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Abstract 

Background  West Nile virus (WNV) is the leading cause of mosquito-borne illness in the continental USA. WNV 
occurrence has high spatiotemporal variation, and current approaches to targeted control of the virus are limited, 
making forecasting a public health priority. However, little research has been done to compare strengths and weak‑
nesses of WNV disease forecasting approaches on the national scale. We used forecasts submitted to the 2020 WNV 
Forecasting Challenge, an open challenge organized by the Centers for Disease Control and Prevention, to assess the 
status of WNV neuroinvasive disease (WNND) prediction and identify avenues for improvement.

Methods  We performed a multi-model comparative assessment of probabilistic forecasts submitted by 15 teams for 
annual WNND cases in US counties for 2020 and assessed forecast accuracy, calibration, and discriminatory power. 
In the evaluation, we included forecasts produced by comparison models of varying complexity as benchmarks of 
forecast performance. We also used regression analysis to identify modeling approaches and contextual factors that 
were associated with forecast skill.

Results  Simple models based on historical WNND cases generally scored better than more complex models and 
combined higher discriminatory power with better calibration of uncertainty. Forecast skill improved across updated 
forecast submissions submitted during the 2020 season. Among models using additional data, inclusion of climate or 
human demographic data was associated with higher skill, while inclusion of mosquito or land use data was associ‑
ated with lower skill. We also identified population size, extreme minimum winter temperature, and interannual varia‑
tion in WNND cases as county-level characteristics associated with variation in forecast skill.

Conclusions  Historical WNND cases were strong predictors of future cases with minimal increase in skill achieved by 
models that included other factors. Although opportunities might exist to specifically improve predictions for areas 
with large populations and low or high winter temperatures, areas with high case-count variability are intrinsically 
more difficult to predict. Also, the prediction of outbreaks, which are outliers relative to typical case numbers, remains 
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difficult. Further improvements to prediction could be obtained with improved calibration of forecast uncertainty and 
access to real-time data streams (e.g. current weather and preliminary human cases).

Keywords  Calibration, Discriminatory power, Forecasting, Logarithmic score, Multi-model assessment, West Nile 
virus, West Nile neuroinvasive disease, United States

Background
West Nile virus (WNV; Flaviviridae, Flavivirus) is the 
leading cause of mosquito-borne illness in the continen-
tal USA [1]. Symptomatic infections typically present 
as a febrile illness (approximately 20% of all infections). 
However, < 1% of all infections result in West Nile neu-
roinvasive disease (WNND) with manifestations includ-
ing meningitis, encephalitis, or acute flaccid paralysis 
[2]. WNV was first detected in the US in 1999 [3] and by 
2004, had spread across the contiguous US and up the 
Pacific coast [4]. From 1999 to 2020, the Centers for Dis-
ease Control and Prevention (CDC) reported a total of 
26,683 non-neuroinvasive WNV disease cases and 25,849 
WNND cases, resulting in 2456 deaths [5]. Since WNV 
became endemic (2005–2020), a median of 409 (range 
167–693; 5–22%) of the 3108 counties in the contigu-
ous US report WNND cases each year. WNV exhibits 
marked seasonality with most cases reported between 
July and October nationwide [5]. Even in counties that 
regularly report WNND cases, the number and location 
of WNND cases vary. For example, reported WNND 
cases per county can range from singles to a few dozen or 
50 with 239 cases reported in the largest outbreak during 
this time [6]. Large spatial and temporal heterogeneity in 
annual WNND cases makes accurate prediction of inci-
dence both challenging and potentially valuable to guide 
prevention and control efforts.

The ecology of WNV is complex and spatially vari-
able across the US. The virus is maintained in an enzo-
otic cycle between birds (predominantly passerines) and 
Culex mosquitoes [7–9], but can cause disease in horses 
and humans, which are dead-end hosts [10]. The vec-
tors for WNV vary geographically [9]. In the east-cen-
tral region (Northeast, mid-Atlantic, and central US), 
Cx. pipiens and Cx. restuans have been incriminated as 
the primary vectors with Cx. salinarius also playing an 
important role in maintenance and zoonotic transmis-
sion in coastal areas. In the southeast, Cx. quinquefascia-
tus has been implicated as the primary vector with Cx. 
salinarius and Cx. nigripalpus also capable of causing 
human disease. In western North America, Cx. tarsalis 
is largely responsible for zoonotic transmission, espe-
cially in more rural areas, while Cx. pipiens serves as 
the enzootic vector in urban areas in the more northern 
parts of the western US (northern Great Plains, Rocky 

Mountains, and Pacific Northwest). In urban areas of 
the southwestern US, Cx. quinquefasciatus can act as the 
dominant zoonotic vector. Other Culex mosquito spe-
cies can have a secondary or localized importance in this 
region.

Meteorological factors like temperature and precipi-
tation have a large impact on the transmission of WNV. 
Temperature influences mosquito survival and potential 
WNV transmission rates [11]. As temperatures warm, 
mosquito development and biting rates accelerate [11, 
12]. Additionally, with increasing temperature, the 
extrinsic incubation period for WNV decreases as viral 
replication rates increase [13–16]. Thus, with increasing 
temperature above the thermal minimum for mosquito 
survival and WNV replication [15, 17], viral transmis-
sion and risk of zoonotic transmission increase. However, 
there is a thermal optimum (23.9–25.2  °C [18]) above 
which transmission generally decreases because of nega-
tive impacts on mosquito survival and other traits. Vari-
ation in the interaction of climatic and landscape factors 
contributes to seasonal dynamics and spatial variation 
in the effect of temperature [9, 19]. Increased precipita-
tion generally increases the quantity of available larval 
habitat [20–22], but intense precipitation events can 
wash out immature mosquitoes from larval habitat such 
as catch basins [23]. The impact of precipitation varies 
broadly across the US with a positive association between 
increased precipitation and above average human cases 
in the western US, but a negative association in the east-
ern US. This difference is potentially due to difference in 
the mosquito species, their preferred egg-laying habitats, 
and other environmental factors present in each area [9, 
19, 22]; in the West, increased precipitation likely leads 
to increased Cx. tarsalis larval habitats, while in the East, 
increased precipitation may wash out Cx. pipiens larval 
habitats. Also, drought has been associated with WNV 
amplification and increased human cases, partially due 
to aggregation of hosts and vectors at dwindling water 
sources [24, 25].

Statistical and mechanistic models have been devel-
oped to predict geographic or temporal dynamics of 
WNV transmission [26, 27]. These models included 
some subset of the following grouping of variables: his-
torical human cases, veterinary cases, climate, hydrol-
ogy, human demographics, land use, viral genetics, 
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mosquito surveillance, sentinel surveillance, and avian 
population dynamics. Models generally produce esti-
mates on a single spatial and temporal scale aimed at 
guiding public health decisions or elucidating factors 
that enable increased transmission. Models developed 
for prediction in one location often fail to perform well 
if applied to a different location because of variation 
in factors like ecology, primary mosquito species, and 
human behavior as well as availability of predictor data, 
such as mosquito surveillance data [28]. Out-of-sample 
validation is often used to assess model performance, 
but no multi-model comparative assessment has been 
performed to assess the strengths and weaknesses of 
predictive WNV modeling at the local or national scale.

To systematically evaluate WNND prediction across 
the continental US, the CDC Epidemic Predictive Initi-
ative and the Council for State and Territorial Epidemi-
ologists launched an open West Nile virus Forecasting 
Challenge in 2020. The primary objective of the Chal-
lenge was to predict the total number of WNND cases 
for each county in the contiguous US that would be 
reported to the national surveillance system for arbo-
viral diseases, ArboNET, during the 2020 calendar 
year. In our evaluation of the Challenge, we (i) assessed 
whether some models had better predictive perfor-
mance than others, (ii) identified modeling approaches 
associated with better prediction, and (iii) evaluated 
contextual factors of the counties (e.g. environmental, 
climatic, and historical WNV patterns) associated with 
variation in forecast skill.

Methods
Team participation
An announcement recruiting team participation in the 
2020 WNV Forecasting Challenge was circulated widely 
by the CDC Epidemic Prediction Initiative through 
emails and postings on webpages starting in March 2020. 
Teams using any modeling approach were encouraged to 
participate.

Participating teams signed a data use agreement and 
were provided with annual WNND case counts by county 
for the contiguous US and Washington DC during 2000–
2018 from ArboNET, the national arboviral diseases sur-
veillance system administered by the CDC. Provisional 
2019 case data were provided to participants in early May 
2020. Participants were allowed to use any other data 
source, like climate, weather, land use, mosquito sur-
veillance, and human demographics, at whatever spatial 
and temporal scaled they deemed appropriate to develop 
their modeling approach. See Additional file  1: Text S1 
for details on modeling methodologies and datasets used 
by each team.

Forecasting target
Teams predicted the total number of probable and con-
firmed WNND cases that would be reported to ArboNET 
for all counties (n = 3108) in the contiguous US and 
Washington DC during 2020. WNND cases were chosen 
as the outcome because the severe manifestations of the 
disease are more likely to be consistently recognized and 
reported compared with less severe, non-neuroinvasive 
WNV disease cases [29].

For each county, a forecast included both a point esti-
mate and a binned probability distribution. The point 
estimate denoted the most likely number of cases. Fif-
teen bins were chosen to cover the range of cases from 
0 to > 200, reflecting a typical range of observed cases 
across counties, with finer resolution for smaller num-
bers of expected cases given the relatively few cases 
reported in the majority of counties (i.e. bins for 0, 1–5, 
6–10, …, 46–50, 51–100, 101–150, 151–200, > 200 cases). 
These bins provide meaningful information for location-
specific public health action given that, on average, 0.38 
WNND cases per county are reported each year (on aver-
age, 88% of counties report zero cases, 11.5% report 1–10 
cases, and 0.4% report 11–50 cases with yearly county 
maximums ranging from 18–239 cases, 2005–2020) [6]. 
Teams assigned a probability between 0 and 1 to each 
bin, with a total probability equal to 1.0 across all bins per 
county.

Forecasts
The initial forecast due date was April 30, 2020, with sub-
mission to an online system (https://​predi​ct.​cdc.​gov). 
Additional, optional, updated submissions could be sub-
mitted by the following deadlines: May 31, June 30, and 
July 31, 2020. Further details are available through the 
project’s GitHub repository (https://​github.​com/​cdcepi/​
WNV-​forec​ast-​proje​ct-​2020).

Concurrently, we developed four additional models 
of varying complexity and use of historical case data for 
comparison with the team forecasts: a naïve model, an 
always-absent model, a negative binomial model, and an 
ensemble model. The naïve model used no historical data 
and assigned equal probability to each of the bins (i.e. 
1/15 probability). The always-absent model also ignored 
historical data and represented a universal expecta-
tion of zero cases by assigning a probability of 1.0 to the 
zero-case bin and zero probability to all other bins for 
each county. We included this model given the relatively 
small percent of counties in the US that report WNND 
cases each year. The negative binomial model was built 
to reflect a parsimonious probabilistic prediction relying 
exclusively on local historical data, a “same-as-before” 
baseline model. For each county, we fitted a negative 
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binomial distribution to historical WNND cases and 
extracted probabilities for each bin from the cumulative 
distribution function. The initial version of this forecast 
(April submission) used 2000–2018 case counts, while 
the May submission also incorporated the provisional 
2019 data reported as of May 2020. Finally, we created 
a mean consensus ensemble using all team-submitted 
forecasts and the negative binomial forecast by averag-
ing the probabilities assigned in each bin for all forecasts 
at each location and submission deadline. For forecasts 
that were not updated at a particular submission dead-
line, we used the last available forecast for each update of 
the ensemble. Using the final version of the ensemble, we 
used Shannon entropy [30] to assess the spread of prob-
ability across the binned case counts (uncertainty) in the 
ensemble model forecast.

We developed two additional models retrospectively 
as alternative baseline models: a first-order autoregres-
sive model (i.e. AR(1)) and a first-order autoregressive 
model with a single climate variable as an exogenous 
covariate (AR(1) Climate). For both models, we fitted 
log-transformed annual WNND case counts (2005–2019; 
ln(cases + 1)) using the arima function in the stats pack-
age in R (version 4.1.2; [31]). For the AR(1) Climate 
model, we considered seasonal aggregations of climate 
conditions (i.e. average temperature, mean minimum 
temperature, or total precipitation), using Parameter-
elevation Regressions on Independent Slopes Model 
(PRISM) data [32] aggregated to county. We defined sea-
sons as 3-month periods for winter (December–Febru-
ary), spring (March–May), summer (June–August), and 
fall (September–November). To predict annual WNND 
case numbers, we considered including climate data from 
the previous winter to the concurrent year’s spring to 
capture any lagged climate-induced impacts on transmis-
sion during the previous year (e.g. considering seasonal 
climate data from December 2018–May 2020 to predict 
2020 WNND cases). See Additional file  1: Text S1 for 
more details on the development of the autoregressive 
modeling framework.

Evaluation
As announced before the Challenge, we evaluated all 
forecasts using the logarithmic score, a proper scoring 
rule based on the probabilities assigned in each forecast 
in relation to the eventual observed case counts [33, 34]. 
The score for each team was the average logarithm of the 
probability assigned to the observed outcome bin, the 
bin containing the reported number of WNND cases for 
2020, per county. To avoid logarithmic scores of nega-
tive infinity for forecasts which assigned zero probability 
to the observed outcome, we truncated binned predic-
tions to have a minimum logarithmic score of − 10. We 

compared mean logarithmic scores with ANOVA fol-
lowed by Tukey post hoc multiple comparisons to iden-
tify significant differences between forecast scores. We 
compared the forecasts for the final versions of team 
forecasts and comparison models and between the initial 
and final versions of all forecasts.

We assessed probabilistic calibration by plotting fore-
casted probabilities versus observed frequencies for 
forecasts with each summarized in the following upper-
bound inclusive probability bins: 0.0, 0.0–0.1, 0.1–0.2, 
…, 0.9–1.0. Note that these bins are the probabilities 
assigned to case number bins, not the cases number 
bins themselves. We then calculated a metric of overall 
probabilistic calibration as the mean weighted squared 
difference of binned predicted probabilities versus the 
observed frequency of events, 1

N

∑

nk
(

pk − ok
)2 , where 

N is the total number of a team’s prediction, nk is the 
number of predictions in bin k (e.g. between 0.2 and 
0.3) with average probability pk , and ok is the frequency 
of those predictions being correct. In other words, we 
assessed if events that were predicted to occur 20–30% 
actually occurred 20–30% of the time. Our chosen cali-
bration metric corresponds to the reliability term in the 
Brier score decomposition [35, 36] and has been used 
to evaluate calibration of another vector-borne disease 
forecasting challenge [37]. Note that this considers cali-
bration within the single forecast year and provides no 
information on calibration of models across forecast 
years.

To assess discriminatory power, we used receiver-
operator characteristic (ROC) curve analysis to assess 
the sensitivity and specificity of the probability of having 
at least one WNND case in each county. We then calcu-
lated the area under the curve (AUC) as the metric for 
discrimination.

Regression modeling
We used Bayesian regression modeling to identify high-
level modeling approaches and contextual factors of 
counties associated with variation in skill. To assess the 
impact of modeling approach, we fitted generalized linear 
models to all team forecasts and the negative binomial 
comparison model (April and May versions) using the 
negative logarithmic score, or surprisal, as the outcome, 
assuming a Gamma distribution with the inverse link. 
We used the stan_glm function in the rstanarm pack-
age (version: 2.21.1, [38]) to fit the models. We assessed 
associations between surprisal and a suite of model-
specific nominal covariates for a team’s inclusion of data 
on climate, human demographics, land use, mosquito 
distributions/surveillance, and bird/equine infections, 
and if submissions were updated. To assess county-spe-
cific contextual factors, we fitted Bayesian generalized 
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additive models (GAMs) to the ensemble forecasts using 
the stan_gamm4 function in the rstanarm package (ver-
sion: 2.21.1, [38]). We chose the ensemble forecast to 
capture the overall accuracy of all teams without the 
variation in performance between teams due to modeling 
approaches. Contextual factors investigated included 
environmental factors (e.g. land use, extreme minimum 
winter temperature, region), history of reported WNND 
cases (e.g. number of years and pattern of reported 
cases), and demographics (e.g. population size, popula-
tion density, population > 65  years old). See Additional 
file 1: Text S1 for more details on methods, model selec-
tion, and a complete list of variables considered.

All analyses were performed with R statistical software 
(version 4.1.2; [31]).

Results
Fifteen teams submitted binned probabilistic forecasts 
for the total number of WNND cases reported in each 
county using a variety of modeling approaches (see 
Additional file 1: Text S1 for team information including 
model details and descriptions and Table  S1 for model 
characteristics). Two teams (13%) included mechanistic 
model elements while the remainder used completely 
statistical approaches. Six teams (40%) used Bayesian 
frameworks for model fitting. We broadly categorized 
the modeling approaches teams used as machine learning 
(i.e. random forest, neural network), regression (i.e. max-
imum likelihood generalized linear models, generalized 
additive models), hurdle models (i.e. spatio-temporal 
hurdle models fit using integrated nested Laplace estima-
tion), system of difference equations, or historical case 
distributions. Across the four submission time points, 
we received 30 unique forecast submissions (15 initial 
submissions, 5 teams that updated once, 2 that updated 
twice, and 2 that updated three times). Some teams used 
different data sources in different submissions. Across all 
submissions, 24 submissions (from 11 teams) used cli-
matic data, 22 (from 11 teams) used human demographic 
data, 9 (from 5 teams) used land-use data, 12 (from 4 
teams) used entomological data related to Culex mos-
quito species distributions or WNV infection prevalence 
in mosquitoes, 2 used data on avian WNV infections (1 
team), and 2 used data on equine WNV infections (1 
team).

The final version of the ensemble model assigned the 
highest probability to a non-zero bin for 115 counties, 
with the largest probabilities assigned to high num-
bers of WNND cases in highly urbanized counties: Los 
Angeles (CA, bin: 101–150 cases), Maricopa (AZ, bin: 
51–100 cases), Cook (IL, bin: 51–100 cases), and Har-
ris (TX, bin: 11–15 cases) (Fig. 1A); the other 111 coun-
ties assigned the highest probability to the 1–5 cases bin. 

The remaining 2993 counties had the highest probabil-
ity in the ensemble model assigned to the zero-case bin 
and each team model (final version) assigned the highest 
probability to the zero-case bin for at least 2222 coun-
ties. Uncertainty in ensemble predictions was greatest in 
more populous counties as well as in the southwest (CA, 
AZ, NV), in the Great Plains states, along the southern 
edges of the Great Lakes, and along the northeast coast 
(Fig. 1B).

Finalized case data for 2020 were released in November 
2021 with 559 WNND cases reported in 181 counties. 
These counts were similar to totals reported annually 
during 2008–2011 and 2019 (Additional file 1: Table S2). 
The ratio of reported neuroinvasive to non-neuroinvasive 
cases was 3.25, the largest reported since 2001 (range for 
2002–2019: 0.41–2.43).

Forecast skill, as measured by logarithmic score, gen-
erally increased across the submission time points with 
updated submissions (Fig. 2, Additional file 1: Table S3). 
Gains in skill for individual forecasting teams were typi-
cally abrupt and occurred at different times, presumably 
due to acquisition of new contextual data or revisions 
of modeling approaches. The ensemble forecast, which 
included all the most recent team forecasts and the nega-
tive binomial model at each time point, increased from 
a mean log score of -0.357 (April) to -0.253 (July), with 
the largest increase in skill occurring between the June 
and July submissions likely because of the dramatic 
improvement in the forecast by UI. Three teams (MSSM, 
Stanford, and UNL) and the negative binomial forecast 
consistently outscored the ensemble forecast with four 
teams (MHC, NYSW, NYSW-CVD, and UCD) outscor-
ing the ensemble for at least one submission time point. 
The retrospectively implemented AR(1) and AR(1) Cli-
mate models (using mean winter temperature based on 
historical performance, Additional file  1: Fig S1) also 
consistently outperformed the ensemble. However, the 
difference in score between the final forecast for each of 
those that outscored the ensemble was not statistically 
significant (P > 0.1, Additional file 1: Fig S4).

Overall, models based only on historical distributions 
of cases had relatively high skill. The negative binomial 
comparison model, AR(1) comparison model, and an 
empirically weighted distribution (MSSM) were in the 
top five forecasts at each submission time point. Only the 
final forecast from UCD scored higher than the negative 
binomial model with a difference in mean logarithmic 
score of 0.007 (P = 0.98, Additional file 1: Fig S4).

Comparing high-level modeling approaches and con-
trolling for submission date, we found variation in fore-
cast skill was associated with the inclusion of some types 
of data (Additional file 1: Table S4). Skill was higher for 
teams that included climate (0.187, 95% CI 0.174, 0.226) 
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Fig. 1  Ensemble forecast with final submissions. A Most likely number of WNND cases from and B uncertainty (Shannon entropy) of ensemble 
model forecast. Mean ensemble model built using the last submitted versions of forecasts of all teams and negative binomial model (2000–2019 
data). Shannon entropy measures the spread of probability across the binned case counts with a value of zero indicating high certainty in 
prediction (all probability in a single bin) and a value of one indicating high uncertainty in prediction (probability equally spread across all bins)
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or demographic data (0.335, 95% CI 0.326, 0.361). We 
found lower skill for forecasts that included land use (− 
0.100, 95% CI − 0.124, − 0.031) or Culex mosquito geog-
raphy (estimated ranges or WNV infection prevalence 
data, − 0.114, 95% CI − 0.142, − 0.048). We did not com-
pare the association of skill with the inclusion of avian or 
equine WNV disease cases because only one team used 
each of these data types.

We next analyzed county-specific contextual factors 
that might be associated with varying forecast skill across 
modeling approaches by analyzing associations with 
ensemble forecast skill (Additional file 1: Fig S3). Average 
skill was highest in counties with mid-sized populations, 
low historical variation in annual WNND cases (permu-
tation entropy), and relatively moderate winter mini-
mum temperatures (−  10° and 10°F, corresponding to 
the USDA Plant Hardiness Zones 6a to 7b). For extreme 
minimum winter temperatures, the ensemble had lower 
skill at extreme high and low values. For population size, 
the ensemble had lower skill at large sizes and a nonsig-
nificant relationship at small sizes. Increased variation 
in interannual historic WNND cases (larger permuta-
tion entropy) was associated with decreased forecast skill 

with a plateau at permutation entropy above approxi-
mately 0.7.

Calibration of forecast uncertainty and the ability to 
predict whether WNND cases would occur (≥ 1 vs. 0 
cases, i.e. discrimination) varied across teams (Fig.  3). 
Comparing binned forecasted probabilities to obser-
vations (Additional File 1: Fig S5), we found that most 
forecasts were over-confident at lower probabilities and 
under-confident at higher probabilities. Expectations 
of the occurrence of cases, especially large numbers of 
cases, were commonly assigned low probabilities while 
the expectation of no reported cases was typically highly 
probable. The forecasts with the best calibration (i.e. reli-
able specification of probabilities) were those that did 
not assign any high probabilities (e.g. the naïve forecast), 
followed by the autoregressive (AR(1) and AR(1) Cli-
mate) and negative binomial models. We found that the 
discriminatory power of forecasts, assessed as the AUC 
comparing the probability of one or more cases in each 
county to whether at least one WNND case was reported, 
also varied widely across teams and comparison models 
(range of forecast AUC: 0.5–0.875, Additional file 1: Fig 
S6). The naïve and always-absent comparison models 

Fig. 2  Mean logarithmic score of submissions from teams and comparison models. A Full range of mean scores and B vertically truncated range to 
visualize differences in score among top models for each submission time point. If a team did not submit a new forecast at a submission time point, 
we used the previously submitted forecast to calculate the score (i.e. no variation in score between time points). See Additional file 1: Table S3 for 
individual forecast mean logarithmic scores
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had the worst discriminatory performance, while the 
ensemble, the negative binomial, the AR(1), the AR(1) 
Climate forecasts, and several teams (MHC, MSSM, 
NYSW, NYSW-CVD, Rutgers, Stanford, and UCD) all 
had high discriminatory power. The forecasts with the 
highest overall skill combined good calibration and 
discrimination.

Discussion
Reliable early-warning of vector-borne disease outbreaks 
could offer new opportunities for effective prevention 
and control through targeting control to high-risk areas. 
For WNV, such an early-warning system would iden-
tify spatial and temporal periods of high-risk weeks to 
months prior to the onset of risk, enabling effective pro-
active response. We performed a multi-model evalua-
tion of probabilistic forecasts for the total WNND cases 
reported by county in the contiguous US and Washington 
DC in 2020. The comparison of forecast performance elu-
cidated the current predictive capacity of WNND on this 
spatial and temporal scale and avenues for improvement.

Although the COVID-19 pandemic caused dramatic 
changes in human behavior and challenges for health 
systems in 2020, it is not clear that the occurrence and 
reporting of WNND cases changed dramatically. The 
reported total number of WNND cases was similar to 
prior years with relatively low case numbers. The ratio 

of reported WNND to non-neuroinvasive cases for 2020 
increased substantially, to the highest level since 2001, 
indicating likely under-detection and -reporting of non-
neuroinvasive cases. However, it remains unclear what 
impact COVID-19 may have had on human behavior 
and resulting exposure to WNV, treatment-seeking by 
infected individuals, or physicians’ diagnosis and report-
ing of WNV disease.

Overall, simple models based on historical WNND 
cases (i.e. the negative binomial model) generally scored 
better than more complex models, combining discrimi-
natory power and calibration of uncertainty. Only one 
team (UCD) had higher forecast skill than the negative 
binomial forecast model, and only by a small, nonsig-
nificant margin. One explanation for the relatively strong 
performance of the negative binomial model is that the 
historical case distributions reflect the ecological differ-
ences across counties and therefore capture most of the 
inherent spatial variability in WNV transmission. Incor-
porating additional contextual factors explicitly might 
not necessarily improve prediction accuracy despite their 
importance. Also, matching case locations in space and 
time with available environmental data can introduce 
uncertainty in model predictions that consider environ-
mental data on top of historical WNV data. For exam-
ple, WNND data were available on the county-annual 
scale while environmental data were available at much 

Fig. 3  Discrimination, calibration, and mean logarithmic score of final forecasts by teams and comparison models. Area under the curve (AUC) 
was used to measure a forecast’s ability to discriminate situations with reported WNV cases vs. no cases (AUC of 1.0 would indicate perfect 
discrimination). Calibration was calculated as the mean weighted squared difference of binned predicted probabilities vs. observed frequency of 
events (metric of 0 perfectly calibrated). Mean logarithmic score of 0 indicates perfect prediction accuracy. Top-performing models are in the top 
left (A, C) or top right (B). See Additional file 1: Table S3 and Fig S5-S6 for individual forecast score, calibration, and discrimination
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finer spatial and temporal resolutions. Thus, decisions on 
aggregations or summaries of environmental data cannot 
fully capture the particular sequence of conditions pre-
cipitating zoonotic transmission.

Regression to identify modeling approaches asso-
ciated with variation in forecast skill confirmed an 
increase in score for later submissions after accounting 
for other differences. Changes in later forecast submis-
sions were attributed largely to integration of updated 
data rather than changes in forecasting methods, so this 
score improvement highlights the value of including 
updated covariate data (e.g. reported updates included 
using recent weather data, newly released 2019 WNV 
data, and additional demographic data). Although we 
could not discern the relative contribution of each update 
on the change in score due to heterogeneity in the type 
of changes and number of submissions across teams, 
recent weather data appeared to have played some role in 
improving the predictive accuracy of forecasts. Improv-
ing access to real-time data streams could therefore 
improve predictive accuracy [27, 39]. Moreover, these 
updates occurred before the majority of WNND cases 
were reported, indicating that although forecasts that 
provide early warning during the spring can allow for 
greater lead times for preventative actions, later updates 
that provide early detection of risk—even after some 
cases have begun to occur—could provide additional 
value [27]. From a practical standpoint, shifting forecast 
submission deadlines by several days later could facilitate 
incorporating monthly aggregated data from the prior 
month when available.

The limited number of submissions prevented us from 
fully assessing the relative performance of different mod-
eling approaches as models used different data inputs in 
addition to different methods. While the broad classifi-
cations we used provide some insight on general fore-
cast skill, we could not assess the performance of specific 
model constructions because they varied in both meth-
ods and covariates included. It could be of interest to 
identify variation in predictive performance because of 
specific model constructions to guide the development 
and refinement of WNV prediction.

We found the inclusion of estimated mosquito dis-
tributions or mosquito surveillance data reduced fore-
cast skill on average. This result seems counterintuitive 
because the importance of key mosquito vectors and the 
relationship between entomological indicators of risk 
and WNV activity is clear [9, 10, 40–43]. One explana-
tion is that mosquitoes are much more widespread than 
WNND cases, so it is difficult to discriminate coun-
ties with intense enzootic transmission without human 
involvement. An alternative explanation is that this find-
ing might reflect model-specific limitations in how the 

data were incorporated or limited quality or availability 
of national datasets on mosquito distributions or ento-
mological surveillance. Current distribution maps date 
back to the 1980s [44, 45] with an update in 2021 using 
habitat suitability modeling [46]. Although the updated 
maps have increased spatial definition compared to ear-
lier estimates, these distributions indicate relative habitat 
suitability rather than presence or absence. One publicly 
available surveillance database, ArboNET, maintains 
data on human disease and infections among presump-
tive viremic blood donors, veterinary disease cases, mos-
quitoes, dead birds, and sentinel animals for a variety of 
arboviruses. However, nonhuman arboviral surveillance 
is voluntary with large variation in spatial and temporal 
coverage between jurisdictions, and reported data are 
often incomplete [47] reducing the predictive utility of 
the database.

The ensemble forecast had a higher forecasting skill 
(average logarithmic score) than most team forecasts, 
with better discriminatory power (ability to differenti-
ate having at least one case) than any team forecast and 
better calibration (reliable uncertainty specification) than 
most. Previous forecasting efforts for influenza, dengue, 
and COVID-19 [37, 48–50] demonstrated that ensemble 
approaches capitalize on the strengths of diverse mod-
els and balance uncertainty across modeling approaches 
to produce robust predictions. This general finding was 
replicated here with the ensemble performing in the 
top third of forecasts. However, we also found a simple 
model based on historical data alone substantially out-
performed both the ensemble and majority of team fore-
casts at every submission date for the 2020 Challenge. 
This indicates that even the strengths of a multi-mode-
ling approach were not sufficient to improve prediction 
beyond historical trends for this year. There are several 
potential ways to improve the ensemble in the future. 
With predictions for previous years it would be possible 
to generate weighted ensembles that could improve per-
formance. Weighted ensembles based on regional per-
formance could also potentially leverage differences in 
forecast skill for different ecological zones. Alternative 
approaches to generating ensembles from component 
models such as linear pools from cumulative distribu-
tion functions which could be approximated from binned 
forecast probabilities could also be fruitful [51, 52].

We found that heterogeneity in historic WNV cases 
had a significant impact on variation in forecast skill, 
and unsurprisingly, forecasts scored worse in locations 
of high historic heterogeneity. Improvement in forecast 
skill for these locations would likely be the most use-
ful for vector control and public health officials, but the 
high variability also represents a significant challenge to 
forecasters.
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Other intrinsic differences between counties associ-
ated with lower forecast skill could highlight areas that 
need improvement. By identifying local drivers in coun-
ties with relatively large populations and hotter or colder 
winters, forecast skill could be improved in these circum-
stances. For example, the ecological setting (i.e. Culex 
species present, composition of avian community, and 
climate) would vary substantially between counties with 
“hot” or “cold” winter extremes and different drivers may 
need to be considered in each. Also, factors might inter-
act together to impact zoonotic transmission, but due to 
the limited data and limited number of forecasts available 
for analysis, we were unable to investigate these.

Calibration across teams indicated other avenues for 
improving prediction. Overall, teams over-predicted the 
probability that cases would occur while correspond-
ingly underestimating the probability that cases would 
not occur. Overestimating the probability of disease cases 
could lead to better preparedness but could also result 
in allocation of resources that are not ultimately needed. 
Moreover, repeated instances of non-events could lead 
public health officials or the public to doubt the accuracy 
of such forecasts. A forecast with demonstrated calibra-
tion is not immune to this type of perception but would 
be able to demonstrate over time or across locations that 
an 80% chance of an outbreak still results in no outbreak 
20% of the time. Further work on refining calibration and 
identifying any relationship of modeling approach and 
calibration could improve the reliability and usability of 
forecasts.

The identification of climate factors predictive for 
WNV activity needs further refinement. Our analysis of 
modeling approaches indicated that teams that included 
climate data scored better than those that did not. How-
ever, the data source, climatic variables (e.g. minimum 
temperature, maximum temperature, total precipita-
tion, variance in precipitation, Palmer Drought Severity 
score, dewpoint, soil moisture, anomalies in temperature 
or precipitation), and aggregation of the climate vari-
able (e.g. number of days above or below a threshold; 
weekly average; average of 1–12  months; lagged values 
up to 3 years) varied widely among teams (Additional 
file  1: Text S1). It should be noted that all climate data 
included in models was lagged to some extent in rela-
tion to the predicted annual totals. Due to heterogeneity 
among teams and the limited number of total forecasts, 
we could not identify the most predictive subset of cli-
matic factors and appropriate spatial and temporal aggre-
gations or lags nor the potential importance of variation 
in data quality among data sources. Similarly, the addi-
tion of any seasonal climatic variable in the autoregres-
sive modeling framework when selecting the baseline 
climate model reduced the forecast skill relative to the 

AR(1) model (Additional file  1: Fig S1). However, this 
model, which used a single climate variable nationally 
on a subjectively prescribed 3-month season, could not 
capture spatial variation in climatic zones. Previous stud-
ies have also demonstrated challenges in identifying a 
single environmental driver for predicting WNV activity 
[53–57]. The essential role of climate in WNV transmis-
sion likely varies substantially across different ecological 
areas, with geographic heterogeneity in which combina-
tion of environmental factors, avian populations (com-
position and seropositivity), and mosquito species drive 
local transmission.

The forecasts generated here provide some important 
insight on the challenges with current capabilities and 
opportunities for improvement, but also on potential 
uses. As in other forecasting efforts, an ensemble was 
more accurate than many of the individual component 
forecasts. However, in this case, a model based on histor-
ical data had more forecast skill and could be considered 
as a benchmark for a national-scale early warning sys-
tem even though the current best indicator of high risk 
is a past history of larger outbreaks. The use of heuris-
tic principles, like historic outbreaks, can be useful, but 
sometimes leads to severe and systematic errors [58]. 
Early indications of high risk can support preparedness 
across scales, such as resource planning and allocation 
at the state or local scale. Forecasts at finer spatio-tem-
poral resolution (e.g. 2-week forecast on the neighbor-
hood scale) could be even more useful to directly guide 
effective vector control within counties within seasons 
[27]. Additional targets like onset or peak week of trans-
mission could also guide vector control activities. There 
might also be opportunities to frame and communicate 
forecasts more effectively. Here, we have focused on 
binned probabilities of different case numbers. However, 
forecasts could also be framed as the probability of above 
average incidence or predicted range of case numbers 
(e.g. a 90% prediction interval) that might be actionable 
in different ways.

Conclusions
The 2020 WNV Forecasting Challenge highlighted the 
current state of large-scale, early-warning prediction 
capacity for WNND cases in the US. Simple models 
based on previous WNND cases generally performed 
better than more complex forecasts. The forecasts evalu-
ated therefore indicate that historical incidence provides 
a relatively reliable indicator of future risk, but substan-
tial uncertainty remains, and future models can build 
upon findings here to improve forecasting as well as 
providing insight on the probability that the next season 
will be different from previous seasons. Among mod-
els using additional data, inclusion of climate or human 
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demographic data was associated with higher skill, while 
inclusion of mosquito or land use data was associated 
with lower skill. These differences indicate that WNV 
forecasts can benefit by considering location-specific 
historical data and incorporating additional covariates 
with caution. Forecast skill was also associated with 
intrinsic differences among counties, with lower skill 
in counties with relatively large populations, “cold” or 
“hot” winters, and high variability in yearly case counts. 
High case count variability likely indicates counties that 
are intrinsically more difficult to predict, but there may 
be opportunities to specifically improve predictions 
for areas with large populations and low or high winter 
temperatures. Most forecasts, including the highest skill 
forecasts, also showed patterns of calibration that could 
potentially be improved. In addition to improved fore-
cast models, increased data collection, data sharing, and 
real-time data access [e.g. meteorological observations, 
avian immunity to WNV, mosquito surveillance (abun-
dance and infection rates), mosquito control activities] 
may support improved predictions. These findings lay the 
foundation for improving future WNV forecasts.
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