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Eimeria falciformis secretes extracellular 
vesicles to modulate proinflammatory response 
during interaction with mouse intestinal 
epithelial cells
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Abstract 

Background:  Protozoan parasite secretions can be triggered by various modified media and diverse physicochemi-
cal stressors. Equally, host-parasite interactions are known to co-opt the exchange and secretion of soluble biochemi-
cal components. Analysis of Eimeria falciformis sporozoite secretions in response to interaction with mouse intestinal 
epithelial cells (MIECs) may reveal parasite secretory motifs, protein composition and inflammatory activities of E. 
falciformis extracellular vesicles (EVs).

Methods:  Eimeria falciformis sporozoites were allowed to interact with inactivated MIECs. Parasite secretions were 
separated into EV and vesicle-free (VF) fractions by discontinuous centrifugation and ultracentrifugation. Secreted 
EVs were purified in an iodixanol density gradient medium and the protein composition of both EV and VF fractions 
were analyzed by liquid chromatoraphy-tandem mass spectroscopy. The inflammatory activities of E. falciformis sporo-
zoite EV on MIECs were then investigated.

Results:  During the interaction of E. falciformis sporozoites with inactivated MIECs, the parasite secreted VF and 
vesicle-bound molecules. Eimeria falciformis vesicles are typical pathogenic protozoan EVs with a mean diameter of 
264 ± 2 nm, and enclosed heat shock protein (Hsp) 70 as  classical EV marker. Refractile body-associated aspartyl pro-
teinase (or eimepsin), GAP45 and aminopeptidase were the main components of E. falciformis sporozoite EVs, while 
VF proteins include Hsp90, actin, Vps54 and kinases, among others. Proteomic data revealed that E. falciformis EV and 
VF proteins  are aggregates of bioactive, antigenic and immunogenic molecules which act in concert for E. falciformis 
sporozoite motility, pathogenesis and survival. Moreover, in MIECs, E. falciformis EVs induced upregulation of gene 
expression and secretion of IL-1β, IL-6, IL-17, IL-18, MCP1 as well as pyroptosis-dependent caspase 11 and NLRP6 
inflammasomes with the concomitant secretion of lactate dehydrogenase.

Conclusions:  Eimeria falciformis sporozoite interaction with MIECs triggered the secretion of immunogenic and anti-
genic proteins. In addition, E. falciformis sporozoite EVs constitute parasite-associated molecular pattern that induced 
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Background
Host-parasite interaction is a dynamic and phenomenal 
feature of parasitism. It co-opts parasite development 
and pathogenesis by means of cellular signaling, inflam-
mation, cell death and, essentially, the excretion or secre-
tion of molecules. In general, parasite secretions (or 
secretomes) are formed  along several secretory pathways 
and released during the host-parasite interplay [1]. Previ-
ous studies have described and characterized the secre-
tion of extracellular vesicles (EVs) and vesicle-free (VF) 
molecules from parasitic protozoa and helminths [2, 3] 
as well as from parasite-infected host cells [4]. Similarly, 
there have been several studies on the secretion, charac-
terization and proteomic profiling of Eimeria sporozoite 
proteins triggered by thermal, chemical and mechani-
cal stressors [5]. In addition, VF molecules have been 
induced and characterized from protozoan parasites 
in various modified mediums and by physicochemi-
cal stressors [5, 6]. Pathogenic protozoan EVs activated 
by chemical stressors and serum-starved media have 
also been characterized and   profiled [7]. A few studies 
have also indicated that host-parasite interactions could 
induce the secretion of vesicle-bound and VF molecules. 
In this regard, the formation of parasite secretomes 
could occur prior to [8] or during protozoan parasite 
attachment or invasion of the host cell [3, 8–10], but the 
description of distinct parasite secretions during interac-
tions with the host cell, and characterization of such par-
asite-derived secretomes have not been demonstrated.

Extracellular vesicles are heterogeneous, sub-cellular, 
lipid-bound vesicles  formed during pathophysiologi-
cal processes and host-pathogen interactions [11]. Based 
on biogenesis and size, EVs are broadly classified as 
exosomes, microvesicles/microparticles and apoptotic 
bodies [7, 11–15]. EVs usually enclose soluble compo-
nents of cellular origin, such as metabolic intermediates, 
glycoconjugates, lipids, proteins and nucleic acids [14]. 
Functionally, protozoan parasite EVs  can deliver their 
cargoes to mediate parasite motility and development, 
differentiation, cytoadherence and pathogenesis [16–20]. 
During host–pathogen interaction, EVs are pivotal in 
such processes as intercellular communication, horizon-
tal gene transfer, disease biomarker, antigen presentation, 
immune response and host cell death [14, 15, 21–23].

Typically, Eimeria spp. are obligate intracellular api-
complexan parasites [16]. More specifically, Eimeria fal-
ciformis naturally parasitizes caecal epithelial cells of wild 

and laboratory mice, causing catarrhal enteritis, hemor-
rhage and epithelial sloughing [17, 18]. The life-cycle of E. 
falciformis is similar to that of other coccidian parasites, 
with the sporozoites, after excystation from the sporo-
cyst, actively migrate through the mice gut before invad-
ing the host intestinal epithelial cells (IECs) [17, 18, 25]. 
In general, parasitization of the host cells by apicompl-
exan parasites involves gliding motility, cellular attach-
ment, invasion and spontaneous formation of excretory/
secretory products with which apicomplexans modulate 
host cell responses [10, 26–28]. However, E. falciformis 
sporozoite proteins secreted during interaction with the 
host IECs have not been described [5]. Also, the secre-
tion of parasite-derived EVs has not been characterized 
in Eimeria spp. [7], nor have the inflammatory responses 
of host IECs, such as the secretion of cytokines and for-
mation of inflammsome complexes, to Eimeria-derived 
EVs.

In this study, E. falciformis sporozoites were allowed 
to interact with inactivated mouse IECs (MIECs),  and 
E. falciformis sporozoite VF and EV fractions were sepa-
rated, purified and analyzed. In addition, MIECs were 
stimulated with E. falciformis sporozoite EVs (EfSEVs) 
to determine differential regulation and expression of 
inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-17, 
IL-18), the chemokine monocyte chemoattractant pro-
tein 1 (MCP1) and pyroptosis-dependent caspase 11 and 
nucleotide-oligomerization domain (NOD)-like receptor 
pyrin 6 (NLRP6) inflammasomes, and to reveal underly-
ing synergy between MIEC inflammatory response and 
lethal activity of EfSEVs.

Methods
Parasite propagation
Parasite propagation was carried out as described earlier 
[17, 29, 30] with modification. In brief, 100 specific path-
ogen-free Balb/c mice aged between 6 and 8 weeks were 
raised in plastic cages placed in a pathogen-free room 
with  adequate supply of food and sterile water. Each 
mouse was orally inoculated with 50 µl of 2 × 105 E. fal-
ciformis sporulated oocysts/ml phosphate-buffered saline 
(PBS). Oocysts shed in feces between 7- and 11-day post-
infection were recovered from homogenized fecal solu-
tion, washed through a metal strainer and purified by salt 
flotation. Purified oocysts were washed and suspended 
as appropriate in 2.5% potassium dichromate followed 
by incubation at 28  °C and 120  rpm for approximately 

inflammatory response and cell death. This study offers additional insight in the secretion and protein composition of 
E. falciformis secretomes as well as the proinflammatory functions of E. falciformis sporozoite EVs.
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10 days. Sporulated oocysts were stored at 5 °C and used 
within 30 days of storage.

Purification of E. falciformis sporozoites
Eimeria falciformis sporozoites were excystated and puri-
fied as earlier reported [31–33]. Briefly, E. falciformis 
sporulated oocysts were washed in PBS to remove potas-
sium dichromate through discontinuous centrifugation. 
Purified oocysts were precipitated in 40  ml of antibi-
otic–antimycotic diluent (1 part dilutent per 100  ml)  
(Solarbio, Beijing China). Eimeria falciformis sporu-
lated oocysts were then suspended in 5% (v/v) sodium 
hypochlorite for 20 min on ice with intermittent stirring, 
and  the oocysts were washed in PBS. The hypochlorite-
treated sporulated oocysts were then vortexed with an 
equal volume of glass beads (diameter: 0.5 mm) for 3 min 
to release sporocysts and thereafter incubated with 0.75% 
(w/v) sodium taurodeoxycholate and 0.25% (w/v) trypsin 
in PBS for 1 h at 37 °C and 200 rmp for sporozoite excys-
tation. The final purification step was vacuum filtration of 
the E. falciformis sporozoites [19, 32].

Cell and parasite culture
Mouse intestinal epithelial cells were cultivated in com-
plete medium (Dulbecco’s modified Eagle’s medium 
[DMEM; Sigma-Aldrich, St. Louis, MO, USA) sup-
plemented with 10% fetal bovine serum (FBS) (Sigma-
Aldrich) (v/v) and 1% antibiotic diluent (Solarbio, Beijing, 
China)[26]. After confluence was reached, approximately 
1 × 106 MIECs were plated with complete medium and 
incubated overnight. To inhibit exosome secretions 
[27], MIECs were inactivated with 4% paraformalde-
hyde (Solarbio, Beijing, China) for 20 min at room tem-
perature and washed 5 times with sterile PBS. Inactivated 
MIECs were re-cultured in Exo-clear cell growth medium 
(System Biosciences, Palo Alto, CA, USA) followed by 
inoculation of 2 × 106 freshly excysted E. falciformis 
sporozoites [28]. The parasites were maintained in the 
culture plates for 18 h [30] at 37 °C in a 5% CO2 humidi-
fied incubator. A non-treated control (NC) experiment 
was prepared in parallel in which inactivated MIECs 
were incubated as described above, but without E. falci-
formis sporozoites.

Separation of E. falciformis sporozoite secretomes
A 350-ml sample of culture supernatant was harvested 
without disrupting the MIEC monolayer and centrifuged 
at 4  °C  sequentially at: 1000  g, 5 min; 2000  g, 10  min; 
5000  g, 20  min; 10,000  g, 30  min. The supernatant was 
then transferred into polycarbonate ultracentrifuga-
tion tubes (Thermo Fisher Scientific, Waltham, MA, 
USA) and centrifuged at 120,000 g for 18 h in a Sorvall 
WX+ Ultra Series centrifuge (T-890 fixed angle rotor, 

k-factor 25.1; Thermo Fisher Scientific). The resulting 
supernatant from the ultracentrifugation was subjected 
to ultrafiltration through a 0.22-µm Corning sterile fil-
ter (Corning, Corning, NY, USA) at 4  °C under gravity, 
followed by 10-fold concentration using an Ultra 10 kDa 
cut-off membrane (Amicon Ultrafiltration System; Milli-
poreSigma, Burlington, MA, USA) and stored at − 80 °C 
as the E. falciformis sporozoite VF fraction [31]. The cell 
culture supernatant from the NCs was prepared in the 
same manner.

The resulting pellets from the ultracentrifugation pro-
cess were pooled, reconstituted in 8 ml PBS (pH 7.2) and 
resolved on discontinuous iodixanol gradients solutions 
prepared by diluting OptiPrep™ density gradient (ODG) 
medium (Sigma-Aldrich) in 60% (v/v) aqueous iodixanol 
with sterilized 0.3  M sucrose/10  mM Tris, pH 7.2 [32, 
33]. The gradient was formed by adding 1.6  ml each of 
40, 20, 10 and 5% iodixanol solution into a 9-ml poly-
carbonate tube (Thermo Fisher Scientific) and   1 ml of 
EfSEV suspension was overlaid and   subjected to  ultra-
centrifugation for 20 h at 120,000 g and 4 °C in a Sorvall 
WX+ Ultra Series centrifuge (T-890 fixed angle rotor, 
k-factor 25.1; Thermo Fisher Scientific). Seven gradient 
layers were collected, resuspended in PBS (pH 7.2) and 
washed twice for 4 h at 120,000 g and 4 °C. EfSEV pellets 
were pooled, concentrated in 400 µl of PBS and stored at 
− 80 °C. Likewise, NC pellets were collected and washed 
appropriately. The density of EfSEVs was measured from 
the corresponding ODG layer after appropriate dilution 
at an optical density of 244 nm [32, 33] with a UV–Visible 
spectrophotometer (Biomates 3S; Thermo Fisher Scien-
tific) (Additional file 6 : Data set).

Transmission electron microscopy
For transmission electron microscopy (TEM), 10 μl of 
EfSEVs was added to the a formvar carbon film-coated 
copper grid for 3 min. Excess liquid was removed with fil-
ter paper followed by staining with 3% phosphotungstic 
acid [34, 35]. An equal volume of NC particles was also 
stained. The grids were observed in model HT770 trans-
mission electron microscope (Hitachi, Tokyo, Japan).

Nanoparticle tracking analysis
The size of EfSEVs was determined using the Zetasizer 
Nano-Zs instrument (Malven, Worcestershire, UK). 
Briefly, 10 μg of EfSEVs and an equal volume of NC pel-
lets were dissolved in an appropriate volume of PBS to 
make a total volume of 1  ml in each case. The size and 
distribution of the particles were measured in triplicate 
[13].
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Sodium dodecyl sulfate‑polyacryamide gel electrophoresis 
and liquid chromatography‑tandem mass spectrometry
The protein components of the EfSEV and VF fractions 
were quantified using the BCA kit (Solarbio, Beijing, 
China). An equivalent of 10  µg of EfSEV and VF frac-
tions, as well as the NC and NCs were separately mixed 
with lysis buffer (Solarbio, Beijing, China) according to 
the manufacturer’s instruction, heated in a water bath 
at 100 °C for 10 min and resolved by 12% sodium dode-
cyl sulphate–polyacrylamide gel electrophoresis (SDS-
PAGE) [35, 36] at 100  V in a Mini-Cell electrophoresis 
system (BioRad Laboratories, Hercules, CA, USA). Fol-
lowing electrophoresis, the SDS-PAGE gel was stained 
with a Coomassie blue stain kit. Subsequently, the EfSEV 
and VF protein gel lanes were excised and pooled for 
mass spectrometry (MS).

Liquid chromatography-tandem MS (LC–MS/MS) was 
performed by the Lu-Ming Biotech Co., Ltd. (Shanghai, 
China). In brief, excised protein gel lanes were dehy-
drated and dried in a vacuum. Gel particles were reduced 
in 10  mM DTT/25  mM NH4HCO3 followed by treat-
ment with alkylation buffer and recovered in 25  mM 
NH4HCO3. Reduced gel particles were digested in 20 μl 
of 0.02 μg/μl trypsin in 25 mM NH4HCO3. The superna-
tant was treated with 50 μl of 5% formic acid/67% ace-
tonitrile followed by elution in 5% formic acid/67% ACN/
H2O. After drying using low-pressure centrifugation, the 
sample was re-dissolved in 40 µl of 0.1% formic acid and 
centrifuged through a column. The digested peptide elute 
was adjusted to pH 7 by H3PO4 and the resulting peptides 
were lyophilized in 150 μl of 100% methanol. MS analyses 
were performed with a Q-Exactive mass spectrometer 
(Thermo Fisher Scientific) equipped with Nanospray Flex 
source (Thermo Fisher Scientific). MS/MS spectra were 
obtained with a resolution of 17, 500 and an AGC target 
of 2e5 at a maximum injection time of 50  ms. The Q-E 
dynamic exclusion was set at 15.0 s in positive mode.

Protein database search and bioinformatics
MaxQuant, a quantitative proteomics software package, 
was used to search peptide sequences against Eimeria 
species, Toxoplasma gondii and Plasmodium falcipa-
rum proteins in UniProt. Trypsin digestion specificity 
was used to search databases. For protein quantification, 
MS1 and MS2 tolerance were set at 10 ppm and 0.02 Da, 
respectively. Gene ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genome (KEGG) analyses were also 
performed.

Western blot
EfSEV and VF protein concentrations were measured 
using a BCA kit (Solarbio, Beijing, China). An equivalent 

volume (10  µg) of EfSEV, VF, NC and NCs was sepa-
rately mixed with 4× Loading Buffer (Solarbio, Beijing, 
China) and vortexed. The mixture was heated in a water 
bath at 100 °C for 10 min. The protein components were 
resolved in a 12% SDS-PAGE gel, and the protein bands 
were transferred to a polyvinylidene difluoride mem-
brane (Merck-Millipore, Germany). After 1 h of block-
ing with 0.01%   Tween-20 in PBS (PBST) containing 5% 
skimmed milk, the membrane was incubated with anti-
heat shock proteins 70 kDa (Hsp70; Proteintech Group 
Inc., Rosemont, IL, USA) overnight at 4  °C. Thereafter, 
the membrane was washed in PBST and incubated with 
horseradish protein-conjugated antibodies (Proteintech 
Group) for 1 h at room temperature. The membrane was 
treated with the WesternBright™ ECL enhanced chemi-
luminescent substrate kit (Advansta Inc., San Jose, CA, 
USA) according to the manufacturer’s instruction and 
visualized using the Luminescent Image Analyzer Amer-
sham Imager 600 series (GE Co., Boston, MA, USA).

Multiplex protein microarray
The MIECs were plated at a density of 1 × 106 in com-
plete medium and incubated overnight at 37  °C and 5% 
C02. Plated MIECs were subsequently re-cultured in 
DMEM supplemented with 10% exosome-depleted fetal 
bovine serum [37] and stimulated with 10, 30, 50 and 
100 µg of EfSEVs and PBS (0 µg of EfSEVs) was used as 
experimental control treatment. Similarly, an equal den-
sity of MIECs was treated with 50 µg of EfSEVs for 0, 6, 
12 and 18 h. Cell culture supernatants were collected for 
protein microarrays. IL-1β, IL-6, IL-17, IL-18 and MCP1 
proteins were quantified by QAM-INF-1 (Quantibody® 
Mouse Inflammatory Array 1 Kit; RayBiotech, Peachtree 
Corners, GA, USA) [38]. Analyses were done in tripli-
cate, and targeted cytokines were tested in quadrupli-
cate. Each cytokine was quantified as mean fluorescence 
using the InnoScan 300 Microarray Scanner (Innopsys, 
Carbonne, France) at a wavelength of 532 nm and a reso-
lution of 10 µm. Data were analyzed using QAM-INF-1 
analysis software (RayBiotech).

RNA extraction and quantitative PCR
RNA was extracted from EfSEV-stimulated MIECs using 
TRIzol reagents (Invitrogen, Thermo Fisher Scientific). In 
parallel, the same density of MIEC was treated with NC 
particles. A 1-µg aliquot of total RNA was reverse tran-
scribed with the Primescript™ RT Reagent Kit (Takara 
Bio Inc., Shiga, Japan) according to the manufacturer’s 
instructions. PCR primers for IL-1β, IL-6, IL-17, IL-18, 
MCP1, caspase 11 and NLRP6 were synthesized by 
Tsingke Biological Technology (Xi’an, China) (Addi-
tional file  5). Real-time quantitative PCR (qPCR) was 
performed using TB Green pre-mix Ex Taq™ II (Takara 
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Bio Inc.) and the CFX98 real-time PCR detection system 
(Bio-Rad, Hercules, CA, USA). Each reaction tube con-
tained 1 μl each of forward and reverse primers, 2 μl of 
cDNA template, 10 μl of TB Green and 6 μl of nuclease-
free water. Assays were performed in triplicate, and data 
were normalized by using β-actin as a reference gene.

Lactate dehydrogenase assay
Approximately 1 × 106 MIECs in DMEM supplemented 
with 10% exosome-depleted FBS were stimulated with 
50 µg of EfSEVs for 0, 6, 12, 18 and 24 h. Likewise, 10, 30, 
50, and 100 µg of EfSEVs were used to stimulate MIECs 
and PBS (0 µg of EfSEVs) as experimental control treat-
ment. Also, an equivalent volume of NC particles was 
used as a negative control for EfSEV time- and dose-
dependent production of lactate dehydrogenase (LDH) 
by MIECs [39, 40]. The culture plates were incubated 
at 37  °C and 5% CO2. LDH was measured by Chekine™ 
LDH assay kit (Abbkine, Wuhan, China) as instructed 

in the product manual. Absorbance was measured at 
450  nm on a SpectraMax M5e Multi-Mode Microplate 
Reader (Molecular Devices, LLC, San Jose, CA, USA).

Statistical analyses
Data were expressed as the mean with the standard 
deviation and analyzed by one-way analysis of variance. 
Turkey’s test was used for multiple comparisons. Linear 
regression analysis was performed using SPSS software 
version 21 (SPS IBM Corp., Armonk, NY, USA). Charts 
were generated in GraphPad Prism 7 (GraphPad Soft-
ware, San Diego, CA, USA). Differences among dose- and 
time-dependent activities of EfSEVs on MIECs relative to 
the experimental control were considered to be statisti-
cally significant at *P < 0.05, **P < 0.001 and ***P < 0.0001.

Fig. 1  Eimeria falciformis sporozoite and derived EVs. a E. falciformis sporozoite after excystation from sporocyst. b Bar graph from NTA analysis 
of 10 µg EfSEVs in 1 ml of PBS. EfSEV mean diameter was 246 ± 2 nm. c TEM image of EfSEV processed through negative staining with 3% 
phosphotungstic acid. d Western blot analysis of EfSEVs using anti-Hsp70. Abbreviations: EfSEV, E. falciformis sporozoite EVs; EVs, extracellular 
vesicles; Hsp70, heat shock protein 70;  NC, non-treated control particles; NCs, non-treated control supernatant; TEM, transmission microscopy; VF, 
vesicle-free (see Additional files 1–5)
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Results
E. falciformis sporozoite secretomes during interaction 
with MIECs
The E. falciformis sporozoite (Fig. 1a) is the motile, inva-
sive stage of the parasite which navigates through the 
host gut before invading the host cell. The fractions of E. 
falciformis sporozoite secretome were separated from the 
culture medium by serial centrifugation and ultracentrif-
ugation steps, and then the scereted EVs were character-
ized by nanoparticle tracking analysis (NTA) and TEM. 
Also, EfSEV and VF protein compositions were identified 
by electrophoresis (Additional file 5) and analyzed by MS 
(Additional file 6). Our findings revealed that EfSEVs had 
a buoyant density ranging from 1.12 to 1.179 g/cm3 dis-
tributed between the second and the seventh ODG lay-
ers. The particles from NC had a buoyant density that 
ranged between 0.57 and 1.103 g/cm3 (Additional file 5). 
NTA analysis revealed that EfSEVs were a heterogene-
ous population of EVs  with a diameter of approximately 
37.84–1,281  nm (Fig.  1b). TEM observations indicated 
that EfSEVs were spherical and circular in shape, similar 
to Toxoplasma gondii and Neospora caninum EVs [35, 
41] (Fig. 1c). In addition, TEM revealed that NC particles 
(Additional file 2) did not contain secreted vesicles, indi-
cating that the observed EVs were formed during E. fal-
ciformis sporozoite interaction with MIECs. Additionally, 
the vesicular property of EfSEVs and depletion of protein 
in the non-treated control experiment were also con-
firmed by targeting Hsp70 in EfSEVs, VF, NC, and NCs 
for western blotting (Fig. 1d).

Protein composition of E. falciformis sporozoite EV and VF 
fractions
Electrophoretic analyses of the EfSEV and VF fractions 
showed that E. falciformis sporozoites secreted proteins 
as components of its secretomes (Additional file 6) dur-
ing interaction with inactivated MIECs. The protein 
composition of the EfSEV and VF fractions were ana-
lyzed by LC–MS/MS. MS/MS spectra were searched in 
the protein database for avian and bovine Eimeria spe-
cies, T. gondii and P. falciparum because of the intracta-
ble genome of E. falciformis [9]. Forty-two proteins were 
identified from the E. falciformis sporozoite VF fraction 
(Additional file  6), including actin (putative), kinases, 
heat shock proteins (Hsp 70 and Hsp90), vacuolar pro-
tein sorting (Vps) 54, elongation factor 1 alpha (EF-1α), 
early gametocyte enriched phosphoprotein (EGXP), as 
well as some P. falciparum and T. gondii orthologous 
proteins (Fig. 2; Additional file 6). GO terms for E. falci-
formis sporozoite VF protein are shown in Fig. 3a.

Thirty-seven proteins were identified from EfSEVs 
along with other unidentified protein peptides (Fig.  2; 
Additional file  6). Identified EfSEV proteins include 

refractile body (RB)-associated proteins, Hsp70, EF-1α, 
cytosol aminopeptidase (putative), aspartyl proteinase 
(or eimepsin) and proteases. Other proteins from EfSEVs 
were gliding associated protein (GAP) 45, histones and 
some orthologous proteins from T. gondii and P. falci-
parum (Fig. 2; Additional file 6). EfSEV proteins relating 
to biological processes, cell components and molecular 
functions are shown in Fig. 3.  Also, the protein composi-
tion of EfSEV implies the involvement of these proteins 
in E. falciformis sporozoite binding/fusion to the host 
cell, endocytosis and metabolic processes (Fig. 3). KEGG 
analysis revealed that EfSEV proteins were enriched in 
pathways involving endocytosis, protein processing, 
RNA transport, spliceosome and ribosome, as found in 
N. caninum EV proteins [35], as well as the glutathione 
metabolism pathway, which is associated with gene 
expression, DNA and protein synthesis, signal transduc-
tion, cytokine production and immune responses (Fig. 3; 
Additional file 5).

EfSEVs induced IL‑1β, IL‑6, IL‑17, IL‑18 and MCP1 
production in MIECs
Intestinal epithelial cells are known to secret cytokines 
and chemokines as well as cellular infiltration during 
inflammatory responses and parasite-host interactions 
[17, 42]. Also, Eimeria species can induce the secretion 
of diverse cytokines/chemokines in the host intestinal 
epithelium, including IL-6, IL-17, IL-18, IL-1β, inter-
feron gamma (INFγ) [17, 44] and MCP1 [43]. However, 
the reactive antigenicity of Eimeria-derived EVs in host 
inflammatory responses during infection is not fully 
understood. Therefore, we examined the secretion of 
MIEC proinflammatory cytokines after EfSEV stimula-
tion. The results showed that MIECs produced quanti-
fiable IL-1β, IL-18, IL-17 and IL-6 in response to EfSEV 
dose and time stimulations. While the level of IL-6 

Fig. 2  EfSEV and VF proteins identified by mass spectrometry. The 
list and other information on the identified proteins are provided in 
Additional file 5
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significantly increased with increasing time of MIEC 
stimulation by EfSEVs, the production of IL-17 reduced 
(Fig.  4). In addition, the production of IL-6 and IL-17 
increased at high doses of EfSEVs (Fig. 4). Also, the pro-
duction of MCP1 significantly increased with increasing 
EfSEV doses and time of stimulation (Fig. 4). The secre-
tion of IL-18 by EfSEVs-stimulated MIECs was initially 
low but increased with time and with increasing doses of 

EfSEVs. Similarly, the production of IL-1β only increased 
significantly at a high dose of EfSEVs (Fig.  4). Taken 
together, EfSEV dose enhanced the production of proin-
flammatory cytokines in MIECs whereas the production 
of MCP1 was significantly increased with increasing time 
of stimulation and dosage of EfSEVs (Fig. 4).

Gene expression profiles of the selected cytokines 
and chemokine also indicated steady and significant 

Fig. 3  GO annotation of identified EfSEV and VF proteins. a GO terms for E. falciformis VF proteins, b GO terms for EfSEV proteins. See Additional 
file 5. Abbreviations: GO, Gene ontology

Fig. 4  Cytokine and chemokine secretions by MIECs. 1 × 106 MIECs were stimulated with 10, 30, 50 and 100 µg of EfSEVs and PBS (0 µg of EfSEVs) 
for 24 h. Also, 50 µg of EfSEVs were used to stimulate 1 × 106 MIECs for 6, 12, 18 and 0 h as experimental control. IL-6, IL-17, MCP1, IL-1β and 
IL-18 secretions in cell culture supernatants were measured by protein microarray kit. The signals of the laser scanning map were extracted with 
GenePix 6.0 microarray analysis software. Quantitative data obtained  from the Quantibody-INF-1Q-Analyzer  were analyzed using RayBiotech 
mouse Inflammation Array 1 software. Cytokine concentrations (pg/ml) were determined by mean fluorescence intensities and linear regression 
standard curves were generated from the manufacturer’s standard. Each spot on the graph represents quantitative mean ± SD values in triplicate 
experiments. Asterisks indicate statistical significant differences from the control treatments at: *P < 0.05, **P < 0.001, ***P < 0.0001. Abbreviations: IL, 
Interleukin; MCPI, monocyte chemoattractant protein 1; MIECs, mouse intestinal epithelial cells; PBS, phosphate-buffered saline
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upregulation of MCP1 and IL-6 mRNA expression 
with increasing time of stimulation and EfSEV doses, 
but the increased IL-17 mRNA expression was just sig-
nificant at  high concentration of EfSEVs (Fig.  5). IL-18 
mRNA expression was also significantly upregulated 
with increasing dose of EfSEVs and time of treatment 
(Fig.  5). However, mRNA expression of INFγ remained 
unchanged with increasing time and EfSEV doses (data 
not shown). In essence, EfSEVs are parasite compo-
nents that modulate proinflammatory cytokines and 
chemokine genes during Eimeria-host interactions 
(Fig.  5). The apparent inconsequential change in the 
expression of the cytokines with NC particles indicated 
that the observed relative expressions of IL-6, IL-17, 
IL-18, IL-1β and MCP1 were due to the MIEC responses 
to EfSEV bioactivities (Fig. 5&6).

EfSEVs upregulated MIEC pyroptotic inflammasomes 
and induced the release of LDH
The eventual outcomes of pathogen-host interactions are 
sometimes marked by inflammation and host cell death 
[45]. Given the functional association of IL-18 and IL-1β 
with inflammatory programmed cell death, we investi-
gated the regulatory activities of caspase 11 and NLRP6 
in EfSEV-stimulated MIECs by qPCR. The analysis 
showed that increasing EfSEV dose and increasing dura-
tion of stimulation significantly upregulated the mRNA 
expression of NLRP6 and caspase 11 in MIECs whereas 

NC particles showed no distinct effects on inflamma-
some activation (Fig. 6a, b).

Cytosolic protein ligands, such as pathogen-associ-
ated molecular patterns (PAMPs), have been shown to 
activate pyroptosis-dependent IEC death. Specifically, 
pyroptosis of IECs can occur via the activation of caspase 
11 and NLRP6 with a concomitant secretion of IL-18 
and IL-1β [46] with the release of cytosolic LDH [39]. 
Therefore, LDH production by EfSEV-stimulated MIECs 
was investigated. The increased production of LDH by 
MIECs was significant from 18  h of EfSEV treatment 
and with increasing doses of EfSEVs. The result indicated 
that EfSEVs induced significant production of LDH as 
a marker for proinflammatory MIEC death. This find-
ing was supported by the observation that NC particles 
showed no significant involvement in the production of 
LDH by MIECs (Fig. 6c).

Discussion
Previous studies have demonstrated that protozoan para-
site secretomes include vesicle-bound and VF molecules 
such as nucleic acids, carbohydrates or glycocnjugates, 
lipids and proteins [6, 7, 47]. In this study, E. falciformis 
sporozoite EV and VF proteins were resolved from the 
total secretome formed while the parasite interacted with 
inactivated MIECs, and the protein components were 
analyzed by gel electrophoresis and LC–MS/MS. The 
electrophoretic profiles revealed protein bands in EfSEV 

Fig. 5  Eimeria falciformis sporozoite EVs modified mRNA expressions of IL-6, IL-17, MCP1, IL-1β and IL-18. MIECs (1 × 106) were plated and stimulated 
with 50 µg of EfSEVs for 6, 12 and 18 h and with 10, 30, 50 and 100 µg of EfSEVs for 24 h. PBS (0 µg of EfSEVs) was used as an experimental control 
for dose treatments and 0 h was used as control for time-dependent treatments. An equal volume of NC particles was set as negative control. 
After each time point, RNAs were extracted, and IL-6, IL-17, MCP1, IL-1β and IL-18 expressions were determined by quantitative PCR. Bars represent 
mean ± standard deviation values in triplicate experiments. Asterisks indicate a statistical significant difference with the experimental control 
treatment at *P < 0.05, **P < 0.001, ***P < 0.001
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and VF gel lanes, but no specific band was visible from 
NC and NCs, indicating that EfSEVs and VF prepara-
tions were free from MIEC secretions (Fig.  1d) (Addi-
tional file  5). This observation is in conformity with T. 
gondii tachyzoites which were unable to secret vesicles 
after being treated with aldehyde [48]. Notwithstanding, 
EfSEVs are subpopulations of self-assembled spherical 
and circular-shaped EVs with an expression of Hsp70 as 
membrane marker (Fig. 1c, d).

The proteomic dataset showed that EfSEVs and the 
VF fraction comprised membrane-associated and bioac-
tive proteins (Additional file 6). Functionally, the gliding 
motility of apicomplexan parasites requires actin polym-
erization [49], and E. falciformis sporozoite VF Hsp90 
might be involved in host cell invasion, host-parasite 
interaction, signal transduction and parasite develop-
ment similarly as found in  Eimeria tenella, T. gondii, and 
P. falciparum Hsp90  [50]. Also, the Vps51-54 complex 
has been suggested to mediate host endocytosis of T. gon-
dii and P. falciparum [51, 52]. Vps54 would possibly play 
a similar role during E. falciformis sporozoite invasion 
(Fig.  2). Additionally, Cryptosporidium parvum EF-1α 
has been associated with host cell invasion [53], and E. 
tenella protein kinases are immunogens [54] known to 

inhibit apoptosis and play major roles during stress [55, 
56]. Congruently, E. falciformis VF proteins are likely to 
be important for sporozoite motility, survival, invasion 
and pathogenesis.

Moreover, EF-1α and Hsp70 have been identified as  EV 
markers of  Leishmania major and other parasitic proto-
zoa [57]. The identification of Hsp70 and EF-1α in EfSEV 
and VF proteins (Fig.  2) suggests that specific protein 
could be secreted via two or more secretory pathways 
during host-parasite interactions. The secretion of Hsp70 
by Eimeria species is associated with sporozoite forma-
tion, pathogenicity, protective immunity and response to 
stress [5, 58, 59]. Hsp70 has also been reported among 
EV proteins from C. parvum,  N. caninum, T. gondii, 
Leishmania and Trypanosoma species [7]. EfSEV pro-
teases are likely to play important roles in E. falciformis 
sporozoite invasion, evasion of immune cells [60], devel-
opmental regulation and virulence, as  revealed in other 
Apicomplexa [61], as well as degrading  the cell matrix of 
host tissue [62]. Also, proteases are transcriptional regu-
lators of E. tenella, Plasmodium and T. gondii life-cycles 
[5, 63] and, more importantly, the invasion of Eimeria 
sporozoites is accompanied by proteolytic shedding of 
surface adhesins mediated by protease [64] (Fig. 2).

Fig. 6  Eimeria falciformis sporozoite EVs upregulate caspase 11 and NLRP6 inflammasomes and release LDH. a, b MIECs (1 × 106) were plated and 
stimulated with 50 µg of EfSEVs for 6, 12, 18 h and 10, 30, 50 and 100 µg of EfSEVs for 24 h. An equivalent volume of PBS (0 µg of EfSEVs) was used as 
experimental control for the dose treatment and 0 h was used as control for the time-dependent treatment. An equal volume of NC particles was 
set as a negative control. RNAs were extracted and analyzed by qPCR for caspase 11 and NLRP6 mRNA expression. Bars represent mean ± standard 
deviation values in triplicate experiments. The difference in mRNA expression was compared with control treatments and considered to be 
significant at *P < 0.05, **P < 0.001, ***P < 0.001. c EfSEVs induced secretion of LDH in MIECs. 1 × 106 MIECs were stimulated with increasing doses 
(10, 20, 30, 50, 100 µg) of EfSEVs. Also, 50 µg of EfSEVs was used to stimulate MIECs at increasing duration (0, 6, 12, 18, 24 h). PBS (0 µg of EfSEVs) was 
used as experimental control for the dose treatment and 0 h as the control for time-dependent treatment. An equal volume of NC particles was set 
as a negative control in both cases. MIECs were harvested at the end of the treatment and assayed for LDH production using the Chekine™ LDH 
assay kit in triplicate. Differences in the time- and dose-dependent release of LDH were compared with the control treatments and considered  
to be significant at *P < 0.05, **P < 0.001, ***P < 0.001. Abbreviations: LDH, Lactate dehydrogenase; NLRP6, nucleotide-oligomerization domain 
(NOD)-like receptor pyrin 6
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Refractile body (RB)-derived functional molecules 
include a number of proteins/enzymes, such as aspar-
tyl proteinase (eimepsin), RB antigen (SO7), and several 
haloacid dehalogenases such as hydrolase, subtilase, tran-
shydrogenase and ubiquitin, as well as some carbohy-
drates [65, 66]. Eimepsin is an Eimeria-specific antigenic 
protein [67, 68] that is abundantly secreted in the sporo-
zoite stage [5]. SO7 is also highly immunogenic with 
conserved antigenic epitopes among Eimeria species 
infecting chicken [69]. SO7 has been reported to effec-
tively stimulate the immune response compared with 
single fragment vaccine [70], and it also plays important 
roles in host cell invasion, secretion of microneme pro-
teins and Eimeria parasite intracellular survival [69]. In 
addition, the E. falciformis and E. tenella leucine amin-
opeptidase is an enzyme which preferentially catalyzes 
the hydrolysis of leucine residues at the N-termnus of 
peptides and proteins [71], which could be crucial for 
invasion, immune response, parasite excystment [72] 
and functions similar to the EV-bound aminopeptidase 
and serine protease of Acanthoamoeba castellanii [6, 73]. 
Identification of EfSEV GAP45 suggests that the E. falci-
formis sporozoite has a trail  of EVs during gliding motil-
ity [74, 75] as  reported in C. parvum infection [76]. Also, 
histones enclosed in EVs secreted by Leishmania dono-
vani, P. falciparum, Trypanosoma brucei and T. cruzi 
could have functions in parasite viability and virulence 
[77–79], and EfSEV histones could have similar roles. 
Although EfSEV RNA content was low (data not shown), 
attending EfSEV histones suggest that E. falciformis EV 
cargo contained nucleic acids. Also, inactivation might 
have resulted in the loss of MIEC receptors [10] for E. fal-
ciformis sporozoite attachment, which in turn could have 
affected the number and composition of proteins in E. 
falciformis sporozoite secretomes.

IL-1β, IL-6, IL-17, IL-18 and MCP1 secretions are 
known to play crucial roles in E. tenella, C. parvum and 
T. gondii infections [80, 81]. IEC IL-18 is constitutive 
and links innate and adaptive immunity during infec-
tion [82]. Similarly, MCP1 recruits monocytes and mac-
rophages and co-regulates IL-1β in inflamed IECs [83]. 
Therefore, the expression of MCP1 (Figs. 4, 5) indicated 
that EfSEVs could play critical roles in the transcytosis 
of monocytes to the site of E. falciformis infection [21]. 
Also, the production of IL-1β could accelerate IL-17 
response to PAMPs and stimulate chemokines recruiting 
leukocytes, T lymphocytes and neutrophils to the intes-
tinal epithelium [84]. Then, E. falciformis sporozoites 
possibly secrete EVs to prevent early infiltration of cyto-
toxic CD4 + T cells to the site of infection [84] as MIEC 
IL-1β and IL-17 expressions were low in time-dependent 
responses to EfSEVs (Figs. 4, 5) and it is comparable   to 
the expressions of the IL-17 subset and neutrophils in 

T. cruzi-infected mice [85]. However, at a later time and 
high concentrations, EfSEVs induced significant expres-
sion of IL-17, as reported in mice infected with Leish-
mania major [86], suggesting that EfSEVs are potent, 
dose-dependent activators of inflammation and that the 
observed latent inflammatory effect of EfSEVs on MIEC 
might be associated with E. falciformis sporozoite behav-
ior for intracellular survival.

It has been previously reported that Trichomonas 
vaginalis, Leishmania infantum, and P. falciparum EVs 
induced secretion of IL-6 from immune cells [7]. How-
ever, the secretion of IL-6 could be related to anti-inflam-
matory and anti-apoptotic responses in IECs [87, 88]. It 
is possible that E. falciformis sporozoites secrete EVs to 
suppress MIEC apoptotic activities because it has been 
suggested that T. vaginalis exosomes upregulate IL-6 to 
suppress other proinflammatory cytokines [89]. This is in 
contrast to extracellular acidosis that has been reported 
to transiently modulate IL-6 expression in rat epithelial 
cell [90]. Nevertheless, EfSEVs enclosed potential dan-
ger/damage/stress-associated ligands that activated the 
release of endogenous IL-18 and IL-1β as proinflam-
matory cytokines associated with inflammasome com-
plexes [91] (Figs.  5, 6). Also, EfSEVs [35, 41] were able 
to bind green fluorescent dye and aggregate around the 
MIEC membrane with some degree of internalization at 
the later experimental time, as well as involvemnet   in 
MIEC  membrane disruption or sphericalization (Addi-
tional file 5). The  cytoplasmic incorporation of EfSEVs by 
MIECs might render them as cytosolic ligands that sub-
sequently activate inflammasome complexes [92].

Inflammasomes are vital innate immune complexes 
in protozoa-host interactions [93] and are activated by 
intracellular pattern-recognition receptors (or sensors) 
that recognize pathogen- danger- [94] and stress-associ-
ated ligands [95]. Inflammasomes include NLRPs, AIM2 
and caspases [93, 96]. NLRP inflammasome families con-
tribute to intestinal disease pathogenesis while caspases 
participate in proinflammatory processes and pathophys-
iology of enteric pathogens [20, 97, 98]. In the present 
study, upregulation of MIEC caspase 11 and NLRP6, as 
well as dose-dependent upregulation of IL-18 and IL-1β 
(Figs.  5, 6) are comparable with inflammatory cascades 
and NLRP6 activation during mice colonic inflammation 
and tumorigenesis [46, 96]. Likewise, the activation of 
NLRP6 during Cryptosporidium tyzzeri infection in mice 
caused a luminal release of IL-18 [99, 100]. It is therefore 
not unlikely that C. tyzzeri-derived EVs, though not char-
acterized, might have played pivotal role in the activation 
of NLRP6 in C. tyzzeri-infected mice, as observed in this 
study (Fig. 6a, b). Mechanistically, non-canonical caspase 
11 is activated when toxins (e.g. bacterial lipopolysaccha-
ride [LPS]) find their way into the host cell cytoplasm [97, 
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101]. In the absence of the bacteria, Brucella melitensis 
LPS induced caspase 11 in murine enterocytes [102] like 
EfSEVs in this study. Moreover, the production of IL-1β, 
IL-18 and caspase 11 have been posited as markers for 
intestinal inflammation in response to pathogens [92, 
103].

Additionally, caspase 11-dependent pyroptosis, in 
association with IL-18, is a particularly important host 
immune mechanism against intracellular pathogens 
[92, 102]. Also, the production of cytosolic LDH has 
been defined as a marker for inflammasome-dependent 
pyroptosis [98, 104, 105]. Upregulation of caspase 11 
and NLRP6 with a significant release of LDH as well as 
dose- and time-dependent secretion of IL-1β and IL-18 
[106] signified that EfSEVs are potential activators of 
pyroptosis in MIECs (Figs.  5, 6). Comparatively, the 
MIEC inflammatory response and the release of the cell 
death signal induced by EfSEVs were synchronous with 
the time of E. falciformis sporozoite intracellular egress 
[30]. However, the mechanism by which intracellular par-
asites secrete a regulated amount of EVs to temporarily 
delay host responses until the completion of intracellular 
development requires further investigation. It is therefore 
possible that inflammatory responses and host cell death 
during Eimeria infection are not entirely passive due to 
intraepithelial distress, but are prefigured by Eimeria par-
asite behavior for survival and successful completion of 
the life-cycle.

Conclusion
This study emphasized host-parasite interaction as an 
additional mechanism by which the protozoan para-
site E. falciformis secretes EVs and VF molecules. The 
study  unveils the protein compositions of E. falciformis 
sporozoite secretome as well as the MIEC inflamma-
tory response to E. falciformis sporozoite EVs. Specifi-
cally, E. falciformis sporozoite EVs contained important 
antigenic and immunogenic proteins as well as other 
apicomplexan proteins that are implicated in motility, 
invasion, pathogenesis, survival and host cell degra-
dation. Also, E. falciformis VF proteins encompassed 
proteins involved in pathogenesis, motility and vesicle 
formation. Furthermore, E. falciformis sporozoite EVs 
induced the release of proinflammatory molecules such 
as  IL-6, IL-17, IL-1β and IL-18 as well as the upregu-
lation of pyroptosis-dependent caspase 11 and NLRP6, 
at the least, in a dose-dependent manner. Essentially, E. 
falciformis EVs are components of danger-associated 
molecular patterns (DAMPs) with protein- and gene-
regulatory activities that support pyroptosis-depend-
ent response. Unlike parasite protein characterization 
through extraneous stimuli, the model of the study 
could be adapted to ascertain secretory motifs and 

constitutive antigens/immunogens in Eimeria species 
for the development of  vaccines against poultry coc-
cidiosis. Also, it will benefit our understanding to fur-
ther describe the classical components of NLRP6- and 
caspase 11-mediated pyroptosis during E. falciformis 
infection.
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