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Abstract

Background: Many school children living in Africa are infected with plasmodia and helminth species and are
consequently at risk of coinfection. However, the epidemiology of such coinfection and the implications of
coinfection for children’s health remain poorly understood. This study describes the epidemiology of Ascaris
lumbricoides-Plasmodium and hookworm-Plasmodium coinfection among school children living in western Kenya
and investigates the associated risk factors.

Methods: As part of a randomized trial, a baseline cross-sectional survey was conducted among school children
aged 5–18 years in 23 schools in Bumula District. Single stool samples were collected to screen for helminth
infections using the Kato-Katz technique and malaria parasitaemia was determined from a finger prick blood
sample. Demographic and anthropometric data were also collected.

Results: Overall, 46.4 % of the children were infected with Plasmodium falciparum while 27.6 % of the children
were infected with at least one soil transmitted helminth (STH) species, with hookworm being the most common
(16.8 %) followed by A. lumbricoides (15.3 %). Overall 14.3 % of the children had STH-Plasmodium coinfection, with
hookworm-Plasmodium (9.0 %) coinfection being the most common. Geographical variation in the prevalence
of coinfection occurred between schools. In multivariable logistic regression analysis, hookworm was positively
associated with P. falciparum infection. In stratified analysis, hookworm infection was associated with increased
odds of P. falciparum infection among both boys (P < 0.001) and girls (P = 0.01), whereas there was no association
between A. lumbricoides and P. falciparum.

Conclusion: These findings demonstrate STH infections are still prevalent, despite the ongoing national deworming
programme in Kenya, and that malaria parasitaemia is widespread, such that coinfection occurs among a proportion of
children. A subsequent trial will allow us to investigate the implications of coinfection for the risk of clinical malaria.
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Background
School children living in sub-Saharan Africa are com-
monly infected with helminth and plasmodia species,
with many children harbouring multiple infections. For
example, studies in east and west Africa indicate that
between 13.5 % and 60 % of school children are concur-
rently infected with Plasmodium falciparum and diffe-
rent soil-transmitted helminth species [1–11]. Helminths
are known to invoke strong immune responses [12] and
it has been suggested that they affect malaria-specific
immune responses which may, in turn, alter the risks of
malaria parasitaemia and clinical disease [12, 13]. The
occurrence of coinfection will also influence the plan-
ning of integrated intervention strategies that simul-
taneously tackle helminth infections and malaria [14].
Despite the growing awareness of the issue of helminth-
plasmodia coinfection, there are few detailed and com-
prehensive data on coinfection and putative risk factors.
Previous work in Kenya has shown that coinfection is
more common among boys, is less common with increas-
ing age, and highest among children from the poorest
households [3, 4]. Other work in Côte d’Ivoire confirms
that boys and children from poorer households are at
greater risk of coinfection with soil transmitted helminths
and Plasmodium spp. [9, 11]. The risk of coinfection is
also associated with access to sanitation and clean water,
recent deworming, and living in urban settings [3, 9].
Studies have in addition highlighted the marked spatial
heterogeneity in the distribution of helminth-coinfection
at both local and regional scales [3, 4, 8]. In this paper we
describe results from school surveys carried out in
Bumula District, western Kenya, conducted as part of
screening surveys for an individually randomized trial
investigating the impact of intensive anthelminthic treat-
ment versus annual treatment on the risk of clinical ma-
laria among school children in Bumula District, western
Kenya (ClinicalTrials.gov NCT01658774). The aim of the
present analysis is to describe the patterns of Ascaris-
Plasmodium and hookworm-Plasmodium coinfection and
investigate whether helminth species infection are asso-
ciated with Plasmodium infection.

Methods
Study setting
The survey was conducted in Bumula District which is one
of the sub-counties in Bungoma County, western Kenya,
between February and June 2013. Bumula District is lo-
cated at 1,320 m elevation and experiences an annual aver-
age rainfall of 2,428 mm, with the long rains occurring
from March-May and short rains from October-December.
Average annual minimum and maximum temperatures are
11 °C and 24 °C, respectively. The population of the area
consists of indigenous Bukusu, a subtribe of the Luhya
community. The economy is primarily rural subsistence
agriculture, with some families growing sugar cane as a
cash crop. The population is serviced by Bumula Sub-
District Hospital, which serves about 180,000 people and a
catchment area of approximately 250 km2.
The area was chosen because it experiences a high rate

of malaria transmission and some of the highest preva-
lences of STH in Kenya [15, 16]. Malaria transmission is
intense and perennial, with two seasonal peaks (April-June
and November-December), and most malaria is caused by
P. falciparum. Recent survey data indicated the prevalence
of P. falciparum as 21.6 % [16]. Historically, helminth in-
fections were highly prevalent in the area [17], but im-
provements in socioeconomic status and access to water
and sanitation has reduced infection levels [18]. A national
school-based deworming programme launched in 2009
and more recent data indicate that 25.1 % of school
children are estimated to be infected with Ascaris lumbri-
coides and/or hookworm [4, 15]. As part of the national
school deworming programme launched in 2012, school
children were treated with 400 mg of albendazole in June
2012 and June 2013.

Selection of schools and children
Representative schools of the 90 public primary schools
in Bumula District were purposively selected for initial
screening with the assistance of the district education
and health officials. Initially, 30 schools were screened in
January 2013 to identify those schools with highest
prevalence of STH infection. Seven schools were ex-
cluded because of a low prevalence of STH, with 23
schools recruited into the study. The present study re-
cruited children regardless of infection status, whereas
the treatment trial will, in the first instance, recruit only
children found to be infected with STH species.

Survey procedures
Parent/guardians of children in class 1–6 were invited
to attend sensitization meetings held at the selected
schools. The study procedures were explained in a
language with which they felt most comfortable, written
informed consent was obtained from all parents who
were willing to have their children be part of the study
before any investigations were done.
Children were asked to provide stool samples which

were examined in duplicate for presence of STH eggs by
two different technicians using the Kato-Katz method.
For the investigation of P. falciparum infections, finger
prick blood samples were collected. Thick and thin
blood smears were stained with 3 % Giemsa for 45 min
and examined by microscopy. Parasite densities were
determined from thick blood smears by counting the
number of asexual parasites per 200 white blood cells,
assuming a white blood cell count of 8,000/μl. A smear
was considered negative after reviewing 100 high-



Children with stool, blood and anthropometric and demographic data (n=5471)

Children with informed consent (n=7075)

Children absent on the day of the survey (n=824)

Children who provide a stool sample (n=5980)

Children who did not provide sufficient stool sample (n=220)

Children lacking blood smear data (n=427)

Children lacking anthropometric data (n=82)

Children who did not fulfil the inclusion criteria (n=51)

Fig. 1 Study flow diagram showing compliance in a cross sectional
survey conducted in school children in 23 schools in Bumula District,
western Kenya
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powered fields. Thin blood smears were reviewed for
species identification. All stool and blood slides were
read by two independent microscopists; any discrepan-
cies were resolved by a third microscopist. Ten percent
of all samples were re-examined by a senior technician
and discrepant (positive versus negative) slides were re-
read by a third technician until a consensus was reached.
Auxiliary temperature was measured using a digital ther-
mometer and a malaria rapid diagnostic test (SD; Bioline)
was performed for all children with fever (auxiliary tem-
perature of <37.5 °C or with a reported history of fever in
the previous 24 h). Any participant tested positive for
malaria was treated with Coartem (Novartis; 20 mg
artemether/120 lumefantrine) in accordance with the na-
tional treatment guidelines. Weight was measured to the
nearest 0.1 kg using an electronic balance and height was
measured to the nearest 0.1 cm using a portable fixed base
stadiometer.

Statistical analysis
Anthropometric indices, z-scores of height-for-age (HAZ),
weight-for age (WAZ) and body mass index for age
(BMIZ) were calculated using the AnthroPlus software for
children aged 5–19 years [19]. Age was self-reported and
because there were doubts over its precision a mid-year
age was assumed. Weight-for-age was calculated only for
the children aged 5–10 years. Children were classified as
stunted, underweight or thin if their HAZ, WAZ and
BMIZ were below −2 standard deviations from the refe-
rence medium [19].
The prevalence of each STH species together with the

95 % confidence interval (95 % CI) were calculated using
binomial regression analysis taking into account cluster-
ing by school. Egg counts of duplicate slide readings
were averaged and multiplied by factor 24 to obtain the
intensity of infection expressed as eggs per gram (epg) of
faeces. To allow for the over dispersed distribution of
egg counts arithmetic mean epgs with their 95 % CIs
were estimated using negative binomial regression model
taking into account school clustering. Infection inten-
sities were also classified into light and moderate to
heavy infections according to WHO guidelines [20].
For purposes of this analysis, age was considered as ca-

tegorical variable (5–8, 9–10, and 11–12 and <14 years),
based on observed distribution. To investigate risk factors
for P. falciparum infection, mixed effects logistic regres-
sion models were fitted taking into account school clus-
tering. First, associations with sex, age (as categorical
variable), and nutritional status (classified as underweight,
thin or stunted) were investigated in univariable analysis.
Explanatory variables significant at (P < 0.20) (based on
likelihood ratio test) were considered for the multivariable
logistic regression model. Backward-stepwise elimination
was used to generate a minimum adequate model,
excluded variables (P > 0.05) were retested in the mini-
mum model. Associations between helminth species and
Plasmodium infection were investigated using stratified
analysis following the Mantel-Haenszel approach adjust-
ing for the potential confounding of sex, age and presence
of other helminth species. Overall odds ratios and odds ra-
tios stratified by age and sex, their 95 % confidence inter-
vals (CI) and associated P-value for Mantel-Haenszel χ2

test are reported. Sensitivity analysis was done to compare
children without complete data to those with complete
data. Statistical analysis was performed using STATA ver-
sion 12.0 (Stata cooperation, College Station Tx, USA).

Ethical consideration
Ethical approval was provided by the Kenya Medical
Research Institute and National Ethics Review Committee
(SSC No. 2242), the London School of Hygiene &Tropical
Medicine (LSHTM) Ethics Committee (6210), the Makerere
School of Public Health, Institutional Review Board
(IRB00005876). Prior to the study, school meetings were
held during which the purpose and procedures of the
study were discussed, parents had the opportunity to ask
question, and willing parents were asked to provide writ-
ten consent for their children to participate.

Results
The 23 schools had an estimated total population of
8,800 of which informed consent was obtained for 7,075
children (80 %). Of these children, 51 did not fulfil the
inclusion criteria, 824 were absent on the day of the sur-
vey, and 220 children did not either provide a stool sam-
ple or an adequate quantity of stool (Fig. 1). Overall, 509
children had missing data on malaria parasitaemia or
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anthropometric measures, and sensitivity analysis found
that children with missing data were more likely to be
underweight and thin and infected with P. falciparum, but
less likely to be infected with helminth species (Additional
file 1: Table S1). The characteristics of included children
(n = 5,471) and the prevalence of parasitic infections are
shown in Table 1. The mean age of children was 10.5 years
(SD, 2.3) and 50.8 % were male. In terms of nutrition sta-
tus, 3.4 % of children were classified as stunted, 23.9 % of
children were underweight and 10.6 % were classified as
thin. Underweight and thinness was more common in
male than female children (28.9 % vs. 18.7 %, P < 0.001
and 12.8 % vs. 8.6 %, P < 0.001).
Table 1 Description of study participants, overall, and by sex. SD = s

Characteristic Overall (n = 5,471)

Mean age (years, SD) 10.5 (2.3)

Age-group (years, n (%))

5-8 1294 (23.7)

9-10 1413 (25.8)

11-12 1411 (25.8)

13-18 1353 (24.7)

Class (n, (%))

Lower primary (1–3) 2711 (49.5)

Upper primary (4–6) 2760 (50.5)

Stunted (n, (%)) 186 (3.4)

Underweight (n, %) 1306 (23.9)

Thinness (n %) 577 (10.6)

Prevalence of helminth infection

Hookworm (%, 95 % CI) 16.9 (14.6-19.5)

A. lumbricoides (%, 95 % CI) 15.3 (12.2-19.2)

T. trichiura (%, 95 % CI) 0.3 (0.2-0.7)

Any STH (%, 95 % CI) 27.6 (24.8-30.8)

S. mansoni (%, 95 % CI) 0.2 (0.1-0.4)

Intensity of helminth Infection

Hookworm (epg, 95 % CI) 41 (27–61)

A. lumbridoides (epg, 95 % CI) 758 (559–1028)

P. falciparum infection (%, 95 % CI) 46.4 (41.7-51.6)

Mean parasite density (parasites per μl blood)

Uninfected (n, %) 2930 (53.7)

Low (1–999) (n, %) 1576 (28.8)

Medium/high (≥1000) (n, %) 965 (18.6)

Coinfection

Hookworm-A. lumbricoides (%, 95 % CI) 4.7 (3.7-6.1)

Hookworm-P. falciparum (%, 95 % CI) 9.0 (7.4-11.0)

A. lumbricoides-P. falciparum (%, 95 % CI) 7.8 (6.1-10.0)

Any STH-P-falciparum (%, 95 % CI) 14.3 (12.1-16.8)
Single species infection
Overall, 27.6 % of the children were infected with any
STH species. The most common species was hookworm
(16.9 %), followed by A. lumbricoides (15.3 %); T. trichiura
occurred rarely (0.3 %). Infections with multiple helminth
species were relatively uncommon (4.7 %) (Table 1). Infec-
tion intensity was generally light as per WHO classi-
fication; 68 % of the A. lumbricoides and 97 % of the
hookworm infections were light infections. Malaria was
common: 46.4 % of children were infected with P. falcip-
arum (the only species detected), with the majority of in-
fections being light densities. Infection prevalence and
intensity of hookworm and P. falciparum differed by sex,
tandard deviation, CI = confidence intervals

Boys (n = 2,782) Girls (n = 2,689) p-value

10.6 (2.6) 10.3 (2.4) <0.001

624 (22.4) 670 (24.9)

677 (24.3) 736 (27.4) 0.263

728 (26.2) 683 (25.4)

753 (27.1) 600 (22.3)

1422 (52.5) 1289 (47.5)

1360 (49.3) 1400 (50.7) 0.020

106 (3.8) 80 (3.0) 0.080

803 (28.9) 503 (18.7) <0.001

355 (12.8) 222 (8.6) <0.001

20.0 (17.1-23-4) 13.6 (11.5-16.0) <0.001

14.5 (11.6-18.3) 16.2 (12.7-20.7) 0.165

0.30 (0.2-0.7) 0.5 (0.2-0.9) 0.444

29.7 (26.4-33.4) 25.5 (22.3-29.1) 0.020

2.8 (1.6-4.9) 1.6 (0.9-3.7) 0.100

54 (35–85) 27 (16–45) 0.008

641 (455–901) 880 (647–1195) 0.005

48.9 (44.1-54.1) 44.0 (39.2-49.3) <0.001

1423 (51.1) 1507 (56.0)

836 (30.0) 740 (27.5) 0.319

523 (18.8) 442 (16.4)

5.00 (3.8-6.5) 4.5 (3.3-6.0) 0.448

11.2 (9.3-13.6) 6.9 (5.5-8.7) <0.001

7.80 (5.9-10.1) 7.8 (5.8-10.4) 0.904

15.9 (13.4-18.9) 12.5 (10.4-15.2) 0.002
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with boys being significantly more infected than girls,
while A. lumbricoides and T. trichiura prevalence was
comparable between the sexes. Age patterns of pre-
valence and intensity are shown by species in Fig. 2.
The prevalence of A. lumbricoides was highest in chil-
dren below the age of 9 years while the prevalence of
hookworm peaked among children aged 13–18 years.
The prevalence of P. falciparum decreased steadily
with age (P < 0.001). For all the three species, inten-
sity of infection was generally low and decreased with
increasing age apart from hookworm.
Fig. 2 Prevalence (a) and intensity/density (b) of infections by age group a
Kenya. 95 % confidence intervals were calculated based on binomial and n
Intensity was measured in eggs/g faeces for STH species and parasites/μl b
Coinfection
Overall, 14.3 % of children harboured STH-Plasmodium
coinfection, with hookworm-Plasmodium coinfection
being the most common combination (9.0 %). The pre-
valence of hookworm-Plasmodium coinfection was also
significantly higher in boys than girls, but no sex
difference was found in the prevalence of A. lum-
bricoides-Plasmodium coinfection. The prevalence of
A. lumbricoides-Plasmodium coinfection was signi-
ficantly different among age groups being common in
the younger age group (5–8) (P = 0.001), hookworm-
mong 5471 school children in 23 schools in Bumula District, western
egative binomial regression taking into account school clusters.
lood for Plasmodium falciparum
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Plasmodium coinfection did not vary by age group
(P = 0.613).

Geographic distribution of single infections and
coinfection
The geographic distribution of single infection and coin-
fection by school is shown in Fig. 3. P. falciparum was
common throughout the study area (range by school,
28.9-69.3 %), with highest prevalence in the western part
of the area. The variation in the geographical distri-
bution of STH was more pronounced and varied by spe-
cies: hookworm was most common in the north-western
part of the region (range by school, 7.9-30.0 %), while A.
lumbricoides was more common in the eastern area
(range by school, 5.8-34.4 %). Coinfection also exhibited
geographical variation and coinfection was generally
higher in schools with high hookworm or A. lumbricoides
prevalence.
Fig. 3 Geographic distribution of STH and Plasmodium falciparum infectio
Bumula District, western Kenya
Factors associated with Plasmodium infection
Table 2 presents the univariable and multivariable analysis
of the factors associated with P. falciparum infection and
shows that the odds of P. falciparum infection is asso-
ciated with male sex, and age group. The analysis also
provides strong evidence for ensuring association between
P. falciparum and hookworm infection and modest evi-
dence for an association between P. falciparum and A.
lumbricoides infection. In order to further investigate the
associations between helminth species and P. falciparum
infections, we performed Mantel-Haenszel stratified ana-
lyses. Table 3 presents Mantel-Haenszel stratified (by age
group and sex) odds ratios (OR) and indicates that, for
boys, the observed association of hookworm and P. falcip-
arum was age dependent, with significantly increased odds
among children 5–8 years compared to other age groups.
After adjusting for age group and A. lumbricoides infec-
tion, hookworm infection was associated with increased
n and prevalence of STH-Plasmodium coinfections in 23 schools in



Table 2 Univariable and multivariable analysis for association between Plasmodium falciparum infection and potential risk factors
among 5471 school children in 23 schools in Bumula District, western Kenya

Variable Number with P. falciparum Crude odds ratio (95 % CI) P-value Adjusted odds ratio (95 % CI) P-value

Individual characteristics

Sex

Boys 1359 (48.9) 1

Girls 1182 (44.0) 0.84 (0.75-0.94) 0.002 0.84 (0.75-0.94) 0.003

Age groups (years)

5-8 641 (49.5) 1.44 (1.23-1.69) 1.51 (1.28-1.79)

9-10 696 (49.3) 1.46 (1.25-1.70) 0.126 1.51 (0.29-1.78) <0.001

11-12 643 (45.6) 1.23 (1.06-1.44) 1.25 (1.07-1.47)

13-18 561 (41.5) 1 1

Any STH infection 781 (51.7) 1.29 (1.14-1.46) <0.001

Hookworm infected

Infected 428 (46.4) 1

Uninfected 494 (53.6) 1.31 (1.13-1.52) <0.001 1.27 (1.09-1.47) 0.002

Hookworm infection intensity

Uninfected 2047 (45.0) 1

Low 476 (53.5) 1.29 (1.12-1.49)

Medium 18 (56.3) 0.83 (0.68-1.00) 0.710

A. lumbricoides infection

Uninfected 413 (49.2) 1

Infected 426 (50.8) 1.26 (1.08-1.47) 0.003 1.18 (1.01-1.39) 0.040

A.lumbricoides infection intensity

Uninfected 2115 (45.7) 1

Low 279 (48.9) 1.15 (0.96-1.38) 0.451

Medium 147 (54.9) 1.55 (1.20-2.01)

Under weight 636 (48.7) 1.05 (0.92-1.19) 0.495

Thin 276 (47.8) 1.07 (0.89-1.28) 0.455

Stunted 94 (50.5) 1.16 (0.85-1.57) 0.345
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odds of Plasmodium infection among both boys (adjusted
OR = 1.40, P = 0.0004) and girls (adjusted OR = 1.33,
P = 0.01). Mantel-Haenszel stratified analysis for A. lum-
bricoides and P. falciparum association showed no asso-
ciation by age or sex (Table 4).

Discussion
An increasing number of STH endemic countries in the
world, including Kenya [15], are implementing school-
based deworming programmes [21] and this study shows
that only a quarter of school children are infected with
STH species, whereas studies conducted a decade or
more ago suggest that the majority of school-aged chil-
dren living in western Kenya were infected with STH
species [22, 23]. By contrast, malaria parasitaemia re-
mains a common problem among Kenyan school chil-
dren [16] and as a consequence, we found that 14.3 % of
children harboured STH-Plasmodium coinfections, with
hookworm-Plasmodium coinfection being the most
common coinfection.
As expected, prevalence and density of P. falciparum

infection varied by age group. However, patterns of STH
infection showed little variation by age, owing perhaps
to the relatively low levels of infection. Boys were more
likely than girls to be infected with hookworm and P.
falciparum, a possible reflection of behavior-related dif-
ference in exposure. Patterns of both single species in-
fection and coinfection varied markedly by school and
probably reflect a combination of behavioural and socio-
economic factors as well as small scale environmental
factors [8, 18, 24, 25].
As shown in previous studies [1, 2, 5, 9, 26], we found

an enduring association between hookworm and P. fal-
ciparum, after adjusting for age group, sex and presence
of other helminth species (Table 4). Interestingly, in
Mantel-Haenszel stratified analysis we found no such



Table 3 Results of Mantel-Haenszel adjusted odds ratios of the presence of hookworm infection on Plasmodium falciparum infection
by sex, adjusting for age and Ascaris lumbricoides infection

Sex Age (years) % positive for hookworm % positive for Plasmodium Odds ratio (95 % CI), χ2, P valuea Odds ratio (95 % CI), χ2, P value

Boys

5-8 18.4 (115/624) 52.1 (325/624) 2.24 (1.43-3.50) 0.0003

9-10 16.4 (111/677) 51.7 (350/677) 1.21 (0.80-1.85) 0.354 1.40 (1.16-1.70) 8.85, P = 0.0004

11-12 21.2 (154/728) 48.8 (355/728) 1.61 (1.12-2.33) 0.01

13-18 23.4 (176/753) 43.7 (329/753) 1.03 (0.73-1.45) 0.853

Homogeneity of ORsb: χ2 = 8.42; 0.040

Girls

5-8 12.5 (84/670) 47.2 (316/670) 1.77 (1.10-2.85) 0.02

9-10 14.3 (105/736) 47.0 (346/736) 1.51 (0.99-2.31) 0.05

11-12 13.6 (93/683) 42.3 (288/683) 0.97 (0.61-1.53) 0.896 1.33 (1.06-1.66) 3.41, P = 0.01

13-18 34.3 (84/600) 38.7 (232/600) 1.19 (0.74-1.90 0.475

Homogeneity of ORsb: χ2 = 3.84; 0.28
aAge specific OR of P. falciparum in those concurrently infected with A. lumbricoides relative to those who are A. lumbricoides negative
bThis test compares whether there was a significant difference between age-specific OR, hence whether the overall adjusted OR is valid
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association between A. lumbricoides and P. falciparum,
which is in contrast to previous studies conducted in
Madagascar [27, 28] and Thailand [29], which found a
negative effect of A. lumbricoides on P. falciparum infec-
tion, and a study in Mali which reported a positive asso-
ciation [30].
We recognize a number of limitations in our study.

First, diagnosis was based on routine parasitological pro-
cedures and acknowledge that expert malaria micros-
copy may miss light infections when compared to more
sensitive molecular methods [31] and that a single stool
sample may underestimate the prevalence of helminth
infection [32]. Second, the current survey did not collect
household information and therefore is subject to
Table 4 Results of Mantel-Haenszel adjusted odds ratios of the pres
infection by sex, adjusting for age and hookworm infection

Sex Age (years) % positive for A. lumbricoides % positive for Plasmod

Boys

5-8 17.9 (111/624) 52.1 (325/624)

9-10 13.6 (92/677) 51.7 (350/677)

11-12 14.2 (103/728) 48.8 (355/728)

13-18 12.9 (97/753) 43.7 (329/753)

Homogeneity of ORsb:

Girls

5-8 12.5 (137/670) 47.2 (316/670)

9-10 14.3 (125/736) 47.0 (346/736)

11-12 13.6 (98/683) 42.3 (288/683)

13-18 34.3 (76/600) 38.7 (232/600)

Homogeneity of ORsb:
aAge specific OR of P. falciparum in those concurrently infected with hookworm rela
bThis test compares whether there was a significant difference between age-specifi
potential confounding results. Detailed household-level
information was collected only for those children who
were found infected and therefore recruited to the main
treatment trial (ClinicalTrials.gov NCT01658774), which
prevented adjustment for potential confounding in the
larger, cross-sectional data set.

Conclusions
In summary, our study showed that helminth-Plasmodium
coinfection is not uncommon in western Kenya, despite
recent reductions in the prevalence of STH infection due
to implementation of a national school-based deworming
programme. Our study also corroborates previous studies
that have demonstrated positive association between
ence of Ascaris lumbricoides infection on Plasmodium falciparum

ium Odds ratio (95 % CI), χ2 P valuea Odds ratio (95 % CI), χ 2 P value

0.99 (1.64-1.53) 0.97

1.42 (0.90-2.23) 0.131 1.12 (0.91-1.40) 1.13, P = 0.289

1.03 (0.74-1.72) 0.581

1.03 (0.67-1.58) 0.898

χ2 = 1.49; 0.685

0.99 (0.67-1.45) 0.957

1.12 (0.76-1.65) 0.574

1.09 (0.70-1.70) 0.697 1.15 (0.93-1.42) 1.71, P = 0.192

1.64 (1.00-2.67) 0.045

χ2 = 2.70; 0.439

tive to those who are hookworm negative
c OR, hence whether the overall adjusted OR is valid
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hookworm and P. falciparum. Further longitudinal studies
are needed to investigate this association further, the cli-
nical consequences of coinfection, and the impact of
anthelminthic treatment on the risks of clinical malaria.

Additional file

Additional file 1: Table S1. Description of study participants, with
missing data vs. those not missing for 5980 children who provided a
stool sample in 23 schools in Bumula District, western Kenya.
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