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Abstract 

Background:  Trichinella spiralis is an important foodborne parasite that presents a severe threat to food safety. The 
development of an anti-Trichinella vaccine is an important step towards controlling Trichinella infection in food ani-
mals and thus ensure meat safety. Trichinella spiralis galectin (Tsgal) is a novel protein that has been identified on the 
surface of this nematode. Recombinant Tsgal (rTsgal) was found to participate in larval invasion of intestinal epithe-
lium cells (IECs), whereas anti-rTsgal antibodies impeded the invasion.

Methods:  The rTsgal/pSIP409- pgsA′ plasmid was constructed and transferred into Lactobacillus plantarum strain 
NC8, following which the in vitro biological properties of rTsgal/NC8 were determined. Five groups of mice were orally 
immunized three times, with a 2-week interval between immunizations, with recombinant NC8-Tsgal, recombinant NC8-
Tsgal + α-lactose, empty NC8, α-lactose only or phosphate-buffered saline (PBS), respectively. The vaccinated mice were 
infected orally with T. spiralis larvae 2 weeks following the last vaccination. Systemic and intestinal local mucosal immune 
responses and protection were also assessed, as were pathological changes in murine intestine and skeletal muscle.

Results:  rTsgal was expressed on the surface of NC8-Tsgal. Oral immunization of mice with rTsgal vaccine induced 
specific forms of serum immunoglobulin G (IgG), namely IgG1/IgG2a, as well as IgA and gut mucosal secretion IgA 
(sIgA). The levels of interferon gamma and interleukin-4 secreted by cells of the spleen, mesenteric lymph nodes, 
Peyer’s patches and intestinal lamina propria were significantly elevated at 2–6 weeks after immunization, and con-
tinued to rise following challenge. Immunization of mice with the oral rTsgal vaccine produced a significant immune 
protection against T. spiralis challenge, as demonstrated by a 57.28% reduction in  the intestinal adult worm burden 
and a 53.30% reduction in muscle larval burden, compared to the PBS control group. Immunization with oral rTsgal 
vaccine also ameliorated intestinal inflammation, as demonstrated by a distinct reduction in the number of gut 
epithelial goblet cells and mucin 2 expression level in T. spiralis-infected mice. Oral administration of lactose alone also 
reduced adult worm and larval burdens and relieved partially inflammation of intestine and muscles.

Conclusions:  Immunization with oral rTsgal vaccine triggered an obvious gut local mucosal sIgA response and spe-
cific systemic Th1/Th2 immune response, as well as an evident protective immunity against T. spiralis challenge. Oral 
rTsgal vaccine provided a prospective approach for control of T. spiralis infection.
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Background
Trichinellosis is an important meat-borne parasitic dis-
ease that occurs worldwide [1]. Human Trichinella infec-
tion is caused by ingesting raw or semi-cooked meats 
from pigs and other animals infected with Trichinella 
muscle larvae (ML) [2, 3]. Pork from domestic pigs is the 
primary source of human trichinellosis outbreaks [4, 5]. 
During 2009–2020, eight outbreaks of human trichinel-
losis, with 479 cases and two deaths, were documented 
in China; of these eight outbreaks, seven (87.50%) were 
caused by eating raw or poorly cooked pork [6]. It is 
therefore necessary to develop an anti-Trichinella vac-
cine to interrupt the transmission of Trichinella infec-
tion in food animals and to eliminate this nematode from 
meat destined for human consumption [7, 8].

Once Trichinella spiralis-infected meat has been 
ingested, digestion of the infected meat by gastric flu-
ids in the stomach liberate the ML from the capsules. 
These then develop into intestine infectious larvae (IIL) 
following activation by bile and enteral contents. The 
IIL penetrate into the intestinal epithelium where they 
undergo four molts to develop into adult worms (AW) 
[9, 10]. After copulation, the female adult worms shed 
newborn larvae (NBL), which enter the venules and lym-
phatic vessels, spreading throughout the body via blood 
circulation until they reach the final parasitizing skeletal 
muscles and develop into the encapsulated ML to finish 
their life-cycle [11]. Intestinal mucosal epithelium is the 
first natural defense barrier against intrusion by T. spira-
lis IIL, and it is also the preferential interaction location 
between the intestinal parasite and the host [12, 13]. The 
successful IIL invasion of intestinal epithelial cells (IECs) 
is the key to infection of  the host [14, 15]. Therefore, the 
gut mucosal immune response is crucial for the develop-
ment of anti-Trichinella vaccines [16]. The ideal vaccines 
should be capable of blocking IIL invasion of the gut 
epithelium, interrupting IIL development to adulthood, 
expelling residual IIL and adults from the gut, impeding 
the deposition of NBL from adult females and killing the 
escaped NBL and encapsulated larvae in skeletal muscles 
[17, 18].

Lactic acid bacteria (LAB) belong to the Clostridium 
branch of Gram-positive bacteria. LAB are a group of 
Gram-positive bacteria that produce lactic acid as the 
major end product. They  include members of the genera 
Lactococcus, Lactobacillus and Bifidobacterium, which 
are commonly found in dairy fermented foods, the envi-
ronment and animal guts [19]. They have no endotoxin 
and play an important function in health, facilitating the 
metabolism of nutrients and dietary polysaccharides, 
regulating energy balance and initiating and modulat-
ing immune responses [20]. Lactobacillus has the abil-
ity to colonize, express and secrete exogenous antigenic 

proteins in local gut mucosa, at food-grade safety, and is 
the preferred bacteria for vaccine carrier development. 
The expressed and secreted proteins of  Lactobacillus 
can stimulate a host’s gut mucosal immune response and 
generate the corresponding antibodies [21]. Therefore, 
LAB can be used as a good carrier for the construction of 
an immune protective vaccine against Trichinella infec-
tion [22].

In our previous studies, a T. spiralis beta-galac-
toside-binding lectin (galectin, Tsgal; GenBank: 
XM_003381608.1) was cloned and expressed. The recom-
binant Tsgal (rTsgal) specially bound to the IECs and 
mediated T. spiralis invasion of the IECs, whereas anti-
rTsgal antibodies impeded the invasion of the larvae. 
Moreover, α-lactose played a suppressive role on rTsgal 
agglutinating functions [23]. The anchored expression 
vector pSIP409-pgsA′ contains a pgsA′ protein anchoring 
sequence for attaching the gene encoding Tsgal, which 
has been reported to be expressed on the surface of a 
probiotic recombinant Lactobacillus plantarum strain 
[24]. Our previous studies showed that Tsgal is expressed 
at all T. spiralis developmental stages, and primarily 
distributed on the surfaces, cuticles, stichosomes and 
embryos of this nematode [23]. The stichosome consists 
of a series of stichocytes, with each stichocyte contain-
ing many secretory granules that show high antigenicity. 
Since the surface and excretory/secretory (ES) proteins 
of T. spiralis IIL and AW are the first to be exposed to 
host’s intestinal mucosa and immune system, they can 
elicit host’s gut local mucosal and systemic immune 
response, and produce protective immunity [16]. In the 
present study, to improve the immune response, we fused 
recombinant L. plantarum expressing Tsgal on its surface 
to pgsA′ as the protein anchoring sequence and used this 
product as the Tsgal vaccine candidate. Specific humoral 
and cellular immune responses and protective immunity 
against T. spiralis infection were investigated in experi-
ments involving oral immunization with the recombinant 
L. plantarum expressing Tsgal in a murine model.

Methods
Parasites and experimental animals
The T. spiralis isolate (ISS534) used in this study was 
acquired from a naturally infected domestic pig in cen-
tral China and passaged in mice in our department, and 
4-week-old female BALB/c mice were purchased from 
Henan Provincial Experimental Animal Center (Zheng-
zhou, China). The sample size calculation was performed 
using online software (Experimental design assistant; 
https://​eda.​nc3rs.​org.​uk/​eda/​login/​auth) based on The 
ARRIVE Guidelines 2.0. The sample size was estimated 
based on the significance level of 0.05 and power of 0.9. 
To determine gut mucosal secretion of IgA (sIgA) and 
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cytokine responses, five animals of each experimen-
tal group were euthanized at weeks 0, 2, 4, 6, 7 and 11 
after vaccination. An additional 10 animals of each group 
were sacrificed at weeks 7 and 11 after vaccination (e.g. 7 
and 35 days post infection [dpi]) to collect enteral adult 
worms and muscle larvae, respectively. Each experimen-
tal group consisted of 50 mice, and 250 mice in total were 
used in the current study. Lactobacillus plantarum NC8 
was a gift from Professor Gui Liang Yang (College of Ani-
mal Science and Technology, Jilin Agricultural Univer-
sity, China [22]) and maintained in our laboratory [24].

Preparation of rTsgal and anti‑rTsgal serum
The complete functional domain of the Tsgal gene 
(XM_003381608.1),  containing 795  bp encoding 244 
amino acids, was cloned, and recombinant plasmid pQE-
80L/Tsgal was transferred into Escherichia coli strain 
BL21 (DE3) (Novagen, Pledran, France). The expression 
of rTsgal protein was induced using 0.5  mM isopropyl 
β-d-1-thiogalactopyranoside (IPTG) for 6 h at 37 °C [25]. 
The rTsgal protein was first purified and then treated 
with High Capacity Endotoxin Removal Resin (Pierce™, 
Thermo Fischer Scientific, Waltham, MA USA) as pre-
viously described [26]. Twenty female mice were sub-
cutaneously immunized using 20  μg rTsgal emulsified 
in complete Freund’s adjuvant. Two booster immuniza-
tions were administered with 20 μg rTsgal emulsified in 
incomplete Freund’s adjuvant at a 14-day interval [27]. At 
2 weeks following the third immunization, tail blood was 
collected, and anti-rTsgal serum was isolated and stored 
at - 80 °C until use [28]. Serum was also collected from 10 
mice experimentally infected with 300 T. spiralis ML at 
35 dpi (infection serum), and normal serum was obtained 
from 10 normal mice before immunization.

Construction of recombinant L. plantarum NC8‑Tsgal
The functional domain of the Tsgal gene was ampli-
fied by PCR with specific primers carrying XbalI and 
HindIII (bold and shaded) were selected as restriction 
sites to design Tsgal specific primers (5′-CGC​TCTAGA
AAA​GTT​CCG​TAT​TTA​GCC​AAG​TTG​G-3′, 5′-CGC 
AAGCTTTCA​TTC​TAA​ATG​AAT​CAA​CTGC-3′). The 
amplified Tsgal DNA fragment was cloned into expres-
sion vector pSIP409-pgsA′. The recombinant pSIP409-
pgsA′-Tsgal was transferred into L. plantarum NC8 
by electroporation, and successful construction of the 
recombinant NC8-Tsgal strain was verified by PCR. In 
order to evaluate the effect of pSIP409-pgsA′-Tsgal on 
the growth of L. plantarum, the recombinant NC8-Tsgal 
was cultured in MRS broth culture medium at 30 °C for 
24 h, and the optical density (OD) of bacterium solution 
was measured by ultraviolet spectrophotometry at 600 
nm (OD600nm) every 2  h during the cultivation; empty 

NC8 was used as the control. Moreover, to observe the 
survival of NC8-Tsgal under various pH conditions, the 
in vitro gastric environment with diverse pH values was 
simulated, as previously described [29].

Immunofluorescence test
To assess the Tsgal expression on the surface of NC8-
Tsgal, we performed the immunofluorescence test (IFT) 
as reported previously [30]. Briefly, NC8-Tsgal was first 
blocked using 1% bovine serum albumin (BSA; Aldrich-
Sigma, St. Louis, MO, USA). After washes in PBS, NC8-
Tsgal was probed at 37 °C for 2 h with anti-rTsgal serum, 
infection serum and normal serum (1:100). Following 
further washes in PBS, NC8-Tsgal was incubated with 
cy3/FITC-anti-mouse immunoglobulin G (IgG) conju-
gate (1:100; Santa Cruz Biotechnology, Dallas, TX, USA) 
and then observed under a fluorescence microscope 
(Olympus, Tokyo, Japan) [31, 32].

Western blotting analysis
The NC8-Tsgal was cultured in MRS medium con-
taining 10  μg/ml erythromycin to an OD600nm of 0.3 at 
30  °C, and then 50  ng/ml SppIP (sakacin P) was added 
to induce the expression of Tsgal [22]. Western blotting 
was performed to detect Tsgal expression in NC8-Tsgal, 
as reported previously [33, 34]. Soluble proteins of NC8-
Tsgal were transferred to a nitrocellulose membrane 
(MilliporeSigma, Burlington, MA, USA). The membrane 
was blocked with 5% skim milk at 37 °C for 2 h, cut into 
strips and incubated with anti-rTsgal serum, T. spiralis-
infected mouse serum and pre-immune normal mouse 
serum (1:100). After washing with Tris-bufered saline 
containing Tween (TBST), the strips were incubated with 
horseradish peroxidase (HRP)-anti-mouse IgG conju-
gate (1:10,000; SouthernBiotech, Birmingham, AL, USA) 
and finally stained with 3-amino-9-ethylcarbazole (AEC; 
Solarbio, Beijing, China) [35, 36].

Immunization of BALB/c mice with NC8‑Tsgal
To investigate the protective effect of rTsgal and α-lactose 
on T. spiralis challenge infection, NC8-Tsgal/α-lactose 
was used to inoculate the mice. The α-lactose (alpha-
d-glucopyranose) was purchased from Kemiou (Tian-
jin, China; purity = 99%). The α-lactose was dissolved in 
sterile water (277 mM), and the resulting solution filtered 
through a 0.22-μm filter.

The 250 mice included in this study were randomly 
divided into five groups (50 animals per group): (i) NC8-
Tsgal group; (ii) NC8-Tsgal + α-lactose group; (iii) NC8 
control group; (iv) α-lactose control group; and (v) PBS 
control group. The concentration of the bacterial suspen-
sion was adjusted to 1 × 1010  CFU/ml. The NC8-Tsgal 
and NC8 empty bacteria groups were orally administered 
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200 μl of the corresponding bacterial solution once daily 
for 3  days, and the PBS group was given an equal vol-
ume of PBS. Two booster immunizations were given as 
the same dosage of NC8-Tsgal at an interval of 2 weeks. 
The NC8-Tsgal + α-lactose group received the NC8-
Tsgal vaccination at the same time as the NC8-Tsgal 
group, but the former group was also orally adminis-
tered with 200 μl of the 277 mM α-lactose solution twice 
daily for 2 weeks beginning at 1 week before challenge to 
1 week after the challenge. The α-lactose control group 
received an equal dose of α-lactose at the same time as 
the NC8-Tsgal + α-lactose group received the NC8-Tsgal 
vaccination.

At weeks 0, 2, 4, 6 and 7–11 after the first vaccination, 
100 μl of blood was collected from the tail tip of 10 mice 
in each group, and serum samples were collected and 
preserved at - 80  °C until use [37]. Five mice from each 
group were euthanized at 0, 2, 4, 6, 7 and 11 weeks after 
the first vaccination, and the intestine, spleen, mesenteric 
lymph nodes (MLN), Peyer’s patches (PP) and intestinal 
lamina propria (ILP) cells were collected at the respective 
time-points [33, 38]. To evaluate vaccine efficacy, 10 mice 
of each group were euthanized at weeks 7 and 11 after 
vaccination (i.e. 7 and 35 dpi), and intestinal adult worm 
and ML burden (larvae per gram [LPG]) were measured. 
The scheme of the immunization protocol is shown in 
Fig. 1.

Detection of serum anti‑rTsgal antibodies 
by enzyme‑linked immunosorbent assay
Serum-specific IgG, IgG1, IgG2a and IgA levels in all 
immunized mice were determined by enzyme-linked 
immunosorbent assay (ELISA) using rTsgal as coating 
antigen [39]. In brief, the plate was coated with 2 μg/ml 
rTsgal at 4 °C overnight, and then the plate was blocked 
with 5% skimmed milk in PBS with Tween (PBST) for 
2 h at 37 °C. After washing in PBST, the plate was probed 
with 1:100 dilutions of the various sera for 1 h at 37 °C, 
and then incubated with HRP-anti-mouse IgG conjugate 
(1:10,000; Southern Biotech) at 37  °C for 1 h. Following 
further washes, o-phenylenediamine dihydrochloride 
(OPD; Alrich-Sigma) was used as the substrate for color-
ation; OD values were measured at 492 nm with a micro-
plate reader (Tecan, Schweiz, Switzerland) [11, 40].

Assessment of enteral sIgA and histamine
To assess total and Tsgal-specific sIgA in the gut fluids, 
washed gut was recovered as described previously [7, 41]. 
In brief, a 20-cm-long intestinal segment was cut out, and 
the gut interior was washed 3 times with 1 ml of cold PBS 

with 1% protease inhibitor (Sangon Biotech, Shanghai, 
China). The washing fluid was recovered and then centri-
fuged at 12,000 g for 5 min at 4 °C to eliminate fecal mat-
ter and/or tissue debris. Total gut sIgA was measured by 
a sandwich ELISA as previously reported [16, 42]. Tsgal-
specific sIgA was determined by ELISA with 2 μg/ml of 
rTsgal. Coloration was developed with OPD (Aldrich-
Sigma) plus H2O2, the reaction was stopped with 2  M 
H2SO4. The OD values at 492 nm were measured using a 
microplate reader (Tecan) [43, 44].

As the histamine secreted by gut epithelial mast cells 
has an obvious effect on intestinal inflammation and 
adult worm expulsion from the gut, histamine levels in 
gut fluids were assessed at weeks 0, 2, 4 and 6 after vac-
cination, and at weeks 1 and 5 following larval challenge. 
The levels of intestinal histamine concentrations were 
measured using a mouse ELISA kit according to the man-
ufacturer’s instructions (Elabscience Biotechnol, Wuhan, 
China). The data were presented in nanograms per mil-
liliter (ng/ml) ± standard deviation (SD). All testing of 
samples was carried out in duplicate [45].

ELISA determination of cytokine response to oral rTsgal 
vaccination
To examine Tsgal-specific cellular immune responses, 
five mice of each group were euthanized at weeks 0, 2, 4 
and 6 following immunization, and at 1 and 5 weeks after 
infection. The spleen, MLN, PP and ILP were isolated 
from immunized mice and homogenized in complete 
RPMI-1640 medium (g) [46]. The pellets were collected 
after centrifugation at 300 g for 15 min, and the cells were 
isolated as reported [30]. The cells were adjusted to a den-
sity of 5 × 106 cells/ml in RPMI-1640 medium containing 
5% fetal bovine serum (FBS; Gibco™, Thermo Fisher Sci-
entific), stimulated with 4 μg/ml rTsgal and incubated for 
3 days. After incubation, the levels of interferon gamma 
(IFN-γ) and interleukin-4 (IL-4) in RPMI-1640 medium 
were assessed using sandwich ELISA and showed as pic-
tograms per milliliter (pg/ml) [17, 47].

Trichinella spiralis challenge infection and evaluation 
of immune protection
To assess the immune protection produced by oral NC8-
Tsgal, all vaccinated mice were orally infected with 300 
T. spiralis ML at 2 weeks after the final vaccination. Ten 
mice from each of the five groups were euthanized at 7 
and 35 dpi to recover AW of intestines and ML of skeletal 
muscles, respectively [15]. The immune protection was 
ascertained according to mean number of intestinal AW 
and muscle LPG from NC8-Tsgal immunization group 
relative to the PBS group [24, 48, 49].
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Histopathological examination of murine intestine 
and skeletal muscle
At 7 and 35 dpi, small intestine and masseter muscles 
were collected from three infected mice per group and 
fixed in 4% formalin for 24 h, embedded in paraffin wax 
and cut into 2-μm-thick tissue cross-sections; the tissue 
sections were then deparaffinized and stained with using 
hematoxylin and eosin (HE) stain and periodic acid-schiff 
stain (PAS; Baso, Zhuhai, China) [50]. The sections were 
then observed under light microscopy, and the inflamma-
tory cells (eosinophils, neutrophils and lymphocytes) and 
goblet cells per field (400×) were examined and counted 
to assess the pathological change in intestine and mus-
cles, as previously reported [18].

Quantitative PCR assay of mucin 2 messenger RNA 
expression in gut epithelium of immunized mice
RNA extraction was performed with TRIzol reagent (Inv-
itrogen™, Thermo Fisher Scientific) by lysing 100  mg of 
small intestine tissue samples of five infected mice per 
group at 7 dpi. The Mucin 2 (Muc2) messenger RNA 
(mRNA) expression level was assessed using quantita-
tive PCR as previously reported [51, 52]. The specific 
primers of Muc2 were 5′-TGT​GGC​CTG​TGT​GGG​AAC​
TTT-3′ and 5′-CAT​AGA​GGG​CCT​GTC​CTC​AGG-3′. 
The relative level of Muc2 mRNA expression was nor-
malized by subtracting the mRNA expression level of a 

murine housekeeping gene (glyceraldehyde-3-phosphate 
dehydrogenase [GAPDH]; GenBank: NM_001289726.1), 
and then calculated in line with the comparative Ct (2−
ΔΔCt) method [9, 53]. Each experiment was carried out in 
triplicate.

Statistical analysis
All data were analyzed using SPSS version 21.0 software 
(SPSS IBM Corp., Armonk, NY, USA), and the results 
were shown as mean ± SD. The Student’s t-test was used 
to compare the differences between IgG1 and IgG2 levels 
of the Tsgal-NC8 group and NC8 + lactose group. One-
way analysis of variance (ANOVA) was used to analyze 
the differences among various groups, then Dunnett’s T3 
test (for the AW burdens and ML burdens) and LSD test 
(for the others) were used as post-hoc tests, respectively. 
P < 0.05 was defined as statistical significance.

Results
Construction of NC8‑Tsgal
NC8-Tsgal was digested using XbalI and HindIII. Electro-
phoresis of the PCR products showed the successful con-
struction of NC8-Tsgal with an insert of about 795  bp. 
Sequence analysis indicated that the amplified Tsgal gene 
fragment consisted of 795  bp and was correctly cloned 
into the pSIP409-pgsA′, with 99.87% identity to those of 
the Tsgal sequence in GenBank (XM_003381608.1).

Fig. 1  The designed immunization scheme and assay protocol. A total of three oral immunizations were given, and five mice of each group were 
euthanized for assays of intestinal sIgA and cytokines at weeks 0, 2, 4, 6, 7 and 11 after the first immunization. Serum-specific anti-Trichinella spiralis 
galectin (Tsgal) antibodies (total IgG, IgG1 and IgG2a) were measured by indirect enzyme-linked immunosorbent assay [ELISA] using recombinant 
Tsgal (rTsgal) at 2 weeks following each immunization and at weeks 1–5, respectively, following challenge. After being challenged with 300 T. 
spiralis muscle larvae, 10 mice of each group were sacrificed at weeks 7 and 11 after vaccination (i.e. 7 and 35 days post infection [dpi), and adults 
worms and muscle larvae were recovered to assess the protective efficacy of recombinant NC8-Tsgal/α-lactose against T. spiralis challenge. 
Histopathological changes of the intestine and muscles from infected mice were examined at 1 and 5 weeks after challenge (i.e. 7 and 35 dpi). 
Samples were collected at the time-points indicated in the figure. Ig, Immunoglobulin; IL, interleukin; IFN, interferon; sIgA, secretory (mucosal) IgA
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Biological properties of NC8‑Tsgal
Growth curve analysis revealed that the recombinant 
plasmid pSIP409-pgsA′-Tsgal did not suppress the pro-
liferation of NC8-Tsgal, and no significant difference was 
observed between the growth curve of NC8-Tsgal and 
the normal empty NC8. The results of the in vitro simu-
lation under conditions of the gastric acid environment 
showed that NC8-Tsgal survived for 2–3 h in the acidic 
environment (pH 1.0–2.0) and for a longer time at pH 
3.0–4.0. The number of recombinant NC8-Tsgal bacteria 
was clearly lower in the environment at pH 1.0–4.0 than 
in that at pH 6.4 (F = 275.056, P < 0.05) (Additional file 1: 
Figure S1).

Expression of Tsgal in NC8‑Tsgal
The IFT revealed positive green fluorescence staining 
on the surface of NC8-Tsgal using anti-rTsgal serum 
and infection serum (Fig.  2a). Western blotting results 
showed that an individual protein band of NC8-Tsgal of 
about 30.4 kDa was recognized by the anti-rTsgal serum 
and infection serum, but no bands were identified in sol-
uble proteins of the empty NC8 (Fig.  2b). These results 
demonstrated that the Tsgal protein was successfully 
expressed on the surface of NC8-Tsgal.

Serum anti‑Tsgal antibody responses in immunized mice
Serum anti-Tsgal antibody IgG titers 2 weeks after the 
third vaccination were measured by ELISA using rTsgal. 
Anti-Tsgal IgG levels in vaccinated mice were signifi-
cantly increased in comparison with pre-vaccination 
levels (P < 0.0001), and mean antibody titer of the recom-
binant NC8 immunized groups reached 1:105 after the 
final vaccination, indicating that recombinant NC8 had a 
good immunogenicity (Fig. 3).

The ELISA results showed that the serum anti-Tsgal 
IgG levels of the NC8-Tsgal and NC8-Tsgal + α-lactose 
groups at 2 weeks following vaccination were signifi-
cantly increased in comparison with pre-vaccination 
levels (P < 0.05) and that they continued to increase at 
4 and 6  weeks after vaccination and at 1–5  weeks fol-
lowing challenge infection. Tsgal-specific IgG levels of 
NC8-Tsgal and NC8-Tsgal + α-lactose groups were sig-
nificantly higher than those of the three control groups 
at weeks 2, 4 and 6 after vaccination (P < 0.0001) (Fig. 4a). 
Both IgG1 and IgG2a levels were also clearly higher than 
those of the three control groups at 2  weeks follow-
ing vaccination (P < 0.0001) (Fig.  4b, c). The IgG1 level 
of the NC8-Tsgal group at 4 and 6 weeks after vaccina-
tion was clearly higher than that of IgG2a (t4W = 14.923, 
t6W = 3.580, P < 0.01). The IgG1 level of the NC8-
Tsgal + α-lactose group at 4 and 6 weeks after vaccination 

was clearly higher than the IgG2a level (t4W = 14.212, 
t6W = 5.466, P < 0.0001), indicating that NC8-Tsgal immu-
nization triggered a mixed Th1/Th2 immune response 
with Th2 predominance. Compared to the three control 
groups, serum IgA levels of the NC8-Tsgal and NC8-
Tsgal + α-lactose groups were also significantly increased 
(P < 0.05) (Fig.  4d). Nevertheless, the IgG or IgA levels 
between the two immunization groups (NC8-Tsgal and 
NC8-Tsgal + α-lactose) were not significantly different 
at weeks 2, 4 and 6 after vaccination (IgG: t2W = 0.189, 
t4W = 0.333, t6W = 2.194, P > 0.05; IgA: t2W = 1.922, 
t4W = 1.421, t6W = 0.745, P > 0.05), suggesting that lac-
tose inoculation did not affect and enhance the humoral 
immune response of immunization of mice with NC8-
Tsgal. Moreover, the mice orally inoculated with empty 
NC8 alone, lactose only or PBS only did not exhibit any 
anti-Tsgal IgG and IgA responses at weeks 2, 4 and 6 after 
vaccination; however, after larval challenge, the three 
control groups also showed increasing serum levels of 
anti-Tsgal IgG and IgA in comparison with pre-challenge 
levels (P < 0.0001).

Intestinal mucosal immune response
Statistical comparison of sIgA levels among various 
groups was performed with one-way ANOVA followed 
by LSD test. Total sIgA levels of the NC8-Tsgal and NC8-
Tsgal + α-lactose groups were significantly higher than 
those of the three control groups at weeks 4 and 6 after 
vaccination (P < 0.05) (Fig.  5a). The Tsgal-specific sIgA 
levels of these same two Tsgal immunization groups at 
weeks 4 and 6 after vaccination was also clearly higher 
than those of the  three control groups (P < 0.0001) 
(Fig. 5b). Also, the higher levels of total and specific sIgA 
in the two Tsgal immunization groups were maintained 
up to 5 weeks after the challenge. However, the specific 
sIgA levels in the two Tsgal immunization groups were 
not statistically different after vaccination and challenge 
(P ˃ 0.05). No specific enteral mucosal sIgA responses 
were observed in mice orally injected with only empty 
NC8, only lactose or only PBS.

Histamine concentration of the enteral fluid at various 
times after immunization and challenge was assayed by 
ELISA. The results revealed that compared to the lac-
tose or PBS group, the histamine levels in the NC8-Tsgal, 
NC8-Tsgal + α-lactose and empty NC8 groups were sig-
nificantly increased at 4 and 6 weeks after the first immu-
nization (P < 0.0001), continued to rise at 1  week after 
T. spiralis infection (P < 0.05) and regressed at 5  weeks 
after infection (Fig. 5c). These results suggested that oral 
immunization of mice with NC8-Tsgal or empty NC8 
triggered an intestinal mucosal immune response and 
histamine secretion.
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ELISA determination of cytokine responses
The ELISA results revealed that the levels of Th1 cytokine 
(IFN-γ) and Th2 cytokine (IL-4) in the five groups of 
mice were not statistically  different before immuniza-
tion (P > 0.05). However, the levels of IFN-γ and IL-4 in  
the two groups of mice immunized with NC8-Tsgal and 
NC8-Tsgal + α-lactose were clearly higher than the levels 
in the three control group at 2, 4 and 6 weeks after immu-
nization (P < 0.0001). Moreover, the levels of these two 
cytokines in the two groups of Tsgal-immunized mice 
continued to be elevated at 1 week after larval challenge, 
and these levels were maintained to the end of this exper-
iment (5 weeks after infection) (Fig. 6). Nevertheless, no 
distinct difference in IFN-γ and IL-4 levels was observed 
between the two Tsgal immunization groups after vac-
cination and challenge (P ˃ 0.05). These results demon-
strated that immunization of mice with rTsgal triggered 
the mixed Th1/Th2 responses, that lactose administration 
had no obvious impact on the cellular immune response 
of immunized mice and that oral rTsgal immunization 
produced both the systemic (spleen) and gut mucosal 
local (MLN, PP and ILP) cellular immune responses.

Immune protection of NC8‑Tsgal immunization
Immune protection against T. spiralis larval challenge 
infection was investigated in all vaccinated mice. Com-
pared to the PBS group, the mice vaccinated with NC8-
Tsgal, NC8-Tsgal + lactose, lactose and empty NC8 
exhibited a 57.28%, 63.92%, 32.61% and 10.73% reduction 
of intestinal AW burdens, respectively (Fig.  7a). Intesti-
nal AW burdens of the NC8-Tsgal + lactose group were 
statistically lower than those of the NC8-Tsgal, lactose 
and empty NC8 groups (P < 0.05). Moreover, immuniza-
tion of mice with NC8-Tsgal, NC8-Tsgal + lactose, lac-
tose and empty NC8 produced a 53.30%, 58.77%, 31.28% 
and 21.17% reduction of ML burdens at 35 dpi, respec-
tively (Fig.  7b). The ML burdens of mice vaccinated 

Fig. 2  Expression of Tsgal on recombinant NC8-Tsgal bacterium 
surface by the immunofluorescence test (IFT) and western blotting. 
a Green fluorescence staining was observed on the surface of 
Lactobacillus plantarum strain NC8-Tsgal (NC8-Tsgal) by IFT using 
anti-rTsgal serum. The bacteria recognized by infection serum (serum 
collected from mice experimentally infected with T. spiralis ML) as a 
positive control, and normal serum (serum collected from normal 
mice before immunization) as the negative control. Scale bar: 5 μm. 
b Western blotting analysis of Tsgal expression. Soluble proteins of 
normal NC8 (lanes 1, 3, 5) and NC8-Tsgal (lanes 2, 4, 6) were probed 
by infection serum (lanes 1, 2), anti-rTsgal serum (serum from mice 
immunized with rTsgal; lanes 3, 4) and normal serum (lanes 5, 6), 
respectively. The expressed and recognized Tsgal bands have a 
molecular weight of about 30.4 kDa

▸
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with NC8-Tsgal or NC8-Tsgal + lactose were clearly 
lower than those of empty NC8 or lactose alone groups 
(P < 0.0001). Additionally, the vaccination of mice with 
only empty NC8 or lactose alone also showed a partial 
reduction of intestinal AW and ML compared to the PBS 
group (P < 0.0001). These results demonstrated that vac-
cination of mice with NC8-Tsgal or NC8Tsgal + lactose 
elicited an immune protection against T. spiralis chal-
lenge infection.

Histopathological changes in intestine and skeletal 
muscles in immunized mice
Histopathological changes in the intestinal and skeletal 
muscles of infected mice were investigated at 7 and 35 
dpi, respectively. Following T. spiralis larval challenge, 
mild intestinal mucosal inflammation and nearly normal 
intestinal villi were observed in vaccinated mice (Addi-
tional file 1: Figures S2, S3). The width of the enteral vil-
lus of the four groups of vaccinated mice was distinctly 
lower than that of the PBS control group (P < 0.0001) 
(Additional file  1: Fig. S4a). The number of goblet cells 
of the four groups of vaccinated mice was also overtly 
lower than that of the PBS group (P < 0.0001) (Additional 
file 1: Fig. S4b). Moreover, the  width of the enteral vil-
lus was significantly less  and the number of goblet cells 
of mice immunized with NC8-Tsgal or NC8-Tsgal + lac-
tose was lower significantly lower than those of the 

empty NC8-only and lactose-only groups (P < 0.01). 
These results demonstrated that vaccination of mice with 
NC8-Tsgal or NC8-Tsgal lactose significantly hindered 
larval invasion of gut mucosa and ameliorated intestinal 
inflammation.

The quantitative PCR results showed that the Muc2 
transcription level of  the four groups of vaccinated 
groups at 7 dpi was also apparently lower than that of 
the PBS groups (P < 0.0001) (Additional file  1: Fig. S4c). 
Furthermore, Muc2 transcription level of the NC8-Tsgal 
group was distinctly lower than that of the lactose-only 
group (t = 7.836, P < 0.05), and the Muc2 transcription 
level of the NC8-Tsgal + lactose group was also clearly 
lower than that of the empty NC8 group (t = 3.071, 
P < 0.05). These results demonstrated that vaccination of 
mice with NC8-Tsgal or NC8-Tsgal + lactose significantly 
hindered larval invasion of the gut mucosa, ameliorated 
the intestinal inflammatory reaction and decreased Muc2 
expression.

The results of HE staining of muscle sections of 
infected mice revealed that the numbers of encapsu-
lated T. spiralis larvae of the four vaccinated groups at 
35 dpi were distinctly lower than that of the PBS control 
groups (P < 0.0001). Additionally, the number of inflam-
matory infiltrative cells around the encapsulated larvae 
of the four vaccination groups was significantly lower 
than that of the PBS groups (P < 0.0001) (Additional file 1: 
Figures S5, S6). The number of inflammatory cells in the 
NC8-Tsgal group was notably lower than that of lac-
tose-only group (t = -3.103, P < 0.05), and the number of 
inflammatory cells in the  NC8-Tsgal + lactose group was 
also distinctly lower than that in the empty NC8 group 
(t = -3.139, P < 0.05). The number of encapsulated larvae 
in the  NC8-Tsgal group was clearly lower than that in the 
lactose-only group (t = - 8.000, P < 0.05), and the number 
of encapsulated larvae in the NC8-Tsgal + lactose group 
was significantly lower than that in the empty NC8 group 
(t = - 6.342, P < 0.05). These results indicated that the vac-
cination of mice with recombinant L. plantarum NC8-
Tsgal significantly reduced the number of encapsulated 
larvae and modulated the inflammatory reaction of the 
skeletal muscle tissues.

Discussion
Trichinella infection results from eating infected meat. 
Intestinal mucosal immunity elicited by immunization 
should block parasite penetration and dislodge and expel 
intestinal parasites from the gut [18]. Oral immuniza-
tion is the more appropriate way to induce lasting gut 
mucosal immune response [42, 54]. Lactobacillus plan-
tarum is a lactic acid bacterium capable of colonizing in 
the gut. Lactobacillus plantarum strain NC8 is found in 
silage and is widely used as a host bacterium to express 

Fig. 3  Serum anti-Tsgal IgG measured by ELISA with rTsgal. Anti-Tsgal 
IgG levels were assayed 2 weeks after the last immunization in sera 
of mice immunized with NC8-Tsgal. Serum samples diluted at 1:105 
and 1:106, respectively, were measured by ELISA with rTsgal. All serum 
samples were assayed in duplicate. The data are presented as the 
OD values of anti-Tsgal IgG levels from 10 vaccinated mice. Forty 
serum samples (1:100 dilutions) from normal mice were measured 
as negative serum controls. The cut-off value of ELISA was calculated 
based on the 2.1-fold the mean OD value of the negative control 
serum from normal mice. Serum OD values that were greater than 
the cut-off value were regarded as being positive. The cut-off 
value (0.24) is shown with a dotted line. OD, Optical density; PBS, 
phosphate-buffered saline
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foreign proteins [21]. It has also been used as a car-
rier for the construction of immune protective vaccines 
because of its probiotic effect [24]. Vaccination of chicks 
with recombinant L. plantarum NC8 has been shown to 
improve humoral and cellular immunity and enhance the 
resistance to Eimeria tenella infection [55]. Hence, in the 
present study we used L. plantarum NC8 to construct 
recombinant Tsgal vaccine. Additionally, the surface of 
the pgsA’ display module is effective for anchored foreign 
protein expression, so the plasmid pSIP409-pgsA′ was 
applied to construct the recombinant Tsgal plasmid to 
assure the rTsgal expression.

Galectins are characterized by a unique carbohy-
drate-binding functional domain sequence motif bind-
ing to β-galactoside, and this binding can be inhibited 

by oligosaccharide. The parasite-derived galectins are 
involved in parasite adhesion and the invasion of host 
cells [56]. Recombinant Haemonchus contoutus galectins 
have been proved to be a potential vaccine target against 
challenge infection [57]. Our previous studies showed 
that rTsgal promotes the in vitro larval invasion of IECs 
and that anti-rTsgal serum and α-lactose inhibit larval 
invasion [23]. In order to assess the protective effect of 
rTsgal and α-lactose on T. spiralis larval challenge, in this 
study we performed experiments using recombinant L. 
plantarum NC8-Tsgal/α-lactose to inoculate the mice.

The results of the current study demonstrated that 
oral immunization of mice with NC8-Tsgal elicited a 
Th1/Th2 mixed immune response to Tsgal. T cells and 
immunoglobulins are important mediators of rapid 

Fig. 4  Detection of anti-Tsgal antibodies in mice orally immunized with recombinant L. plantarum NC8 by ELISA. All serum samples were tested 
in duplicate. The data are presented as the mean OD values ± standard deviation (SD) of anti-Tsgal IgG level from 10 vaccinated mice. a Serum 
anti-Tsgal IgG of vaccinated mice at diverse time intervals after immunization was assessed by ELISA. b, c Specific IgG1 (b) and IgG2a (c) subclass 
responses were also ascertained at various times after vaccination. d Specific IgA level in vaccinated mice. The vaccination times are shown with 
arrows (↑) and the time of T. spiralis challenge time is indicated by triangles (△). Asterisk (*) indicates significance at P < 0.05 compared to the PBS 
group; hashtag (#) indicates significance at P < 0.05 compared to the empty NC8 control group (one-way analysis of variance with LSD test)
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worm expulsion from the host’s gut [58]. T helper cells 
largely determine the type of immune response and can 
be divided into Th1 cells and Th2 cells according to dif-
ferences in the cytokine expression profiles. The balance 
between the two types depends on genetic and envi-
ronmental factors. Th1 cells can secrete IL-2 and IFN-γ, 
enhance the ability of phagocytes to phagocytose patho-
gens and promote the production of IgG, CD40 ligand 
(CD40L) on the surface of Th1 cells, thereby promoting 

class switching in B cells to generate IgG2a antibodies. 
Th2 cells secrete IL-4, which can promote the prolifera-
tion and differentiation of B lymphocytes and stimulate 
the production of IgG1 and IgE. Th2 cells have been 
found to participate in the immune response against 
intestinal nematode infection, which is beneficial to the 
repair or prevention of tissue damage caused by hel-
minths [59]. IgG is the main immune force against path-
ogen infection, and it is also one of the main antibodies 

Fig. 5  Levels of total sIgA (a), Tsgal-specific sIgA (b) and histamine (c) in enteral washes of immunized mice. The data are shown as the mean 
values ± SD from 5 animals per group. No evidently detectable sIgA response and histamine secretion was observed in the lactose or PBS control 
group. The vaccination times are shown with arrows (↑) and the challenge infection time is indicated by triangles (△). Asterisk (*) indicates a 
significant difference at P < 0.05 compared to the lactose or PBS group; hashtag (#) indicates a significant difference at P < 0.05 compared to the 
empty NC8 control group (one-way ANOVA with LSD test)

(See figure on next page.)
Fig. 6  Levels of IFN-γ and IL-4 secreted by spleen, MLN, PP and ILP from immunized mice at different times after vaccination. Concentrations of 
the two cytokines (IFN-γ and IL-4) were determined in supernatant after the spleen, MLN, PP and ILP cells were stimulated with 4 μg of rTsgal at 
37 °C and 5% CO2 for 72 h. The data are shown as the mean ± SD of 5 mice per group. The vaccination times are shown with arrows (↑). T. spiralis 
challenge infection time is indicated by triangles (△). Asterisk (*) indicates significance at P < 0.0001 compared to the empty NC8, lactose or PBS 
group (one-way ANOVA with LSD test). ILP, Intestinal lamina propria;  MLN, mesenteric lymph nodes; PP, Peyer’s patches
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Fig. 6  (See legend on previous page.)
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produced by the second humoral immune response. The 
results of this study also showed that serum-specific anti-
body levels further increased and were maintained at 
the higher levels in the two groups of immunized mice 
after larval challenge, suggesting that oral vaccination 
with NC8-Tsgal significantly enhanced the antigen-spe-
cific humoral immunity [24]. Furthermore, the levels of 
serum-specific IgG and IgA and of intestinal sIgA in the 
two groups of mice immunized with rTsgal were not sta-
tistically different after vaccination and challenge, indi-
cating that lactose inoculation did not affect or enhance 
the humoral immune response of NC8-Tsgal vaccination.

Intestinal sIgA plays a crucial role in the intestinal 
mucosal immune response and is structurally resistant 
to chemical degradation of exogenous enzymes. Most 
infectious pathogens invade the host through mucosal 
surfaces, and sIgA is the first natural defense barrier at 
these surfaces [60]. sIgA plays a vital role in mucosal 
defense and might impede parasite penetration into 
gut epithelium [33, 44]. sIgA as an agent against surface 
antigens of intestinal T. spiralis stages (e.g. IIL and AW) 
has been reported to accelerate worm expulsion from 
the gut [16], and the passive transfer of anti-Trichinella 
IgA-mediated Trichinella expulsion from murine intes-
tine after challenge [61]. Moreover, the immune pro-
tection induced by NC8-Tsgal immunization might be 
due to the formation of an anti-Tsgal antibody immune 
complex at the worm anterior which physically blocks 
the direct contact between IIL and gut epithelium and 
subsequently blocks the penetration of larvae into gut 
mucosa, thereby preventing further intestinal larval 
development [16]. Oral immunization with NC8-Tsgal 
induced higher levels of mucosal sIgA, including total 

sIgA and Trichinella-specific sIgA, indicating that NC8-
Tsgal strongly elicited mucosal sIgA secretion. Lactoba-
cillus can colonize the intestinal region and induce IgA 
secretion. Lactobacillus has the ability to modulate den-
dritic cell properties, for example, by inducing B cells to 
produce IgA [62]. Our observations further indicate that 
vaccinated mice generated Tsgal-specific enteral sIgA. 
sIgA is Th2 dependent; in particular, IL-4 is the main 
cytokine which enhances IgA response, suggesting that 
high levels of IL-4 enhance gut sIgA response [30].

Helminth infections are characterized by a biased 
Th2-type immune response, and it has been shown 
that gastrointestinal worms trigger regulatory path-
ways to limit Th1-type responses [63]. IL-4 stimulates 
the production of IgE, mast cells and mucus, enhances 
intestinal smooth muscle contractility and intestinal 
epithelial fluid secretion, stimulates CD4 + T cells to 
differentiate into Th2 cells, promotes IFN-γ secretion 
and inhibits type 2 cytokine secretion [64]. Our results 
also confirmed that 2 weeks after the first immuniza-
tion, the levels of IL-4 and IFN-γ in NC8-Tsgal immu-
nized mice increased significantly, and continued to 
increase after challenge. Th2-type immune responses 
are essential for intestinal nematode infection and 
mainly manifest as mast cell and goblet cell hyperpla-
sia, increased mucus, increased soluble mediators (e.g. 
IL-4, IL-5, IL-9, IL-13 and histamine) and the produc-
tion of antibodies (IgG1 and IgE) [59]. Goblet cells 
are intestinal epithelial mucus-secreting cells that 
promote worm expulsion from the gut by secreting 
mucus; the number of goblet cells is closely correlated 
with the severity of T. spiralis infection. In one study, 
obvious goblet cell proliferation and increased mucin 

Fig. 7  Immune protection elicited by vaccination with recombinant L. plantarum NC8 following challenge with 300 T. spiralis larvae in a murine 
model. a Intestinal AW burdens, b ML burden. The data are shown as the mean worm burden ± SD of 10 animals per group. Asterisk (*)indicates 
a significant difference at P < 0.05 compared to the PBS groups. Hashtag (#) indicates a significant difference at  P < 0.05 compared between two 
vaccination groups (one-way ANOVA with Dunnett’s T3 test). LPG, Larvae per gram
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secretion were considered to demonstrate serious T. 
spiralis infection [65]. Histamine is mainly secreted by 
mast cells; this molecules can induce smooth muscle 
contract and promote intestinal peristalsis and worm 
expulsion [66]. The production of IL-9 and its bind-
ing to its receptor in muscles also promote intestinal 
muscle hypercontractility and accelerated worm expul-
sion from the gut in T. spiralis infection [67]. In the 
present study, intestinal villus width, goblet cell num-
ber and Muc2 expression level of the mice immunized 
with NC8-Tsgal or NC8-Tsgal + lactose were signifi-
cantly lower than that in the only empty NC8-Tsgal and 
lactose-only groups, demonstrating that vaccination 
of mice with NC8-Tsgal or NC8-Tsgal + lactose sig-
nificantly hindered larval invasion of the gut mucosa, 
ameliorated intestinal inflammation and relieved the 
infection. Moreover, the histamine level in the NC8-
Tsgal, NC8-Tsgal + α-lactose, and empty NC8 groups 
was significantly increased at 4 and 6  weeks after the 
immunization, continued to be elevated at 1 week after 
challenge and regressed at 5 weeks after infection, sug-
gesting that oral immunization of mice with recombi-
nant NC8-Tsgal or empty NC8 triggered an intestinal 
mucosal immune response and histamine secretion, 
which in turn promoted worm expulsion from the gut. 
Furthermore, the ELISA assay of cytokine response in 
the current study revealed that cells from the spleen, 
MLN, PP and ILP were stimulated by the purified 
rTsgal. Although rTsgal was retrieved with High Capac-
ity Endotoxin Removal Resin, it still might contain a 
little of the bacterial endotoxin (lipopolysaccharide 
[LPS]) after treatment. The LPS or same Ni–NTA frac-
tion but from an expression of the same empty pQE-
80L plasmid in BL21 (DE3) should be used as a control 
for cellular stimulation in future studies.

The results of the challenge infection showed that 
oral vaccination of mice with NC8-Tsgal and NC8-
Tsgal + lactose resulted in a significant immune protec-
tion against T. spiralis challenge, as demonstrated by a 
57.28% and 63.92% reduction of  intestinal AW burden, 
respectively, and a 53.30% and 58.77% reduction of ML 
burden, respectively. It is interesting that oral inocula-
tion with lactose only also produced a 32.61% reduc-
tion in the AW burden and a 31.28% reduction in the 
ML burden. As a surface protein of T. spiralis intestinal 
stages, Tsgal comes into direct contact with the host’s gut 
mucosal epithelium, specifically binding to the galectin 
ligands of the IECs, thereby promoting the larval inva-
sion of IECs [23]. Lactose might interrupt the interac-
tion between Tsgal and its ligands in the IECs and, as a 
result, impede the larval invasion of gut mucosa and 

facilitate worm expulsion from  the gut, therefore reduc-
ing intestinal AW burdens and alleviating the infec-
tion. The results of HE and PAS staining of intestinal 
and muscle sections also revealed that the lactose-only 
administration decreased the worm burden and ame-
liorated the inflammatory reaction of the gut and mus-
cle tissues. These results suggested that binding of Tsgal 
with IECs might be significantly reduced by competition 
with anti-Tsgal antibody and with lactose. The sugar that 
binds to the carbohydrate-binding domain of Tsgal might 
also limit its engagement of T cell immunoglobulin and 
Muc2 receptors [68]. Previous studies have shown that 
an oligosaccharide (mannose) might bind to the C-type 
lectin on the cuticle surface of T. spiralis and hinder its 
interactions with the ligands on the host’s IECs, which in 
turn might prevent larval penetration [69]. Recent stud-
ies have also revealed that β-glucans trigger T. spiralis 
worm expulsion from the gut via the mucus layer inde-
pendently of type-2 immunity [53]. Taken together, these 
results demonstrated that appropriate sugars might be 
regarded as a convenient and prospective adjuvant agent 
of anti-Trichinella vaccines to impede larval invasion and 
enhance worm dislodgment at the early stage of T. spira-
lis exposure and infection.

Additionally, galectin-1-like proteins (TsGal-1-like) 
have been isolated from T. spiralis ML; the  ES proteins 
which had a lactose-specific carbohydrate-recognition 
domain were recognized by anti-galectin-1 antibodies 
on western blotting. This TsGal-1-like isolate induced 
dendritic cells with tolerogenic properties and, hence, 
the capacity to polarize T cell response towards a regu-
latory type, as demonstrated by a significantly increased 
percentage of CD4+CD25+Foxp3+ regulatory T cells 
and a significantly increased expression of IL-10 and 
tumor growth factor beta (TGF-β) within this cell pop-
ulation, with maintenance of immune homeostasis [70]. 
Previous studies revealed that some homologs of galec-
tin-9 isolated from canine intestinal nematode Toxas-
caris leonina promote significantly increased levels of 
TGF-β and IL-10, and these regulatory cytokines may 
ameliorate intestinal inflammation [71]. Moreover, fol-
lowing oral antigen administration, intestinal epithelial 
cells and microbiota possibly condition dendritic cells 
toward a tolerogenic phenotype that induces Treg via 
expression of several mediators (e.g. IL-10, and TGF-β) 
[72]. In the present study, oral vaccination of mice with 
NC8-Tsgal/NC8-Tsgal + lactose might also have regu-
lated the gut microbiota, induced regulatory T cells, 
promoted the production of IL-10 and TGF-β and, as 
a result, relieved intestinal inflammation. Therefore, 
the levels of the cytokines TGF-β and IL-10 following 
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oral Tsgal vaccination should be evaluated in future 
research.

Conclusions
Recombinant L. plantarum NC8-Tsgal was constructed 
in the current study. rTsgal protein was expressed on 
the surface of recombinant NC8-Tsgal. Oral vaccination 
of mice with recombinant NC8-Tsgal vaccine elicited a 
systemic mixed Th1/Th2 immunity as well as local gut 
mucosal response, and an obvious immune protection 
against T. spiralis challenge. The results indicated that 
recombinant NC8-Tsgal vaccine is a promising strat-
egy for control of Trichinella infection in food animals. 
Moreover, appropriate sugars might be a convenient and 
prospective adjuvant agent of anti-Trichinella vaccines to 
impede T. spiralis larval invasion at early infection stage.
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in different vaccination groups. b Number of inflammatory cells around 
encapsulated larvae in different vaccination groups. *P < 0.05 compared 
to the PBS groups (one-way ANOVA with LSD test). #P < 0.05 compared 
between two vaccination groups (Student’s t-test).
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