovo154693 Ruminococcaceae_UCG-
005

− 2.0648 0.5084 3.84E−03 0.0067 0.3536 (NA)

190220 Ruminococcaceae_UCG-
002

− 1.7534 0.5639 4.91E−02 0.0039 2.5112 (0.0841)

denovo56680 * Ruminococcaceae_
NK4A214_group

− 2.0885 0.6214 2.69E−02 0.0034 0.2107 (NA)

Enriched in PD (Denmark)

535375 Bacteroides fragilis/ovatus 1.2882 0.3102 2.91E−03 0.4990 0.0167 (0.9890)

212481 * Lachnoclostridium 1.4087 0.2772 8.84E−05 0.4144 0.5648 (0.2787)

269937 Prevotella_2 4.5234 1.2712 1.64E−02 0.2741 − 0.9062 (0.4702)

187623 * Bacteroides fragilis/
xylanisolvens

1.1188 0.3283 2.44E−02 0.2018 0.4457 (0.6316)

212359 Lachnospiraceae_
NK4A136_group

1.0452 0.3360 4.91E−02 0.1308 − 0.4899 (0.4494)

332732 Bacteroides intestinalis 3.1027 0.5724 1.68E−05 0.1138 1.9399 (0.2202)

370361 [Family]Lachnospiraceae 2.1163 0.4551 4.71E−04 0.1056 1.3856 (0.1324)

361108 * Lachnoclostridium 5.2401 0.8119 7.70E−08 0.0944 1.5206 (0.3246)

302,538 Prevotella_2 4.8436 1.3556 1.64E−02 0.0728 − 0.1564 (0.9519)

297045 Ruminiclostridium_9 2.1947 0.3231 1.55E−08 0.0578 0.0173 (0.9894)

326662 Bacteroides 4.2505 1.3187 3.82E−02 0.0475 − 0.5035 (0.8716)

564806 Lachnoclostridium 1.8245 0.5267 2.04E−02 0.0408 − 0.0955 (0.9760)

4449055 Bacteroides 3.4554 0.9515 1.48E−02 0.0405 0.9578 (0.5667)

549635 Blautia 2.8875 0.8503 2.48E−02 0.0363 − 1.7466 (0.4146)

422283 Ruminiclostridium_9 1.3861 0.3352 2.96E−03 0.0307 − 0.3696 (0.8889

Differentially abundant OTUs between NG and PD subjects, belonging to the Danish cohort, identified using a negative binomial Wald test. A positive log2 fold
change value indicates higher relative abundance of the OTU in PD subjects and vice versa. P values were adjusted for multiple testing using Benjamini-Hochberg
correction. Up to top 15 OTUs (sorted according to mean abundance values) which are at least twofold enriched (padj < 0.05) either in the NG or the PD group are
listed. The rightmost column depicts the log2 fold change (if any) for the same OTU in the Indian cohort with the respective padj values in brackets. “NA” in the
rightmost column indicates absence (or limited abundance and/or ubiquity) of the OTU in the Indian cohort. OTUs marked with an asterisk (*) were also found to
exhibit significant differential abundance between NG and PD groups in the Danish cohort after correcting for following factors—age, gender, waist-to-hip ratio,
systolic BP, IL6, TNFα, LBP, and IAP. Further details in Additional file 14 Tables S9A and S9B
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prediabetic groups, identified prior to correcting for co-
variates, were still observed to be significant (padj < 0.05)
discriminating factors. Out of 25 OTUs exhibiting differ-
ential abundance of two folds or more (depicted in
Table 3), 19 OTUs were identified to be significantly dis-
criminating even after correcting for the covariates.
However, in case of the Danish cohort, the number of
differentially abundant OTUs (padj < 0.05), in either the
normoglycemic or the prediabetic group, decreased to
39 after correcting for the mentioned covariates (Add-
itional file 11: Table S9B). Out of these, only 11 OTUs
were in common with the earlier obtained list (Add-
itional file 11: Table S9A) of differentially abundant
OTUs between Danish normoglycemic and prediabetic
groups. Out of 26 OTUs from the Danish cohort exhi-
biting differential abundance of two folds or more
(depicted in Table 4), only 5 OTUs were identified to be
significantly discriminating after correcting for the co-
variates. This set included one OTU belonging to the
order Mollicutes and another belonging to the family
Ruminococcaceae, which were enriched in the Danish
normoglycemic subjects, as well as two OTUs belonging
to the genus Lachnoclostridium and one OTU belonging
to the genus Bacteroides, which were enriched in the
Danish prediabetic subjects.
Differences in gut microbiomes pertaining to normo-

glycemic and prediabetic individuals were also apparent
at higher taxonomic ranks (Additional file 12: Table
S10). A negative binomial Wald test, after correcting for
country-specific cohort effect, indicated that the families
Enterobacteriaceae, Enterococcaceae, Vibrionaceae, and
Burkholderiaceae, all from the phylum Proteobacteria;
Streptococcaceae from phylum Firmicutes; and Nocar-
diaceae from phylum Actinobacteria had relatively
higher abundances (Benjamini-Hochberg-corrected
padj < 0.05) in the PD samples. However, at the phylum
level, no significant variations could be observed.

Inferred functional profiles of gut microbiome
Principal coordinate analysis (PCoA) of predicted func-
tional profiles (KEGG functional modules) based on
Jensen-Shannon distances (see Supplementary Methods
in Additional file 1) did not reveal any prediabetes-
specific signatures (Fig. 2b), which was in line with the
results obtained using taxonomic profiles (Fig. 2a). Intri-
guingly, and in contrast with the taxonomy-based PCoA
analysis, no country-specific separation was apparent.
However, dispersion of predicted functional profiles per-
taining to Indian gut microbiomes was significantly
higher than that of the Danish functional profiles (Add-
itional file 6: Figure S5). Such dispersion was not ob-
served when taxonomic compositions of Danish and
Indian gut microbiota were tested.

Certain predicted functional pathways and modules
discriminating between the normoglycemic and predia-
betic subjects could be identified using negative binomial
Wald tests (Additional file 13: Table S11, Add-
itional file 14: Table S12, Additional file 15: Table S13).
However, the fold enrichments of these predicted path-
ways and modules, in either of the normoglycemic or
prediabetic groups, were minimal in most cases (average
log2 fold change = 0.06). The predicted pathways in-
cluded tyrosine metabolism and ascorbate and aldarate
metabolism, as well as multiple xenobiotic degradation
pathways that were enriched in subjects with prediabetes
(Additional file 13: Table S11). On the other hand, D-
glutamine and D-glutamate metabolism exhibited an in-
verse trend and were depleted in prediabetic subjects.
Investigating the predicted functional profile at the

module level led to further insights (Additional file 14:
Table S12, Additional file 15: Table S13). Multiple mod-
ules pertaining to transport of sugars and phosphotrans-
ferase system (PTS) were enriched in the gut
microbiome of individuals with prediabetes, which is in
line with previous observations [6, 53]. In addition,
several predicted functional modules pertaining to
drug resistance and efflux pumps were observed to be
enriched in the microbiome of prediabetic subjects,
suggesting increased exposure to antibiotics or other
xenobiotics. One of the interesting observations per-
tains to the metabolism of the neurotransmitter
gamma-aminobutyric acid (GABA shunt and GABA
biosynthesis functions), which was predicted to be
enriched in prediabetic subjects after correcting for
country-specific cohort effect. The enrichment was
more prominent in the Indian cohort and assumes
importance in context of previous studies indicating
effects of GABA on the islet beta cells [54].

Association between gut microbiota and clinical
biomarkers
For both Indian and Danish cohorts, a relatively small pro-
portion of OTUs enriched in the normoglycemic subjects
exhibited correlations with clinical variables and inflam-
matory biomarkers (Additional file 6: Figure S6, Add-
itional file 16: Table S14). In the Indian subjects, these
OTUs were predominantly from the genus Prevotella9 (4
OTUs), along with one OTU each from the genera Faeca-
libacterium, Agathobacter, Alloprevotella, and one OTU
belonging to the family Muribaculaceae. All other OTUs
exhibiting significant correlation(s) with one or more
phenotypic variables were enriched in prediabetic samples.
It was interesting to note that a considerable fraction of
these OTUs (7 de novo OTUs out of 10) belonged to the
genus Megasphaera, most of which exhibited significant
positive correlations with fasting plasma glucose and
HbA1c levels, and weak negative correlations with HDL

Pinna et al. Genome Medicine           (2021) 13:36 Page 12 of 20



cholesterol and inflammation markers like TNFα and LBP.
Another intriguing observation pertains to two OTUs be-
longing to the family Burkholderiaceae including the one
from the lymphoid tissue-resident commensal bacterial
(LRC) genus Achromobacter and another from the GKS98
freshwater group, which showed significant positive corre-
lations with inflammatory biomarkers like IL10 and
IL17A. An OTU belonging to Faecalibacterium (OTU
319275) was also observed to be positively correlated with
IL10 and IL6 levels in the Indian cohort, which is in line
with previous reports suggesting anti-inflammatory and
IL10 inducing roles of some Faecalibacterium strains [55,
56]. The heatmap corresponding to Danish subjects
showed a small but coherent grouping of OTUs enriched
in normoglycemic participants, which included four OTUs
from the family Ruminococcaceae (including one OTU
each from the genus Ruminococcus1 and Oscillibacter), an
OTU belonging to the genus Phascolarctobacterium fae-
cium and another two OTUs belonging to the order Molli-
cutesRF39 and family XIII AD3011 group from the order
Clostridiales. Almost all OTUs depicted in this heatmap,
which were associated with Danish prediabetic subjects,
belonged to the order Clostridiales. A considerable num-
ber of these were from the family Lachnospiraceae
followed by those from the family Ruminococcaceae, both
these families being ubiquitously present in Danish gut
microbiota. A couple of Prevotella2 OTUs exhibiting mod-
est negative correlations with HDL cholesterol also per-
tained to this prediabetes-associated group of OTUs
identified in the Danish population.

Microbiome signature-based classifiers for indicating
predisposition to dysglycemia
Random forest (RF) classifiers were constructed to as-
sess the ability of the abovementioned microbiome
signatures in segregating the normoglycemic and pre-
diabetic subjects (see Supplementary Methods in Add-
itional file 1). When trained with taxonomic data
(1897 OTUs as features) for all Indian and Danish
gut microbiota samples, a RF model with area under
the receiver operating characteristic curve (AUC) of
62.7% and out-of-bag (OOB) error rate of 40.04%
could be obtained. However, the anticipated effect of
extraneous predictors on a predictive model [57] and
earlier reports of RF classifiers built on microbiome
data [58], prompted adoption of an additional feature
selection step. For feature selection, the whole dataset
was randomly split (stratified considering proportions
of NG and PD samples) into a training set and an in-
dependent test set in the ratio 66:34. Post feature se-
lection step described in Additional file 1, a bagged
RF model with 76 selected features (Additional file 17:
Table S15) could be obtained with an improved AUC
of 77.54%, and a decent test AUC of 66.86% (Fig. 3).
While the clinical relevance of these RF models might
be limited, results of this exercise reiterate the dis-
tinct gut microbiome signatures in prediabetic sub-
jects from India and Denmark. Further, the set of
selected OTUs (obtained through the feature selection
step) used in the model holds relevance for future
studies in this direction.

Fig. 3 Microbiome-based random forest classifier for prediabetes. Performance of RF classifier (trained on OTU abundance) distinguishing
between NG and PD samples from India and Denmark. [Note: The data was split into training and independent test sets (in the ratio of 66:34)
and a feature selection step adopted while training the model performed with 10-fold cross-validation (× 10 replicates); Top 10 features were
selected from each cross-validation fold and ranked based on their cumulative importance (gini score used). Final “bagged” RF model was built
using a set of features providing best training AUC, selected through progressively adding the ranked features into the model (up to a maximum
of 100), while evaluating training AUC]
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Discussion
Recent evidences of causal or consequential relationship
of the gut microbiota with metabolic phenotypes suggest
the need of studying these aspects in each other’s con-
text. The Danish and Indian cohorts were significantly
different in multiple phenotypic aspects, and intriguingly
the signs of metabolic syndrome like higher waist-to-hip
ratios and systolic blood pressure were more apparent in
the Danish prediabetic subjects. Similar patterns were
also observed in levels of inflammatory biomarkers.
While the Danish prediabetic subjects exhibited higher
levels of several inflammatory biomarkers like IL6,
TNFα, LBP, and IAP compared to normoglycemic indi-
viduals, there were no such differences between the
Indian prediabetic and normoglycemic subjects. Notably,
the fasting serum levels of a majority of inflammatory
markers in Indian participants were higher than in the
Danish participants. The only inflammatory markers
having higher levels in the Danish participants included
IL13 and MCP1, which have roles in allergic inflamma-
tion [59–61]. While several inflammatory markers have
known association with T2D and the metabolic syn-
drome [62–66], an earlier study by Cappuccio and Miller
[67] has also indicated ethnic differences in the level of
circulating inflammatory markers which may be partially
related to demographic, lifestyle, or genetic or gut
microbiome factors. On the one hand, our observations
suggest a state of proinflammation as early as in predia-
betes. On the other hand, the observed characteristic
pattern of inflammatory markers in the Indian cohort
probably indicates prevalence of systemic and chronic
intestinal inflammation at an overall population level.
Higher levels of IL23, TNFα, and LBP have been re-
ported to be associated with intestinal inflammation as
well as systemic inflammation triggered by LPS and
other bacterial products [68–70]. Recent studies also
imply a role of IL-23/IL-17 pathway alterations in several
disease states including T2D [71, 72] and our study sup-
ports the existence of these alterations as early as in pre-
diabetes. In this context, the higher IAP values in
Danish prediabetic subjects were in a subtle contrast
with earlier reports on the role of IAP deficiency in
metabolic syndrome [73], but this could reflect a mount-
ing adaptive response to inflammation.
Comparing the Indian and Danish gut microbiota

based on alpha diversity measures indicated higher
diversity in the Danish cohort. This observation seems
intriguing in context of earlier studies reporting higher
alpha diversity of gut microbiota in many non-western
populations [74–76]. However, reduced gut-microbial
diversity is known to be associated with systemic inflam-
mation [77, 78], and a relatively lower gut microbial di-
versity in the Indian subjects may be related to the
observed levels of inflammatory biomarkers. Analyses

investigating beta diversity, to some extent, echoed earl-
ier findings pertaining to gut microbiota of Indian sub-
jects, wherein the phylum Actinobacteria, and families
Prevotellaceae, Veillonellaceae, and Streptococcaceae,
were enriched, when compared to Americans [18]. In
contrast, the Danish gut microbiota, profiled in the
current study, was quite similar to that of the Americans
and harbored a relatively larger proportion of microbes
belonging to families like Ruminococcaceae, Bacteroida-
ceae, and Rikenellaceae. The observed distribution of
core OTUs are also in line with our expectations
pertaining to the characteristic features of Indian and
Danish microbiota, such as a higher number of Bacter-
oides OTUs in the Danish samples and ubiquitous pres-
ence of Prevotella OTUs in the Indian samples [79–81].
The presence of a Megasphaera OTU in the Indian core
set also concurs with observations made in recent Indian
studies [18, 82].
Despite the strong country effect on the gut micro-

biota, certain taxonomic groups associated with predia-
betes could be identified when the microbiome data
from India and Denmark were pooled together. Add-
itional taxonomic groups could also be identified when
the microbiome data from the two countries were ana-
lyzed separately. Both the Danish and Indian normogly-
cemic subjects were enriched with multiple OTUs from
the Prevotella9 group as well as those belonging to the
family Ruminococcaceae. A depletion of the butyrate
producing family Ruminococcaceae has been reported
earlier in Indian T2D subjects [22], as well as in Finnish
prediabetic subjects [83]. On the other hand, the enrich-
ment of OTUs belonging to pathogenic genera like
Vibrio and Streptococcus in subjects with prediabetes
was interesting, given the role of inflammation in
diabetes. A recent study on Danish individuals with pre-
diabetes has indicated significant enrichment of the
genus Streptococcus and has suggested that the associ-
ated gut microbial alterations may be a signature of low-
grade inflammation [30]. Enrichment of certain Blautia
OTUs and depletion of bacteria belonging to Clostridia-
lesvadin BB60 family noted in prediabetic subjects en-
rolled in the current study also appears to be coherent
with the earlier observations pertaining to gut micro-
biota associated with Danish prediabetic subjects.
However, the observation made in the earlier study
pertaining to depletion of Akkermansia muciniphila in
gut microbiota of Danish prediabetic individuals was not
apparent in the current study population. An increased
abundance of the genera Lactobacillus in prediabetic
subjects, which was more prominent in the Indian popu-
lation, could be correlated with earlier reports mention-
ing the genus’ association with T2D [22]. On the other
hand, significant abundance of Megasphaera OTU(s) in
Indian prediabetic subjects is a novel observation and
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particularly intriguing. Although Megasphaera has been
reported to be a core gut microbe in the Indian popula-
tion [18], its association with impaired glucose tolerance
has not been reported earlier in any country or ethnicity.
Multiple Megasphaera OTUs identified in the samples
from Indian prediabetic subjects also exhibited signifi-
cant positive correlations with fasting plasma glucose
and HbA1c levels, and weak negative correlations with
HDL cholesterol and inflammation markers like TNFα
and LBP. Apart from a couple of recent studies on the
Indian gut microbiome [18, 22], Megasphaera has not
been reported to be a prevalent gut microbial taxon, es-
pecially in Caucasians. However, its role in lactate fer-
mentation as well as its positive association with
Lactobacillus ruminis, especially in cases of intestinal
malabsorption, or increased availability of dietary sugars
in the large intestine, has been reported [84]. The associ-
ation of Megasphaera with Indian prediabetic subjects
assumes importance in this context. Two other OTUs
associated with Indian prediabetic subjects, belonging to
the genus Achromobacter and GKS98 freshwater group
(both belonging to the family Burkholderiaceae), showed
significant positive correlations with the inflammation
biomarkers IL10 and IL17A. Interestingly, many mem-
bers of the family Burkholderiaceae, e.g., the genus
Achromobacter, are known to constitute the group of
lymphoid tissue-resident commensal (LRC) bacteria,
which colonize the intestinal lymphoid tissue of healthy
mammals [85]. The LRCs play a major role in intestinal
immunity and are known to induce anti-inflammatory
interleukins like IL10, IL6, IL1β, and IL17a. Another in-
teresting observation pertained to enriched abundances
of OTUs belonging to Prevotella9 (which includes Prevo-
tella copri) in both Indian and Danish normoglycemic
subjects, and those belonging to Prevotella2 (which in-
cludes Prevotella stercorea) in Danish prediabetic sub-
jects. A couple of Prevotella2 OTUs identified in the
Danish population were also observed to exhibit modest
negative correlations with HDL cholesterol. These obser-
vations probably reflect distinct roles of different Prevo-
tella species in the gut and are in line with earlier
findings indicating beneficial as well as pathogenic
effects of members belonging to the genus Prevotella
[86–88]. Microbiome composition is influenced by a
multitude of factors, and while the current study did set
out to find associations of microbial taxa with glycemic
status, several of the measured covariates including
physical/biochemical parameters of the subjects as well
as the inflammation markers could have influenced the
observed microbiome state. As discussed earlier, the
phenotypic traits in normoglycemic and prediabetic sub-
jects showed a deeper contrast in Danes than in Indians.
Consequently, efforts towards identifying microbial asso-
ciation to dysglycemia in the Danish cohort, while

correcting for the measured covariates using linear mod-
eling, resulted in a fewer number of discriminating taxa
between the normoglycemic and prediabetic gut micro-
biomes. In a sharp contrast though, correcting for covar-
iates in the Indian cohort could fetch a higher number
of discriminating taxonomic groups between the normo-
glycemic and prediabetic subjects. Literature suggests
that microbiome signatures corresponding to different
diseases and physiological conditions often overlap and
can be a mixed effect from different host extrinsic and
intrinsic factors [89]. The resultant microbiome shifts
also are seldom unidirectional, with the microbiome
sending feedback to the host, and in certain instances,
modulating host factors. Given the limitations in identi-
fying all possible underlying medical conditions as well
as measuring all the potential confounders, confident as-
sertions related to the disease-microbiome association
(in this case with dysglycemia) remains difficult. There-
fore, the lists of microbial taxa associated with the stud-
ied prediabetic and normoglycemic cohorts, both before
and after correcting for the measured covariates, are pre-
sented in this report. It is likely that some of these ob-
served associations, despite being statistically significant,
may not be a direct outcome of glycemic status and may
be related to associated comorbidities.
Functional potential of gut microbiomes inferred from

16S taxonomic profiles may not provide an estimate as
accurate as that obtained with shotgun metagenomics or
metatranscriptomics data. However, certain observations
made in our study related to estimated enrichment of
tyrosine metabolism, xenobiotic degradation, and ascor-
bate and aldarate metabolism in gut microbiota associ-
ated with prediabetes could be placed in context of
earlier observations related to dysglycemia. Higher tyro-
sine levels have been associated with the risk of T2D
[90]. A previous study has highlighted a higher propor-
tion of bacterial genes related to xenobiotic degradation
pathways harbored by the gut microbiome of Chinese
subjects with T2D [6]. Gut bacteria of leptin-deficient
transgenic mice with metabolic syndrome have been re-
ported to show enrichment of ascorbate and aldarate
metabolism [91]. Another interesting insight pertained
to the inferred depletion of D-glutamine and D-glutamate
metabolism, and enrichment of GABA metabolism func-
tional modules in prediabetic gut microbiota. Previous
studies in mice have indicated potential protective and
regenerative effects of GABA on the islet beta cells [54],
as well as the role of microbiota in modulating GABA
and glutamate circuits [92]. Another study reported rela-
tively higher GABA levels in subjects with T2D, and its
possible impact on cognitive abilities [93]. Our observa-
tions hint at a probable association of the gut microbiota
and GABA level modulation in early prediabetic stages.
However, understanding the effects of this modulation
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with respect to insulin production or a progression to
diabetic neuropathy requires further research.
The above observations, coupled with the results

pertaining to phenotypic data as well as levels of inflam-
matory biomarkers, indicate that the role of gut micro-
biome in the pathophysiology of prediabetes in Indian
subjects is different compared to that in Europeans.
While chronic systemic inflammation appears to be
characteristic of the Indian population in general, the
observed anti-inflammatory and protective effects in-
duced by various factors in the Indian gut microbiome
appear to play key roles in defining gut-health status and
modulating the onset and progression of diabetes.

Conclusions
In complex metabolic disorders, identifying biological
signatures at the onset of disease is crucial to reduce or
prevent the rapid progression of disease. The compos-
itional and functional potential alterations of gut micro-
biota and proinflammation observed in prediabetic
subjects in the present study is an important and signifi-
cant advancement. In fact, the importance of sub-clinical
detection of gut microbial biomarkers of obesity and
T2D has recently been emphasized by several others
[94]. Microbial abundance patterns and distinct levels of
inflammatory markers identified in this study appear as
robust sub-clinical signatures of prediabetes and may be
explored further as potential early indicators for individ-
uals at risk of dysglycemia.
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using a negative binomial Wald test. A positive log2 fold change value
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Additional file 11: Table S9. Differentially abundant OTUs between NG
and PD subjects of Danish cohort. Table S9A: Differentially abundant
OTUs between NG and PD subjects, belonging to the Danish cohort,
identified using a negative binomial Wald test. A positive log2 fold
change value indicates higher relative abundance of the OTU in PD
subjects and vice-versa. P-values were adjusted for multiple testing using
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Differentially abundant OTUs between NG and PD subjects, belonging to
the Danish cohort, identified after correcting for covariates (age, gender,

Pinna et al. Genome Medicine           (2021) 13:36 Page 16 of 20

https://doi.org/10.1186/s13073-021-00851-9
https://doi.org/10.1186/s13073-021-00851-9


waist-to-hip ratio, Systolic BP, IL6, TNFα, LBP and IAP) using a negative bi-
nomial Wald test. A positive log2 fold change value indicates higher rela-
tive abundance of the OTU in PD subjects and vice-versa. P-values were
adjusted for multiple testing using Benjamini-Hochberg correction. Sig-
nificantly (padj < 0.05) discriminating OTUs are listed in Table. The negative
bionomial Wald test results for the same OTUs from the Indian cohort are
also indicated for ease in comparison. ‘NA’ in the rightmost column indi-
cate absence (or limited abundance) of the OTU in the Indian cohort.
The complete Taxonomic Lineage of each OTU is also provided in right-
most columns.
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genera between NG and PD subjects. Table S10A: Differentially abundant
phyla between NG and PD subjects, belonging to the Indian and Danish
cohorts (pooled together), identified using a negative binomial Wald test
(corrected for geography specific cohort-effect). A positive log2 fold
change value indicates higher relative abundance of the OTU in PD sub-
jects and vice-versa. P-values were adjusted for multiple testing using
Benjamini-Hochberg correction. Table S10B: Differentially abundant family
between NG and PD subjects, belonging to the Indian and Danish co-
horts (pooled together), identified using a negative binomial Wald test
(corrected for geography specific cohort-effect). A positive log2 fold
change value indicates higher relative abundance of the OTU in PD sub-
jects and vice-versa. P-values were adjusted for multiple testing using
Benjamini-Hochberg correction. Significantly (padj < 0.05) discriminating
families are listed in Table. Table S10C: Differentially abundant genera be-
tween NG and PD subjects, belonging to the Indian and Danish cohorts
(pooled together), identified using a negative binomial Wald test (cor-
rected for geography specific cohort-effect). A positive log2 fold change
value indicates higher relative abundance of the OTU in PD subjects and
vice-versa. P-values were adjusted for multiple testing using Benjamini-
Hochberg correction. Significantly (padj < 0.05) discriminating genera are
listed in Table.

Additional file 13: Table S11. Differentially abundant KEGG pathways
(level 3) between NG and PD subjects. Differentially abundant KEGG
pathways (level 3) between NG and PD subjects, belonging to the Indian
and Danish cohorts (pooled together), identified using a negative
binomial Wald test (corrected for geography specific cohort-effect). A
positive log2 fold change value indicates higher relative abundance of
the Pathway in PD subjects and vice-versa. P-values were adjusted for
multiple testing using Benjamini-Hochberg correction (list of pathways
sorted according to padjvalues). Pathways that are differentially abundant
at a significance level of padj < 0.05 are listed.

Additional file 14: Table S12. Differentially abundant KEGG functional
modules between NG and PD subjects. Differentially abundant KEGG
functional modules between NG and PD subjects, belonging to the
Indian and Danish cohorts (pooled together), identified using a negative
binomial Wald test (corrected for geography specific cohort-effect). A
positive log2 fold change value indicates higher relative abundance of
the module in PD subjects and vice-versa. P-values were adjusted for
multiple testing using Benjamini-Hochberg method (list of modules
sorted according to padj values). Top 15 differentially abundant modules
are listed.

Additional file 15: Table S13. Differentially abundant KEGG functional
modules between NG and PD subjects belonging to (S13A) Denmark and
(S13B) India. Differentially abundant KEGG functional modules between
NG and PD subjects belonging to (S13A) Denmark and (S13B) India,
identified using negative binomial Wald tests. A positive log2 fold
change value indicates higher relative abundance of the module in PD
subjects in the respective geography and vice-versa. P-values were ad-
justed for multiple testing using Benjamini-Hochberg method (list of
modules sorted according to padjvalues). Modules that are differentially
abundant at a significance level of padj < 0.05 are listed.

Additional file 16: Table S14. Correlations between Discriminating OTUs
and phenotypic traits includingbiochemical and inflammatory markers.
Table S14A: Spearman correlations between discriminating OTUs and
phenotypic traits including biochemical and inflammatory markers in the
Indian cohort. Correlation values between each discriminating OTU
against different biochemical and inflammatory markers were also
corrected for multiple testing using Benjamini-Hochberg (BH) correction.

P < 0.05 are listed and padj ≤ 0.05 are highlighted in red. Table S14B:
Spearman correlations between discriminating OTUs and phenotypic
traits including biochemical and inflammatory markers in the Danishco-
hort.Correlation values between eachdiscriminating OTU against different
biochemical and inflammatory markers were also corrected for multiple
testing using Benjamini-Hochberg (BH) correction. P < 0.05 are listed and
padj ≤ 0.05 are highlighted in red.

Additional file 17: Table S15. Features selected for Random Forest
classifier. 76 OTUs obtained during feature selection step while building
random forest classifier for identifying PD samples. Features (OTUs), along
with their Gini importance score and effect on performance of RF model
in terms of ‘mean decrease in accuracy’ during cross validation step is
provided.
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