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Abstract 

Background:  Approximately 30% of children worldwide are infected with gastrointestinal parasites. Depending on 
the species, parasites can disrupt intestinal bacterial microbiota affecting essential vitamin biosynthesis.

Methods:  Stool samples were collected from 37 asymptomatic children from a previous cross-sectional Argentinian 
study. A multi-parallel real-time quantitative PCR was implemented for Ascaris lumbricoides, Ancylostoma duodenale, 
Necator americanus, Strongyloides stercoralis, Trichuris trichiura, Cryptosporidium spp., Entamoeba histolytica and Giardia 
duodenalis. In addition, whole-genome sequencing analysis was conducted for bacterial microbiota on all samples 
and analyzed using Livermore Metagenomic Analysis Toolkit and DIAMOND software. Separate analyses were carried 
out for uninfected, Giardia-only, Giardia + helminth co-infections, and helminth-only groups.

Results:  For Giardia-only infected children compared to uninfected children, DNA sequencing data showed a 
decrease in microbiota biodiversity that correlated with increasing Giardia burden and was statistically significant 
using Shannonʼs alpha diversity (Giardia-only > 1 fg/µl 2.346; non-infected group 3.253, P = 0.0317). An increase in 
diversity was observed for helminth-only infections with a decrease in diversity for Giardia + helminth co-infections 
(P = 0.00178). In Giardia-only infections, microbiome taxonomy changed from Firmicutes towards increasing propor-
tions of Prevotella, with the degree of change related to the intensity of infection compared to uninfected (P = 0.0317). 
The abundance of Prevotella bacteria was decreased in the helminths-only group but increased for Giardia + hel-
minth co-infections (P = 0.0262). Metagenomic analysis determined cobalamin synthesis was decreased in the Giardia 
> 1 fg/µl group compared to both the Giardia < 1 fg/µl and the uninfected group (P = 0.0369). Giardia + helminth 
group also had a decrease in cobalamin CbiM genes from helminth-only infections (P = 0.000754).

Conclusion:  The study results may provide evidence for an effect of parasitic infections enabling the permissive 
growth of anaerobic bacteria such as Prevotella, suggesting an altered capacity of vitamin B12 (cobalamin) biosynthe-
sis and potential impact on growth and development in children .
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Background
Gastrointestinal (GI) parasites are estimated to infect 
more than two billion people throughout the world [1]. 
Both soil-transmitted helminths (STH) (Ascaris lum-
bricoides, hookworms, Strongyloides stercoralis, Tri-
churis trichiura) and protozoans (Giardia duodenalis, 
Cryptosporidium spp., Entamoeba histolytica) are preva-
lent in resource-limited areas [2, 3]. Symptoms include 
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chronic diarrhea, severe anemia, and can lead to intes-
tinal obstruction. Economically disadvantaged children 
have recurrent infections and malnutrition that may 
lead to growth and cognitive delays [4]. These chil-
dren have more difficulties in school and, subsequently, 
in the job market [4]. The cycle continues when they 
remain in poverty and have their children [4]. The link 
between intestinal helminths and malnutrition leading 
to growth stunting and anemia has been found by oth-
ers [5–12], and a Global Burden of Disease Study points 
to evidence that hookworm is a leading cause of ane-
mia in resource-poor settings [13]. Valuable informa-
tion from the Global Enteric Multicenter Study (GEMS) 
and studies related to returning travelers also reveals an 
unexpected global health impact caused by some proto-
zoans, possibly including giardiasis [14, 15]. The Etiol-
ogy, Risk Factors, and Interactions of Enteric Infections 
and Malnutrition and the Consequences for Child Health 
and Development (MAL-ED) study found an association 
with subclinical, non-diarrheal giardiasis and decreases 
in growth of children [16]. There are few studies attrib-
uting gut microbiome changes to giardiasis [17–19] and 
no published studies showing the impact on the human 
intestinal microbiome using multi-parallel real-time 
quantitative (qPCR) to detect the presence of Giardia 
and quantitating the burden of infection [20]. To date, 
most studies examining intestinal parasitism have not 
been able to study intestinal worms and protozoans 
simultaneously and to successfully dissect the relative 
contribution of each of the significant intestinal helminth 
or protozoan pathogens to specific diseases. The current 
state of diagnosing gastrointestinal parasites in resource-
limited areas uses the subjective method of microscopy. 
Depending on the parasite, single stool microscopy exam 
sensitivity ranges from 50–80% [21]. As a result, large 
numbers of infected children are not being diagnosed 
correctly and treated.

Gastrointestinal parasites may modulate intestinal 
inflammation, malabsorption, and microbiome changes 
[22–26]. The microbiome is associated with digestion, 
nutrition and health, but alterations in biodiversity can 
increase disease states and induce intestinal inflamma-
tion [27]. Animal studies further show changes in micro-
bial diversity due to G. duodenalis [18, 28]. There is a 
lack of literature studying the relationship between GI 
parasitesʼ impact on the human intestinal microbiome 
[19]. These few studies have presented discordant results 
of the impact parasites have on human intestinal micro-
biota biodiversity [29, 30].

The relationship between intestinal microbiota bio-
diversity may depend upon which specific parasite is 
present in the gut [30]. Since the burden of parasite 
infection is directly correlated to morbidity and disease, 

the intensity of infection may also impact the intestinal 
microbiota [30]. The qPCR quantitates the burden of hel-
minths and protozoans, determining the correlation of 
burden to changes in intestinal microbiota biodiversity. 
Alterations in intestinal microbiota alter bacterial metab-
olites, such as vitamin B12 (cobalamin), reducing their 
availability for human use.

Interactions between parasites and intestinal microbi-
ota may have a direct impact on child nutrition. Giardia 
duodenalis is known to cause malabsorption, steator-
rhea, and diarrhea [31], with preliminary studies finding 
improvements in vitamin B12 serum levels after treat-
ment for giardiasis [32, 33]. Vitamin B12 is a crucial 
microbiota-derived co-enzyme for humans who can-
not produce it [34–36]. As vitamin B12 production is 
unique to specific intestinal bacteria, alterations in intes-
tinal microbiota could diminish vitamin B12 availability 
for human use [37]. Advances in next-generation DNA 
sequencing allow for precise taxonomic comparisons 
between intestinal microbiotas and can simultaneously 
be used to scan the intestinal microbiota meta-genome 
for the presence of functional genes necessary for the 
specific functions, like cobalamin synthesis. In this pilot 
study, parasite qPCR and next-generation DNA sequenc-
ing was used to explore whether quantitative burden of 
specific parasites (Giardia duodenalis and soil-transmit-
ted helminths) influence the composition of intestinal 
microbial communities. Using vitamin B12 as a repre-
sentative bacteria-generated nutrient, we analyzed bacte-
rial metagenomes as a surrogate for changes in intestinal 
bacteria functions associated with intestinal parasitic 
infections. This was a preliminary study using a popu-
lation with high prevalence of intestinal parasites. It is 
meant as an introductory for the future direction of our 
research.

Methods
Study population
This descriptive study aimed to determine the effect of 
G. duodenalis and other intestinal parasites on bacterial 
microbiota and subsequent cobalamin metagenomics. 
Samples were randomly selected from a previously pub-
lished study using qPCR in peri-urban Argentina [38]. 
No previous antiparasitics or antibiotics were adminis-
tered 3  months prior to the sample collection. Samples 
consisted of four groups: (i) a control group with no para-
sites detected by qPCR (uninfected); (ii) a Giardia-only 
infected group; (iii) a Giardia and helminth co-infection 
group; and (iv) a helminth-only infected group. Hel-
minths included in this study were Ascaris lumbricoides, 
Ancylostoma duodenale, Necator americanus and Stron-
gyloides stercoralis (Table 1).
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Multi‑parallel real‑time quantitative PCR
All stools were collected and immediately stored on ice 
and sealed in air-tight containers, frozen within 3 h, and 
DNA extracted using MP FastDNA Spin Kits for Soil (MP 
Biomedicals, Irvine, CA) [38]. This collection method 
was found to yield adequate microbiome data for study 
analysis [29]. Samples were processed in Salta, Argentina, 
using a modified bead-beating process described previ-
ously [38, 39]. DNA was processed for qPCR in Houston, 
Texas, as previously described [38, 39]. The intensity of 
parasite DNA was calculated using reference plasmids to 
create a standard curve, as previously reported [38]. The 
qPCR results from the previous Argentinian study were 
used for these analyses [38].

Whole‑genome DNA sequencing
DNA sequencing and library construction were per-
formed at New England Biolabs (NEB). All the samples 
underwent removal of methylated DNA with NEBNext® 
Microbiome enrichment kits (New England Biolabs, 
Ipswich, MA). No DNA size selection was made. DNA 
Library prep was done as per the manufacturerʼs proto-
col using 1 µg of sample DNA and eight cycles of PCR 
enrichment (NEBNext Ultra DNA Library Prep Kit for 
Illumina, Version 5.1, 9/17). Sequencing was performed 
using an Illumina NextSeq (Illumina, San Diego, CA) 
with paired or single ends, and 151 bp reads.

Bioinformatics
Fastq reads were filtered for quality at a minimum Phred 
score of 20 (99% accuracy) and a minimum length of 50 
using Cutadapt version 1.8.3 [40]. Paired-end reads were 
interleaved using merge_fastq_reads_with_N_separator. 
Pl Perl script included with Livermore Metagenomics 

Analysis Toolkit (LMAT) software version 1.2.6 [41]. 
Fastq files were converted to fasta files using seqtk soft-
ware version 1.0 (https​://githu​b.com/lh3/seqtk​). Fasta 
files were processed by LMAT for taxonomic classifica-
tion using LMAT kFull database. LMAT output text files 
were filtered for LMAT defined confidence score of 1 and 
minimum reads of 500 using tolineage.py script. Subse-
quently, output files were combined using merge_met-
aphlan_tables.py script using Metaphlan [42].

Alpha diversity was calculated using the Phyloseq R 
package [43]. Abundant different operational taxonomic 
units (OTU) among the four groups were identified using 
the LEfSe algorithm [44]. Most abundant bacteria for 
Lefse were run with a logarithmic LDA score threshold 
of 4.5 and other parameters set to default. Metagenom-
ics analysis was performed using Diamond v0.8.4 using 
blastx mode with 90% minimum identity and e-value of 
10−5 against nr database fasta file [45]. Results from Dia-
mond analysis were exported to Megan version 6 using 
daa-meganizer program [46]. GenInfo identifier to Inter-
pro identifier mapping within Megan program was used 
to annotate the vitamin B12 synthesis gene [47]. STAMP 
software was used for statistical analysis pertaining to 
taxonomic and metagenomic differences [48]. Microbial 
attributes were derived from (LMAT) taxonomic output 
using the Megan program.

Statistics
qPCR results were recorded for each patient as positive 
or negative, including the concentration of DNA (fg/
µl) for each parasite. All statistics were performed using 
Prism v. 7.0b (GraphPad, La Jolla, CA). Mann-Whitney 
and one-way ANOVA tests were used to compare two 
and multiple groups, respectively. Spearmanʼs rank test 
was used to correlate the Giardia DNA concentration 

Table 1  Metadata for research subjects (geometric mean, minimum, and maximum)

n number of subjects

Group (n) Mean age 
(range) 
(years)

Male Female Giardia DNA 
(fg/µl)

Ascaris DNA 
(fg/µl)

Ancylostoma 
DNA (fg/µl)

NecatorDNA 
(fg/µl)

Strongyloides 
DNA (fg/µl)

Shannonʼs alpha 
diversity mean 
(range)

Uninfected 
(n = 5)

4.5 (3–6) 3 2 0 0 0 0 0 3.253 (2.826–
3.839)

Giardia (n = 13) 5.6 (4–7) 6 7 1.12 (0.012–
20,657)

0 0 0 0 >1 fg/µl = 2.346 
(2.066–
3.199); < 1 fg/
µl = 3.253 
(2.250–3.617)

Giardia +hel-
minths 
(n = 7)

6.8 (4–8) 4 3 21.4 (0.02–
5697.8)

1.062 164.8 (12.95–
556.4)

0.249 (0.03–
12.47)

39.59 (9.97–
157.1)

3.118 (2.201–
3.343)

Helminths 
(n = 12)

5.1 (3–7) 6 6 0 6.82 (4.133–
9.67)

10627.8 (2320–
59963)

2.839 (0.119–
63.8)

0.01357 3.407 (3.217–
3.783)

https://github.com/lh3/seqtk
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to Shannonʼs alpha diversity, including the “uninfected” 
and “Giardia-only” group. Shannonʼs alpha diversity is 
a commonly reported diversity metric that weights the 
numbers of species by their relative evenness [49]. Pro-
portion of targeted sequences was used in calculating 
OTU and metagenomics. Vitamin B12 data was calcu-
lated comparing specific genes to all other vitamin B12 
synthesis genes. All statistical models used P-values less 
than 0.05 as significant.

Results
Parasite DNA intensity
Parasite DNA intensity with the intestinal parasite detec-
tion by stool qPCR as described by Cimino et  al. [38] 
(Table 1).

Diversity of intestinal microbiota
Measuring bacterial diversity in relation from children 
with no Giardia DNA to increasing Giardia DNA inten-
sity of burden (fg/µl) showed an inverse correlation of 
bacterial diversity to Giardia DNA (fg/µl) (Spearmanʼs 
r(18) = − 0.4781, P = 0.0447) (Fig.  1a). From the scatter 
plot (Fig.  1a) a noticeable change in slope occurred at 
levels > 1  fg/µl. Since there are no guidelines for heavy 
Giardia burden, greater than 1 fg/µl was selected, and all 
further analyses validated this threshold.

Giardia > 1  fg/µl group had a significantly lower bio-
diversity compared to the uninfected children using 
Shannonʼs alpha diversity (Giardia-only > 1  fg/µl: 
2.346; uninfected group: 3.253, U(10) = 2, Z = − 2.1934, 
P = 0.0317 (Fig.  1b). Giardia > 1  fg/µl had lower diver-
sity than the helminth-only group U(17) = 0, Z = − 3.1096, 
P = 0.0003 (Fig.  1b). Giardia > 1  fg/µl also had lower 
diversity compared to all other groups F(3, 25) = 9.982, 
P = 0.000166 (Fig. 1b). Alpha diversity was also lower for 

the Giardia + helminth co-infected group compared to 
the helminth-only group U(19) = 7, Z = 2.958, P = 0.00178 
(Fig. 1b).

Change in bacterial abundance
In Giardia-only infections, microbiome analysis data 
indicates decreased biodiversity in the infected parasite 
group compared to the non-infected group, a bias toward 
increased Prevotella, with the degree of change related to 
the intensity of infection (Fig. 2a). Giardia-only children 
had significantly higher proportions of the genus Prevo-
tella bacteria directly correlating to above 1 fg/µl Giardia 
DNA versus uninfected group U(10) = 2, Z = 2.1934, 
P = 0.0317 (Fig.  2a). The helminth-only group with 
decreased Prevotella proportions relative to the Giardia-
only group U(25) = 41, Z = 2.0125, P = 0.0457, but similar 
to the control group (Fig. 2b). Interestingly, the Giardia 
+ helminth co-infected group had increased Prevo-
tella proportions compared to the helminth-only group 
U(19) = 8, Z = − 2.8735, P = 0.00262 (Fig.  2b). Prevotella 
copri was the major species in each group, Giardia (37%), 
helminths-only (17%), uninfected (22%), Giardia + hel-
minths (36%) (data not shown).

All four groups had different bacteria genera as their 
most abundant microbiota. Giardia- infected children, 
including Giardia + helminth co-infected, had higher 
Bacteroidales, including Prevotella species (Fig.  3). Spe-
cific cobalamin producing bacteria, such as Lactobacillus 
and Bifidobacterium, were found in higher abundance for 
the non-Giardia infected children (Fig. 3).

Metagenomics of cobalamin biosynthesis
Vitamin B12 InterPro identifier IPR002751 biosynthe-
sis CbiM gene was used in the analysis. Children with 
Giardia > 1  fg/µl infections had fewer quantities of 

Fig. 1  a There was an inverse correlation of Giardia DNA to decreased Shannonʼs alpha diversity (Spearmanʼs r = − 0.4781, P = 0.0447); > 1 fg/
µl was selected as heavy Giardia DNA burden since a noticeable change in slope occurred after 1 fg/µl. b The mean of the Giardia > 1 fg/µl group 
(dotted line) has a significant decrease in bacterial diversity compared with the uninfected group (P = 0.0317) and all other groups (P = 0.000166). 
*P < 0.05



Page 5 of 9Mejia et al. Parasites Vectors          (2020) 13:200 	

cobalamin DNA sequences than the Giardia < 1 fg/µl and 
uninfected group combined F(2, 15) = 4.145, P = 0.0369 
(Fig.  4a). Children with Giardia + helminth co-infec-
tions had a less proportion of vitamin B12 pathway 
DNA sequences, compared to helminth-group U(19) = 5, 
Z = 3.1271, P = 0.000754 (Figs. 4b, 5).

Discussion
The association of G. duodenalis with microbiome diver-
sity was observed in this study using whole-genome 
sequencing. Giardia duodenalis plays a prominent role, 
perhaps as its primary site of infection and replication is 
in the small intestine.

Parasites alter the intestinal microbiota of children
This study determined that children infected with 
Giardia DNA > 1  fg/µl are associated with decreased 
microbial diversity and increases of Prevotella. DNA lev-
els of Giardia > 1 fg/µl implies that there are more para-
sites to alter the intestinal microbiome, and thus have a 
higher impact on intestinal bacterial species.

It is unclear whether the parasites are impacting the 
intestinal microbiota or external factors such as age, diet, 
or sex differences altering the intestinal microbiota and 
making the subjects more susceptible to enabling a G. 
duodenalis infection. Certain bacteria can permit G. duo-
denalis colonization, as evidenced from a mouse model 
study where the mouse intestinal microbiota (enteroag-
gregative Escherichia coli), independent of G. duodenalis 
infection, can promote inflammation, but together syner-
gistically increased signals of intestinal injury [18].

Changes in vitamin B12 due to parasite infections
Vitamin B12 synthesis primarily occurs in anaerobes, 
including Bifidobacterium and Lactobacillus species [37, 
50–53]. These microorganisms may promote intestinal 
homeostasis and may protect against inflammatory dis-
eases [54–57]. Vitamin B12 is absorbed in the small intes-
tines [58–60] while the majority of microbiota reside in 
the colon [58], although, the small intestine is not sterile 
and does contain a robust microbiota that influences the 
absorption of vitamins [61–63]. Specific bacteria pro-
duce vitamin B12 [64], and the children infected with G. 
duodenalis with DNA levels above 1  fg/µl may be una-
ble to synthesize the required amounts of vitamin B12 
for nutritional benefit. The group with less than 1  fg/µl 
Giardia DNA infections had equal vitamin B12 bacterial 
genes to the uninfected group, both being higher than the 
Giardia > 1 fg/µl group, likely showing that lower inten-
sity of Giardia infections has similar effects as the unin-
fected group on vitamin B12 synthesis.

Evidence of the impact of G. duodenalis on the diver-
sity and available micronutrients was also observed in 
the Giardia + helminth co-infection group, compared to 
the alterations of the microbiome seen in the helminth-
only group. While the helminth-only group did not have 
changes in diversity or decreased cobalamin synthesis 
genes, a possible explanation is that most of these hel-
minths reside in the colon and do not alter the microen-
vironments as does G. duodenalis.

Study limitations
A limitation of this cross-sectional study is the small 
sample size. However, the results are consistent, and this 

Fig. 2  a Giardia > 1 fg/µl group had greater proportions of Prevotella DNA than the uninfected group (P = 0.0317) in their intestinal microbiota. 
b The helminths-only group had decreased proportions of Prevotella DNA compared with the Giardia-only group (P = 0.0457) in their intestinal 
microbiota. The Giardia + helminth co-infected group had increased proportion of Prevotella DNA compared to the helminth-only group 
(P = 0.00262) in their intestinal microbiota. *P < 0.05
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potential limitation can be viewed in terms of the sheer 
number, and fidelity of, using enriched microbe DNA 
for whole gene sequencing, producing millions of reads 
for analysis. This study also did not take into account 
Giardia assemblages that can have differing amount of 
pathogenicity. Another limitation is that serum vitamin 
B12 levels were not measures in children and thus the 
decrease of vitamin B12 genes in Giardia infected chil-
dren could not be translated into a loss of vitamin B12.

Conclusions
In this study, there is a possible link as to why G. duo-
denalis and other parasites may cause growth and devel-
opmental delays in infected children. Giardia-infected 
children with > 1  fg/µl DNA concentrations were asso-
ciated with less microbiome diversity, and a higher 
abundance of Prevotella associated with the diminished 
presence of cobalamin synthesis genes. The influence 
of G. duodenalis appears to be evident regardless of the 

Fig. 3  Most abundant OTUs for each group using LDA Effect Size (LEfSe)
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presence of STH, and was associated with altered micro-
biome composition or function as measured by cobala-
min synthesis. This descriptive study is a preliminary 
evidence for future studies looking at the cobalamin 
biosynthesis pathway. We are currently extending these 
results to additional populations where G. duodena-
lis and other intestinal parasite infections are endemic, 
determining Giardia assemblages, and confirming the 
biochemical analysis of the vitamin B12 pathway prod-
ucts in affected children.
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