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METHODOLOGY

XL‑DNase‑seq: improved footprinting 
of dynamic transcription factors
Kyu‑Seon Oh1†, Jisu Ha1†, Songjoon Baek2 and Myong‑Hee Sung1* 

Abstract 

Background:  As the cost of high-throughput sequencing technologies decreases, genome-wide chromatin acces‑
sibility profiling methods such as the assay of transposase-accessible chromatin using sequencing (ATAC-seq) 
are employed widely, with data accumulating at an unprecedented rate. However, accurate inference of protein 
occupancy requires higher-resolution footprinting analysis where major hurdles exist, including the sequence bias 
of nucleases and the short-lived chromatin binding of many transcription factors (TFs) with consequent lack of 
footprints.

Results:  Here we introduce an assay termed cross-link (XL)-DNase-seq, designed to capture chromatin interactions of 
dynamic TFs. Mild cross-linking improved the detection of DNase-based footprints of dynamic TFs but interfered with 
ATAC-based footprinting of the same TFs.

Conclusions:  XL-DNase-seq may help extract novel gene regulatory circuits involving previously undetectable TFs. 
The DNase-seq and ATAC-seq data generated in our systematic comparison of various cross-linking conditions also 
represent an unprecedented-scale resource derived from activated mouse macrophage-like cells which share many 
features of inflammatory macrophages.
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Epigenomics, Genomic footprinting, DNase-seq, ATAC-seq, Computational genomics, Transcription factor binding 
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Introduction
Understanding of tissue-specific transcriptional regu-
lome requires the knowledge about DNA sequence-
specific chromatin interactions of transcription factors 
which are active in the given cell context. ChIP-seq has 
been widely adopted and currently the most common 
method of profiling the regulatory landscape of a tran-
scription factor [16]. Related methods include ChIP-exo, 
ChIP-nexus, ChIA-PET, and HiChIP [7, 10, 21, 30]. How-
ever, numerous issues preclude their use in a systematic 
manner for a given cell type. Many in vivo cell subsets of 
interest or patient samples come with a limited number 

of cells, whereas typical ChIP protocols require 1–20 mil-
lion cells. Sonication and immunoprecipitation with anti-
bodies also need to be optimized and validated for each 
application of ChIP, and chromatin from different cell 
types often call for reoptimization of these steps. While 
ChIP-exo and ChIP-nexus were developed to produce 
precise locations of TF binding sites [10, 30], commonly 
used ChIP-seq methods can only localize TF binding sites 
with about 200 bp resolution. Another caveat with ChIP-
based methods is that the antibody often recognizes one 
subunit of multi-protein complexes. For example, many 
TFs exist as heterodimers: AP-1 as c-Jun:c-Fos, NF-κB as 
RelA:p50; or homodimers: p50:p50, STAT1:STAT1. Since 
many of the subunits switch their partners in different 
cellular contexts, detecting one subunit does not distin-
guish which specific dimer species may occupy the site. 
Perhaps the most serious problems may arise from batch-
to-batch variability of ChIP-seq, reflecting technical and 
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biological variability from several sources including those 
mentioned above.

Genomic TF footprinting, an alternate method for 
identifying occupancy of a large number of TFs in one 
DNase-seq or ATAC-seq sample, had the potential to 
circumvent many of these issues with ChIP-based assays 
[4, 11, 23]. Chromatin accessibility assays rely on the 
ability of DNA-acting enzymes to distinguish protected 
sites from accessible sites in the chromatin regard-
less of their specific DNA sequence content. Although 
these methods robustly identify cell state-specific regu-
latory regions which are 150 bps or larger, footprint-
ing efforts to infer transcription factor (TF) occupancy 
from nucleotide-level DNase cut count (or transposase 
insertion count in case of ATAC-seq) profiles face differ-
ent challenges. Generating cut/insertion count data for 
footprinting of a large-size genome requires ultra-deep 
sequencing of DNase-seq/ATAC-seq libraries. Never-
theless, the improvement in sequencing technology and 
the decreasing cost have made genomic TF footprinting 
feasible for many laboratories with proper computational 
resources and expertise.

However, serious limitations have dampened early 
enthusiasms for using the chromatin accessibility analysis 
methods to identify TF occupancy in an unbiased high-
throughput manner. First, the enzymes used to probe 
chromatin (DNase I and Tn5) in these assays were found 
to have non-negligible DNA sequence preferences for 
their reaction, which complicates the assumption that 
these nucleases non-specifically sample accessible nucle-
otides [9, 17, 34]. To address this issue, computational 
algorithms have been developed to take such sequence 
biases into account when putative footprints are called [1, 
8, 26, 34]. Increasing the depth of sequencing can further 
mitigate this artifact, for example, with a more accurate 
adjustment for the enzyme-inherent sequence prefer-
ences directly from the data [9, 34].

Another problem with genomic TF footprinting 
was the lack of sufficient protection of DNA from TFs 
whose chromatin binding is short-lived (referred to as 
“dynamic TFs” in this study) [9, 33, 34]. Independent live 
cell microscopy analyses and cross-linking analysis have 
established that such TFs have high exchange rates or 
show short chromatin residence times, which together 
suggest short-lived interactions of these TFs with target 

DNA in chromatin (see [33] for a compilation of rel-
evant data). This is an independent and major hurdle, 
since it violates the basis for inferring protein occupancy 
through stable binding of TFs to their cognate motif ele-
ments. Consequently, little or no footprints are detect-
able from dynamic TFs in the cut or insertion count 
profiles. No solution has been proposed to address the 
difficulty of detecting significant footprints from such 
TFs. Correcting for the nuclease sequence biases pro-
duces a marginal increase in the accuracy of TF binding 
predictions [33, 34]. Here, we aimed to improve existing 
TF footprinting protocols by introducing a cross-linking 
step to capture highly dynamic interactions of TFs with 
target DNA elements in chromatin [27] (Fig.  1a). We 
asked whether there is an optimal cross-linking proce-
dure which preserves and enhances the footprint depths 
of most TFs. We present a new footprinting protocol, 
termed XL(cross-link)-DNase-seq, with a mild formal-
dehyde cross-linking procedure that can easily be incor-
porated prior to the steps in the conventional DNase-seq 
protocols.

Results
Mild cross‑linking prior to DNase‑seq preserves chromatin 
accessibility and generates differential footprints
We sought to systematically assess the effects of vari-
ous cross-linking procedures on the genomic footprints 
of dynamic TFs in the same chromatin material. For a 
fixed source of chromatin, we chose a cell state in which 
numerous TFs are directly interacting with chromatin in 
a cascade of gene regulatory actions. Since the chroma-
tin sample is prepared from a cell population containing 
snapshots of these dynamic interactions, we reasoned 
that this would be a rich platform to assess changes in 
footprint depths of many TFs simultaneously. To this 
end, immortalized mouse macrophage-like RAW264.7 
cells were used, where many dynamic TFs, including 
NF-κB and AP-1, are activated in response to bacterial 
products such as lipopolysaccharide (LPS). This cell con-
text allows a large number of TFs occupying the chroma-
tin, thereby providing an ideal platform for assessing TF 
footprint characteristics. We chose this cell system also 
because of the rich information about TF regulatory net-
works that the new data will help uncover in a physiologi-
cally important innate immune cell type. RAW264.7 cells 

Fig. 1  XL-DNase-seq is designed to capture short-lived binding of TFs and preserve chromatin accessibility profiles. a Rationale for introducing a 
cross-linking step prior to digestion by DNase I. b Near-identical DNase-seq density profiles across cross-linking conditions. XL-DNase-seq preserves 
the chromatin accessibility profile as observed by the native DNase-seq. The genome browser shot of the Rel locus shows DNase-seq signal tracks 
from all cross-linking conditions. c Fragment density normalized to 10 million mapped reads. Genome-wide comparison of DNase-seq fragment 
density profiles across the cross-linking conditions. d A browser shot of cross-linked raw cut count tracks. The top track shows the locations of TF 
binding motif elements obtained by FIMO. Reference genome: mm9. See also Additional file 2: Fig. S1

(See figure on next page.)
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have chromatin profiles which are similar to those of pri-
mary macrophages (data not shown) [24], which allows 
for the discovery of functionally relevant gene regulatory 
mechanisms [13, 18, 19, 35].

With the same chromatin material from LPS-stimu-
lated RAW264.7, we varied the duration and the con-
centration of the cross-linking agent formaldehyde to 
determine the cross-linking parameters which may affect 
footprinting characteristics of dynamic TFs (Fig.  1). 
Based on previous reports on the dominant effect of 
cross-linking duration over concentration, we focused 
on varying the duration of formaldehyde cross-linking. 
A lower formaldehyde concentration of 0.1% was probed 
with various cross-linking durations, because a cross-
linking kinetics study [27] and our pilot study indicated 
that 1% is a saturating concentration for cross-linking 
and may potentially interfere with nuclease reactions.

We have performed the modified DNase-seq, termed 
cross-link (XL)-DNase-seq and generated a panel of 
sequencing libraries. The enrichment, complexity, and 
quality of each library were confirmed, and all the librar-
ies were subject to ultra-deep paired-end read sequenc-
ing (Additional file 1: Table S1). We first verified that the 
chromatin accessibility profile is generated independently 
of the mild cross-linking procedure, as observed by the 
reproducibility of DNase-seq fragment density across 
samples from various cross-linking conditions (Fig. 1b, c). 
This was an important first checkpoint, because excessive 
cross-linking may induce capture of too many non-spe-
cific factors onto the chromatin [2] and hinder sampling 
of chromatin by the nuclease (DNase). Generation of 
a DNase-seq peak relies on the ability of the enzyme to 
access the hypersensitive site preferentially relative to the 
flanking region. Our cross-linking procedure was likely 
mild enough to allow sufficiently differential sampling of 
chromatin which is reflected in the well-preserved acces-
sibility profiles (Fig. 1b, c).

The total number of putative footprints depended on 
the cross-linking procedure (Figs. 1d, 2a). While the exact 
numbers of detected footprints differ between results 
from the different methods of correcting the DNase bias 
(dimers, tetramers, etc.), the rank order of various cross-
linking samples was invariant. 0.1% 30  s XL-DNase-seq 
footprints produced the largest set of footprints, while 
the native DNase-seq produced the least number of foot-
prints in both sets of biological replicates. Cross-linking 
generally preserved the footprints observed in native 
DNase-seq, and revealed additional footprints (Addi-
tional file  2: Fig. S2A). Since the number of footprints 
may change as a net result of detecting and missing true 
footprints, more insight can be obtained from examin-
ing specific TF footprints against a set of known bind-
ing sites. Because it is difficult to assign most footprints 

to specific TFs purely based on DNA sequence motifs 
[33], subsequent analyses focused on well-characterized 
TF motifs and footprints at genomic sites of their occur-
rences. Not only did the various XL-DNase-seq samples 
generate different numbers of footprints, but the foot-
print strengths and detectability also depended on the 
cross-linking procedure (Fig.  2b, Additional file  2: Fig. 
S2).

XL‑DNase‑seq captures more TF footprints with improved 
accuracy
We analyzed the effects of cross-linking on footprint-
ing of NF-κB/RelA, a TF which is known to have short 
DNA binding residence time over cognate DNA ele-
ments [3]. We assessed its footprint depths at individual 
κB motif sites across open chromatin in LPS-activated 
macrophages, using cell state-matching RelA ChIP-seq 
peaks as gold standard for TF binding. Receiver Operator 
Characteristic (ROC) analysis was performed to quan-
tify the predictability of putative footprints from each 
cross-link-DNase-seq cut count data (Fig. 3a). Statistical 
comparison of the ROC curves revealed that NF-κB foot-
prints obtained from 0.1% formaldehyde 30 s cross-link-
ing (green curve) were more predictive of actual NF-κB 
binding in comparison to the footprints from the native 
DNase-seq protocol (Fig. 3b, left). This improvement was 
not apparent when assessed by the aggregate cut count 
profiles (Additional file 2: Fig. S3), underscoring the need 
to evaluate individual sites rather than average signals 
over heterogeneous sites [8, 29]. 1% Formaldehyde 30  s 
cross-linking (purple curve) negatively affected binding 
predictions. Interestingly, when we examined another 
TF Ikaros (which lacks microscopy data on DNA bind-
ing residence times), all XL-DNase-seq, but the 1% for-
maldehyde sample showed improved predictions over 
the native DNase-seq (Fig. 3b, right). While the observed 
improvement in accuracy seems small in the ROC 
plots, it is based on gaining several thousands of accu-
rately predicted binding sites among 104–105 motif sites 
found within open chromatin, therefore a substantial 
improvement.

In all the ROC analyses, adjusting for the sequence bias 
of DNase cleavage did not improve the auROC values 
or change the overall results (Additional file  2: Fig. S4). 
Some studies have reported improvement of TF binding 
prediction from correcting the sequence bias of DNase 
[8], while others observed no improvement [14, 34]. The 
discrepant results arise probably because these stud-
ies used different computational detection methods to 
call putative footprints. Some detection methods rely on 
bias-prone cleavage signatures (shape of cut count pro-
file) and may see significant improvement after remov-
ing the sequence bias. Our method DNase2TF does not 
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use the cleavage signatures directly in detecting putative 
footprints, and therefore may have no further improve-
ment from bias correction.

XL‑ATAC‑seq does not improve TF footprinting over native 
ATAC‑seq
Since the widely used ATAC-seq can also generate high-
resolution footprinting data [4], we examined whether 
cross-linking can have similar effects as described above 
for DNase-seq. While the effect of short DNA bind-
ing residence times was shown in DNase-seq data, it is 
likely to produce similar problems for ATAC-seq. This is 
because dynamic TFs allow relatively long durations of 
dissociation from target DNA which would then be vul-
nerable to enzymatic attacks. We generated a panel of 
ATAC-seq libraries from mild formaldehyde cross-link-
ing (XL-ATAC-seq) using the same biological material, 

LPS-activated RAW264.7 cells (Fig.  4a). Again, we first 
compared the ATAC-seq fragment density profiles 
obtained from all the XL-ATAC-seq samples and con-
firmed that the introduction of a cross-linking step does 
not negatively affect assaying chromatin accessibility, 
with only a slight reduction in signal intensity from the 
samples cross-linked with 1% formaldehyde (Additional 
file 2: Fig. S5A). However, unlike XL-DNase-seq, analysis 
of the insertion count data revealed that the largest num-
ber of putative footprints was detected from the native 
ATAC-seq samples, and the numbers declined with the 
duration and concentration of formaldehyde used for 
cross-linking (Fig. 4b). This pattern is observed regardless 
of whether we adjusted for the DNA sequence bias of the 
transposase Tn5 (used in ATAC-seq). Similarly to XL-
DNase-seq, aggregate insertion count analyses did not 
reveal gross differences in footprint depth (Additional 

 0

 10,000,000

 12,000,000

 14,000,000

N
um

be
r o

f f
oo

tp
rin

ts
No crosslinking
Form 0.1% 30s
Form 0.1% 2m
Form 0.1% 5m
Form 0.1% 10m
Form 1% 30s

Rep1 Rep2 Rep1 Rep2 Rep1 Rep2 Rep1 Rep2

Unadjusted Dimer-adjusted Tetramer-adjusted Hexamer-adjusted

a

b

−1
0

−4
−1

0
−4

−1
0

−4

−10 −4 −10 −4 −10 −4

No crosslinking

Form 0.1% 30sec

Form 0.1% 2min

Form 0.1% 5min

Form 0.1% 10min

Form 1% 30sec

CTCF footprint z score
(tetramer-adjusted)

Fig. 2  Total number of detected footprints across the cross-linking conditions. a Total number of FDR 1% putative footprints called by DNase2TF 
was averaged over five rounds of subsampling. Subsampling of reads was performed to keep the number of uniquely mapped reads the same 
across conditions for fair comparison (see “Methods”). b Footprint z score comparison across the conditions at CTCF motif sites in open chromatin. 
See also Additional file 2: Fig. S2



Page 6 of 12Oh et al. Epigenetics & Chromatin           (2019) 12:30 

file 2: Fig. S6A), and footprint detectability and strength 
varied across XL-ATAC-seq samples (Additional file  2: 
Fig. S6B).

To gain a more detailed insight, we performed an ROC 
analysis for NF-κB/RelA and Ikaros with XL-ATAC-seq 
footprints, in the same manner as for XL-DNase-seq 
footprints. The prediction accuracy, as indicated by the 
shape of ROC curves and quantified by auROCs, gen-
erally declined with the duration and concentration of 

formaldehyde (Fig. 4a, Additional file 2: Fig. S6C). Puta-
tive footprints detected in the native ATAC-seq data (red 
curves) produced the most accurate predictions of NF-κB 
and Ikaros binding to their cognate motif elements in 
open chromatin. The best-performing ATAC-seq (native) 
nevertheless had lower auROC values compared to the 
XL-DNase-seq data (Additional file 2: Fig. S7A). Consist-
ent with this observation, several studies indicated that 
TF footprinting based on ATAC-seq performs poorly in 
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comparison to DNase-seq [15, 28, 29]. The cross-linking-
dependent pattern of poor predictions from XL-ATAC-
seq footprints was highly reproducible in technical and 
biological replicates. These results indicate that even the 
mild cross-linking conditions may interfere with the abil-
ity of Tn5 to sample the nucleotide base pairs with high 
insertion efficiency.

We chose ROC as our main measure of comparison, 
because of its wide usage for evaluating predictions 
from footprints and the simple representation of a ran-
dom baseline as the diagonal. Another measure, preci-
sion-recall (PR) curves may also be useful especially for 
unbalanced binary outcome data. The PR curves gener-
ally preserved the top-performing samples (0.1% 30  s 
XL-DNase-seq among DNase samples and native among 
ATAC-seq samples), with the intermediate rankings var-
ying somewhat over different recall ranges (Additional 
file 2: Fig. S7B).

Construction of TF regulatory networks and reproducibility
An ultimate goal of TF footprinting is to discover novel 
mechanisms in TF regulatory networks. A large-scale 
study in constructing such networks solely based on 
TF footprints and TF binding motif databases revealed 
intriguing findings [22, 32], but lack of footprints for 
many TFs and other technical issues raised questions 
about the significance of such efforts [8, 9, 33, 34]. Given 
the remaining technical challenges (including assign-
ment of TF identity to motifs), we chose a conservative 
approach aiming to construct higher-confidence TF reg-
ulatory networks. To this end, we generated TF regula-
tory networks using stringent criteria on TF motifs and 
footprint detection thresholds. We also focused only on a 
select set of TFs for footprinting and limited the analysis 
on TF-encoding genes which have footprints of the select 
TFs. Each TF network was constructed by compiling 
putative regulatory edges (Fig. 5a, A → B, i.e., TF A regu-
lates TF B). A regulatory edge indicates that one or more 
footprints of A were detected within 5 kb of transcription 
start site of B, from the given XL-DNase-seq sample.

Comparison of six TF networks from the cross-linking 
conditions revealed a substantial set of shared regulatory 
edges (Fig. 5b, Additional file 2: Fig. S8). Such reproduc-
ibility in regulatory relationships was surprising, given 
the variability observed in the footprint Z score profiles 
and the differential detectability of footprints across the 
XL-DNase-seq samples (Fig. 3, Additional file 2: Fig. S2). 
A closer look provided a reason for this robust consen-
sus among the independently constructed TF networks: 
a shared edge is often supported by multiple redun-
dant footprints and detection of at least one is sufficient 
for reproducing the edge in a network derived from a 
given XL-DNase-seq sample. For example, we found 

reproducible regulatory connections from PU.1 to many 
macrophage/immune-relevant genes: Ncoa3 (a.k.a. Src-
3, involved in defense against bacteria) [5], Hcst (a.k.a. 
DAP10, which induces osteoclastogenic signaling in mye-
loid cells) [12], Atrx (a heterochromatin silencer), Mier1 
(a HDAC-binding transcriptional corepressor), Arid1a 
(a.k.a. BAF250a, a component of SWI/SNF). In addi-
tion, well-known regulatory targets of RelA/NF-κB such 
as Nfkbia (a negative feedback gene), Rel (an immune-
specific subunit of NF-κB), and Nfkb2 (an alternative 
dimer subunit of NF-κB) were robustly detected. RelA 
was also a putative regulator of Tfe3 (involved in mac-
rophage autophagy and cytokine response, also detected 
as a putative target of PU.1 in multiple networks) [25] 
and Tal2 (a known target of PU.1) [6]. These regulatory 
connections were based on footprints detectable in both 
native and XL-DNase-seq data.

For an overall comparison of all the TF networks con-
structed separately, we generated a pairwise similarity 
matrix and found that XL-DNase-seq-derived networks 
have a stronger consensus, i.e., more regulatory edges 
were repeatedly detected in multiple cross-linking con-
ditions, than XL-ATAC-seq-derived networks (Fig.  6). 
Despite the lower consensus among XL-ATAC-seq-
derived networks, XL-ATAC-seq networks were still 
more similar to each other than to TF networks derived 
from XL-DNase-seq (Fig.  6, lower right square block). 
Notably, there were recurrent regulatory edges that are 
reproduced in multiple cross-linking conditions and even 
between DNase-seq and ATAC-seq protocols, which 
probably represent highest-confidence TF regulatory 
events.

Importantly, networks derived from footprints in 
cross-linked samples had more uniquely detected edges 
(Fig. 5b, black edges) than that from the native DNase-seq 
(Additional file  2: Fig. S8, black edges), suggesting that 
cross-linking helps capture novel binding events. Among 
the connections identified as novel regulatory relation-
ships were: Tln1 (a.k.a. Talin, involved in mechanical 
responses and EMT) has a Nfkb1 footprint only from 
XL-DNase. Nfkbie, a known target of NF-κB in a negative 
feedback loop, has RelA footprint only from XL-DNase. 
Etv3, induced during macrophage differentiation [31] 
had RelA and Nfkb1 footprints only in XL-DNase. We 
note that Tln1, Nfkbie, and Etv3 are all likely direct tar-
gets of NF-κB/RelA because their transcripts are imme-
diately induced by LPS treatment in macrophages [24]. 
Gene ontology analysis indicated that shared as well as 
distinct functional categories were enriched among the 
genes found in newly detected regulatory relationships 
(Additional file 2: Fig. S9). These results suggest that TF 
regulatory networks constructed from XL-DNase-seq 
contain both robust regulatory relationships and novel 
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network wiring involving dynamic TFs whose footprints 
are missed in native DNase-seq.

Discussion
Here we present a systematic comparison, designed 
to investigate whether introduction of a mild cross-
linking step helps capture footprints of dynamic TFs in 
DNase-seq and ATAC-seq data. We generated techni-
cal replicates and biological replicates of LPS-activated 
macrophage cell line, reaching an unprecedented repli-
cate sampling and sequencing depths. Cumulative read 
number from all DNase-seq and ATAC-seq replicates 
are 7.5 billion reads and 5.8 billion reads, respectively. 
Statistically significant prediction improvement was 
achieved in XL-DNase-seq, but cross-linking did not 

produce an improvement for ATAC-seq. These diver-
gent outcomes may be related to the different enzy-
matic reactions employed by DNase and Tn5 and their 
differential efficiency in attacking cross-linked chro-
matin. ATAC-seq has been reported to produce TF 
footprints with lower binding prediction accuracy in 
comparison with DNase-seq by several groups using 
different datasets [15, 28, 29], except for one recently 
published study [20]. It will be interesting to re-assess 
ATAC-seq footprinting with the newly introduced 
computational approach [20]. Finally, the numerous 
replicates allowed us to examine reproducible features 
of TF footprinting, not only at the level of aggregate 
signals, but also at the level of individual footprints and 
resulting TF regulatory network wiring.
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For a higher-confidence evaluation result, we have 
focused our analysis on a set of dynamic TFs with well-
characterized sequence motifs and available ChIP-seq 
data in the same cell type. We found that the use of ChIP-
seq from matching cell states is important, as the predic-
tion accuracy was decreased when ChIP-seq was taken 
from a different time point in a stimulation time course 
even with the same cell type (data not shown). This and 
other pitfalls known to affect footprinting analysis [33] 
suggest that a definitive result cannot be obtained for a 
large number of TFs due to their uncertain motifs and 
limited (cell state-matching) ChIP-seq data among public 
databases. Therefore, we could not rely on a large-scale 
analysis involving hundreds of TF motifs in our attempt 
to accurately assess the effects of cross-linking proce-
dures on dynamic TFs.

Previous studies have pinpointed nuclear receptors, 
such as GR and ER, as a special class of TFs because their 
chromatin binding produces “anti-footprints”, i.e., a slight 
enhancement of (instead of protection from) cleavage at 
the binding motif elements [8, 9, 34]. It would be inter-
esting to perform our analysis using cells with ligand-
activated nuclear receptors and to determine whether 
cross-linking enhances the depth of their footprints. 
However, because of the largely one-to-one relation-
ship between ligands and nuclear receptors, a separate 
chromatin sample must be prepared for each nuclear 
receptor, making analyses of multiple nuclear recep-
tors prohibitively expensive. Even though we could not 
address nuclear receptors with our cell system, these 
dynamic TFs may also benefit from a carefully chosen 
cross-linking procedure, given that they can be efficiently 
immobilized onto chromatin by formaldehyde in primary 
immune cells [36].

We have focused on interrogating cross-linking dura-
tion to identify an optimal cross-linking condition, 
because a previous study of cross-linking kinetics found 
that TF occupancy, observed by ChIP, largely depends 
on the cross-linking duration but is rather insensitive to 
the formaldehyde concentration [27]. Hence, it is some-
what surprising that we did not observe a clearly best-
performing cross-linking duration which seems optimal 
for the TFs examined in our cross-link-DNase-seq analy-
sis, in so far as the formaldehyde concentration is not too 
high. On the other hand, this result may make the assay 
more straightforward for other investigators to imple-
ment, because they may not need to reoptimize the dura-
tion of the 0.1% formaldehyde cross-linking for their 
cell types and TFs of interest. Improved footprinting of 
dynamic TFs with cross-link-DNase-seq, together with 
ever-decreasing cost of sequencing, will facilitate efforts 
to discover novel TF regulatory mechanisms without the 
need to pre-select targeting antibodies.

We have determined the effects of various cross-
linking protocols on TF binding predictions based on 
footprints in XL-ATAC-seq or XL-DNase-seq data, in 
quantitative and objective terms. We demonstrate that 
XL-DNase-seq improves footprintability of certain TFs, 
while the same analysis revealed that XL-ATAC-seq 
fails to enhance footprinting, compared to the native 
protocol. These findings will critically inform investi-
gators as they utilize the methodologies. For example, 
while ATAC-seq is widely popular due to its simplicity 
and small-scale cell yields required for the assay, XL-
DNase-seq may offer unique advantages if the study 
calls for higher-resolution occupancy information of 
TFs. In addition, our dataset represents an unprece-
dented-scale resource for the epigenetics and immu-
nology communities.
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